
The Asilomar Report on Database Research
by

Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin,
Hector Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish,

Michael Lesk, Dave Maier, Jeff Naughton, Hamid Pirahesh, Mike Stonebraker, and Jeff Ullman

Executive Summary
The database research community is rightly proud of
success in basic research, and its remarkable record of
technology transfer. Now the field needs to radically
broaden its research focus to attack the issues of
capturing, storing, analyzing, and presenting the vast
array of online data. The database research community
should embrace a broader research agenda --
broadening the definition of database management to
embrace all the content of the Web and other online
data stores, and rethinking our fundamental
assumptions in light of technology shifts. To
accelerate this transition, we recommend changing the
way research results are evaluated and presented. In
particular, we advocate encouraging more speculative
and long-range work, moving conferences to a poster
format, and publishing all research literature on the
Web.

1. Introduction
On August 19-21, 1998, a group of 16 database system
researchers from academe, industry, and government
met at Asilomar, California to assess the database
system research agenda for the next decade. This
meeting was modeled after similar meetings held in
the past decade 1. The goal was to discuss the current
database system research agenda and, if appropriate, to
report our recommendations. This document
summarizes the results of that meeting.

The database system research community made
major conceptual breakthroughs a decade ago in the
areas of query optimization, object-relational database
systems, active databases, data replication, and

1 Laguna Beach meeting of 1988 [SIGMOD Record
18(1): 17-26], Lagunita meetings of 1990 and 1995 [
SIGMOD Record 19(4):6-22, SIGMOD Record 25(1):52-
63]
http://www.acm.org/sigmod/record/issues/9603/lagunita.ps.
ACM 1996 meeting "Strategic Directions in Database
Systems---Breaking Out of the Box," ACM Computing
Surveys 28(4): 764-778. http://www.acm.orz/surveys/sdcrl

database parallelism. These ideas have been
transitioned successfully to industry, and the research
community should be proud of its recent successes.

There is reason for concern, however, since the
community is largely continuing to refine these ideas,
in what has been characterized as "delta-X" research.
True, there is a kind of incremental research in which
a series of steps build upon previous steps, leading to
long-term, important innovations; it is not this sort of
activity that concerns us. However, "delta-X" rese.arch
often has a short-term focus, namely improving some
widely understood idea X. Often, the underlying idea
X already appears in some product, hence this sort of
"delta-X" research can be done by industrial
development labs and startups backed by venture
capital.

We encourage the database research community
to eschew the latter kind of "delta-X" research. Let's
broaden our focus to explore problems whose main
applications are a decade off, leaving short-term work
to other organizations. Funding agencies and program
committees should encourage this kind of forward-
looking research by explicitly recognizing that highly
innovative, although speculative, work should
generally be ranked above more polished work of an
incremental, short-term nature.

The fundamental database system issues have
changed dramatically in the last decade. As such, there
are ample new issues for database system research to
investigate. Therefore, we call for a redirection of the
research community away from incremental work and
toward new areas.

The remainder of this report is organized as
follows. Section 2 discusses the driving forces that
fundamentally change the database system research
agenda. This discussion motivates the specific issues,
which we propose as a database system research
agenda in Section 3.

To help focus the database system research
agenda on long-range problems, we present a "grand
challenge" research problem with a ten-year goal in
Section 4.

Section 5 proposes radical changes to the way
database system conferences and journals judge and

74 S I G M O D R e c o r d , Vol. 27, No . 4, D e c e m b e r 1998

http://crossmark.crossref.org/dialog/?doi=10.1145%2F306101.306137&domain=pdf&date_stamp=1998-12-01

present research results. The current process and
organization encourages incremental results and
discourages pioneering work -- this process must
change if we want to encourage radically new ideas.

2. Driving Forces
Three major forces are shaping the proposed focus of
database system research:

1. The Web and the Internet make it easy and
attractive to put all information into
cyberspace, and makes it accessible to almost
everyone.

2. Ever more complex application environments
have increased the need to integrate programs
and data.

3. Hardware advances invalidate the
assumptions and design decisions in current
DBMS technology.

The reader is certainly aware of these trends, but
we recapitulate them here to motivate our assertion
that the database research agenda needs to be
redefined in terms of these new assumptions.

2.1. The Web Changes Everything

The Web and its associated tools have dramatically cut
content creation cost, but the real revolution is that the
Web has made publishing almost free. Never before
has almost everyone been able to inexpensively
publish large amounts of content. The Web is the
major platform for delivery of applications and
information. Increasing amounts of available
bandwidth will only accelerate this process.

This is good news for database systems research:
the Web is one huge database. However, the database
research community has contributed little to the Web
thus far. Rather than being an integral part of the
fabric of the Web, database systems appear in
peripheral roles. First, database systems are often used
as high-end Web servers, as webmasters with a million
pages of content invariably switch to a web site
managed by database technology rather than using file
system technology. Second, database systems are used
as E-commerce servers, in which they are used in
traditional ways to track customer profiles,
transactions, billing, and inventory. Third, major
content publishers are using or evaluating database
systems for storing their content repositories.
However, the largest of the web sites, especially those
run by portal and search engine companies, have not
adopted database technology. Also, smaller web sites

typically use file system technology for content
deployment, using static HTML pages.

In the future, we see the web evolving to
managing dynamic content, not static HTML pages.
For example, catalog retailers do not simply transform
paper catalogs into a collection of static HTML pages.
Instead, they present an electronic catalog that allows
consumers to ask for what they want without
browsing: for example, does the vendor sell all-cotton
teal polo shirts in size large. Retailers want to provide
personalized mannequins that show how the clothing
might look on you. Personalization requires very
sophisticated data models and applications. Supporting
this next generation of web applications will require
very sophisticated database services.

Furthermore, HTML is being extended to XML,
a language that better describes structured data.
Unfortunately, XML is likely to generate chaos for
database systems. XML's evolving query language is
reminiscent of the procedural query processing
languages prevalent 25 years ago. XML is also driving
the development of client-side data caches that will
support updates, which is leading the XML "designers
into a morass of distributed transaction issues.
Unfortunately, most of the work on XML is happening
without much influence from the database system
community.

Web content producers need tools to rapidly and
inexpensively build huge data stores with
sophisticated applications. This in turn creates huge
demand for database technology that automates the
creation, management, searching, and security of web
content. Web consumers need tools that can discover
and analyze information on the Web.

These trends are opportunities for database
researchers to apply their skills to new problems.

2.2. Unifying Program Logic and Database Systems

Early database systems worried only about storing
user data, and left program logic to other subsystems.
Relational database systems added stored procedures
and triggers as an afterthought -- for performance and
convenience. Current database products let
applications store and activate database system
procedures written in a proprietary programming
language. The emergence of object-relational
techniques, combined with the increasing momentum
behind Java as a standard language, allow database
systems to incorporate program logic, written in a
standard programming language and type system. As
such, database systems are on a transition path from

S I G M O D R e c o r d , Vol . 27, No . 4, D e c e m b e r 1998 75

storing and manipulating only data to storing and
manipulating both logic and data.

However, there is still much work to be
done. Repositories are typically databases of program
logic. The requirements of repositories, such as
version control and browsing are not well-served in
most current systems. Obviously, code is not a first
class object and co-equal to data in current database
systems.

Continuing this transition is of crucial
importance. Large enterprises have hundreds,
sometimes thousands, of large-scale, complex
packaged and custom applications. Interoperation
between these applications is essential for the
flexibility needed by enterprises to introduce new
web-based applications services, meet regulatory
requirements, reduce time to market, reduce costs, and
execute business mergers. Advances in database
technology will be required to solve this application
integration problem.

Today, system integration of large-scale
applications is largely addressed by software
engineering approaches, with much attention to
development process, tools, and languages. The
database field should have more to contribute to this
area. This requires that database systems become more
application-aware. Object-relational techniques are
part of the answer, but so are better techniques for
managing descriptions of application interfaces, and
higher-level model-driven tools that leverage these
descriptions to help integrate, evolve, migrate, and
replace application systems - - both individual systems
and groups of systems that function as a single system.

2.3. Hardware Advances: Scale up to MegaServers
and Scale D o w n to Appliances

Moore's law will operate for another decade: CPUs
will get faster, disks will get bigger, and there will be
breakthroughs in long-dormant communication
speeds. Within ten years, it will be common to have a
terabyte of main memory serving as a buffer pool for a
hundred-terabyte database. All but the largest database
tables will be resident in main memory. These
technology changes invalidate the fundamental
assumptions of current database system architectures.
Data structures, algorithms, and utilities all need re-
evaluation in the context of these new computer
architectures.

Perhaps more importantly, the relative cost of
computing and human attention has changed: human
attention is the precious resource. This new economics
requires that computer systems be autoeverything:

autoinstalling, automanaging, autohealing, and
autoprogramming. Computers can augment human
intelligence by analyzing and summarizing data, by
organizing it, by intelligently answering direct
questions and by informing people when interesting
things happen.

The explosion in enterprise-wide packaged
applications such as SAP TM, Baan TM, and Peoplesofff u
puts terrific pressure on database systems. It is quite
common for users to want database system
applications with 50,000 concurrent users. The
computing engines and database system on which such
applications are deployed must provide orders of
magnitude better scalability and availability.

If technology trends continue, large organizations
will have petabytes of storage managed by thousands
of processors -- a hundred times more processors than
today. The database community is rightly proud of its
success in using parallel processing for both
transaction processing and data analysis. However,
current techniques are not likely to scale up by two
more orders of magnitude.

In ten years, billions of people will be using the
Web, but a trillion "gizmos" will also be connected to
the Web. Within the next decade there will be
increasingly powerful computers in smart-cards,
telephones, and other information appliances. There
will be substantial computing engines in the portable
organizers (e.g., Palm Pilots TM) and cell phones that
we carry. Moreover, our set top boxes and other home
appliances will be substantial computers. Smart
buildings will put computers in light switches, vending
machines, and many appliances. Each piece of
merchandise may be tagged with an identity chip. All
these information appliances have internal data that
"docks" with other data stores. Each gizmo is a
candidate for database system technology, because
most will store and manage some information.

Because of gizmos, we foresee an explosion in
the size and scale of data clients and servers -- trillions
of gizmos will need billions of servers. The number,
mobility, and intermittent connectivity of gizmos
render current client-server and three-tier software
architectures unsuitable for supporting such devices.
Most gizmos will not have a user interface and cannot
have a database administrator -- they must be self-
managing, very secure, and very reliable. Ubiquitous
gizmos are a major driver for the research agenda
discussed in the next section.

76 S I G M O D R e c o r d , Vol. 27, No . 4, D e c e m b e r 1998

3. A Proposed Research Agenda
This section discusses research topics that merit
significant attention. The driving forces discussed
above motivate each of these research topics. For
simplicity, we group the topics under five main
themes, and discuss each in turn.

3.1. Plug and Play Database Management Systems

We use the phrase Plug and Play in two ways. First,
since gizmo databases will not have database
administrators, a gizmo database must be self-tuning.
There can be no human-settable parameters, and the
database system must be able to adapt as conditions
change. We call this no knobs operation. The
database research community should investigate how
to make database systems knob-free. The cornerstone
of this work is to make database systems self-tuning,
i.e. to remove the myriad of performance parameters
that are user-specifiable in current products. A further
portion of this work is to deal with physical database
design, for example the automatic index selection
techniques that have received some attention in recent
research and products. More generally, the system
should also help with logical database design (e.g.
tables and constraints), and with application design,
automatically presenting useful reports and utilities.
To guarantee good behavior over time, a no-knobs
system must adapt as conditions change.

Although we do not wish to specify a particular
solution, an encouraging approach is to have the
database system remember all traffic that it processes.
Then, a wizard embedded in the database system with
detailed tuning knowledge examines this traffic and
autotunes the system. A side-benefit is that traditional
commercial database systems become vastly easier to
administer. Since most organizations do not have
enough database administration talent to go around,
no-knobs operation would help them enormously.

A second aspect of Plug and Play database
systems deals with information discovery. As noted
earlier, the Web is a huge database. Moreover, most
commercial enterprises are having trouble integrating
the "islands of information" present in their various
systems. It should be possible to attach a database
system to a company network or the Internet, and have
the database system automatically discover and
interact with the other database systems accessible on
the network. This is the data equivalent of operating

system support for hardware, which discovers and
recognizes all accessible devices.

This information discovery process will require
that database systems provide substantially more
metadata that describes the meaning of the objects
they manage. In addition, the database system must
have a rich collection of functions to cast data from
one type to another. It is reasonable to expect that
there are other approaches to information discovery as
well.

3.2. Federate Millions of Database Systems

Billions of web clients will be accessing millions of
databases. Enterprises will set up large-scale federated
database systems, since they are currently investing
enormous resources into many disparate systems.
Moreover, the Web is one large federated system. We
must make it easy to integrate the information in these
databases. There are several major challenges in
building scalable federated systems.

First, we need query optimizers that can
effectively deal with federated database systems of
1000 or more sites. It is an absolute requirement that
each site in such a system be locally autonomous.
Therefore, a federated query optimizer cannot simply
construct an optimal plan, because various sites must
be empowered to refuse to perform their piece. Local
constraints may make the globally optimal plan
infeasible. In addition, the load on the various sites
may change. A traditional static cost-based optimizer
computes an optimal plan assuming that the query is
the only task running on the network. This plan is not
"load aware", and even if it were, the load might
change between compile and run time, or during run
time. In a dynamic network, optimizers must adapt to
changing loads. In a federated database system there
may be replicas at various sites, and the quality
(timeliness) of the replicas may vary. An optimizer
must be able to deal with such quality-of-service
issues. For all of these reasons, it is time to rethink the
traditional static-cost-based approach to query
optimizers in this new environment.

A second aspect of federated database systems is
one of the semantics and execution of queries. A user
might issue a query to a 1000-site federated database
such as:

"Find the average enterprise-
wide employee salary. "

Traditional database systems are programmed to give
the exact answer to this inquiry, perhaps after
computing for a long time. A better model has the

S I G M O D R e c o r d , Vol . 27, No . 4, D e c e m b e r 1998 77

database system view this as an evidence
accumulation process. The database system should
develop a coarse answer quickly and then refine it
over time, stopping when the user decides that the
answer is "good enough." Of course, this requires
substantial changes to a query optimizer and execution
engine, but it also requires a synthesis of statistical
estimation techniques with data delivery and user
interfaces.

Imprecise information will not only appear as the
output of queries; it already appears in data sources as
well. The evidence accumulation paradigm has even
wider utility in this regard. Consider a user submitting
a query such as:

"Are there any really good
Italian restaurants within 5
miles of where I live?"

There may be 10 or more restaurant review databases
that have information on Italian restaurants, along with
perhaps several geographic databases. Hence, this
query presents an interesting database integration
problem. There is no exact answer to this query, since
each critic is entitled to his own opinion. The query
engine must treat this as an evidence accumulation
problem, albeit an even less clearly specified one than
the previous example. Progressive refinement should
be applicable in this universe as well.

A third aspect to federation is tools that assist the
integration process itself. It should be easy for a
system administrator to add his system to a larger
federated system. If a web-based clothing retailer
decides to offer their travel clothing to an online travel
agent, then the clothing order and billing systems must
federate with the travel agent systems. Automating this
integration activity requires a database of application
and database interface definitions merged into a
coherent whole, with tools that help the engineer
reconcile the new system being put in place. OMG's
Unified Modeling Language standard is a step toward
expressing these definitions, but more semantics must
be captured in a computable form for tools to support
improved automation.

3.3. Rethink Traditional Database System
Architecture

The technology trends of Section 2 allow users to
implement larger and larger database system
applications. This has led to a multitude of shared
memory, shared disk (cluster), nonuniform memory
(NUMA) and shared-nothing cluster architectures.
Current database systems have been especially

successful with shared nothing systems since these
have better scalability characteristics. Computer
clusters also leverage commodity components, and so
can be much less expensive. In a large cluster, the
database system optimizer must deal with multiuser
load balance, availability of disk space, and constraints
on feasible plans and replicas. Most of the reasons for
rethinking optimization in federated database systems
(Section 3.2) also arise in this context.

In addition, the typical computing engine may
have one terabyte of main memory. "Hot" tables and
most indexes will be main-memory resident. This will
require storage architectures to be rethought. For
example, B-trees are not the optimal indexing structure
for main memory data. Also, the current buffering,
recovery, and concurrency strategies of commercial
database systems may be inappropriate.

Furthermore, while disk capacities are improving
very quickly, seek times are improving relatively
slowly. Hence, the amount of data that can be
transferred to main memory during an average seek
time is rising very quickly. Put differently, the cost of
a seek relative to the transfer of a byte of data is rising
quickly. This requires storage architectures that are
much more serious about disk arm optimization. Also,
"arm wasting" architectures, such as RAID 5, may be
inappropriate in the future.

Most organizations need continuous system
operation. Designing a software system that never fails
requires remote replicas and dynamic reconfiguration.
It is not clear whether remote replicas should be
handled at the disk level using RAID ideas, or at the
database system level by moving the database system
log and rolling it forward at the remote site.

New applications, including satellite imagery and
digital television archives, require very large databases
that are measured in petabytes or exabytes. Such
applications may be enabled when disk storage
becomes cheap enough to deal with the volume of
required data in a standard 2-level memory hierarchy.
Alternately, it is possible that a new tertiary storage
device perhaps based on holographic techniques will
become available. So, three level memory hierarchies
are a definite possibility. Providing exabyte storage in
multitier architectures, including replication and
backup, is a considerable challenge.

Last, the popularity of three-tier (thick
middleware) application architectures is increasing. In
this world, there is only one program (the database
system) running at the server level and only one
program (the application server) running in the middle
tier. Both must support thousands of connections.

78 S I G M O D R e c o r d , Vol. 27, No . 4, D e c e m b e r 1998

Optimizing database systems (and operating systems)
for this environment is a challenge.

In summary, the fundamental architecture of
database systems has been around for nearly 20 years.
We believe it is time to rethink most of the basic
architectural assumptions in light of the environment
that will be available in the year 2010.

3.4. Smart-Data Unify Process and Data in
Database Systems

There are several ideas that should be investigated
under the rubric of making application logic a first
class citizen in future database systems. First, a
possible model for the description of the application
would be as a workflow of business rules. Such
workflow systems are now available from many
vendors as application-level frameworks. It seems
possible to compile workflow diagrams into a
collection of database triggers and alerters that would
run inside an active database system. Running data-
intensive workflows inside the database system is
substantially faster than running them outside the
system. However, workflow support requires a system
capable of scaling to thousands of triggers. Current
implementations scale only to a few triggers.
Substantial research and experimentation is needed to
scale up trigger systems by three orders of magnitude.

A scalable trigger system has additional benefits,
because there are applications that need a large
number of conventional triggers on data elements. For
example, users of stock market systems wish to be
notified when a particular condition becomes true,
such as a particular stock reaching some price
threshold. A scalable trigger system could support
such applications where millions of triggers are
defined on the data. Of course, such a trigger
implementation must work on a shared-nothing or
even federated system. Efficiently supporting large
collections of distributed triggers is an open question.

A second issue concerns logic in the
conventional sense of procedures in a given
programming language. Components are a popular
way of expressing such logic, and such components
should be supported inside the database system.
Unfortunately, there is not yet a component Esperanto.
CORBA, OLE, Enterprise Java Beans (EJB), and Jini
may all become popular. Supporting several
(incompatible) component models inside an Object-
Relational database system appears to be a daunting
challenge. Nonetheless, it is incumbent on the
database community to help evolve these models to

support types and procedures well-integrated with the
database system.

A third issue concerns visual programming
methodologies. Many data designers use a
diagramming framework to specify data and
application design. These powerful tools can both
model and automatically generate the application. If
components are inside the database system, then such
methodologies must be evolved to deal with Object-
Relational database systems. It is an interesting
challenge to consider a visual design tool that
addresses all these system design aspects together.

A last issue in this arena concerns persistent
programming languages. There are many applications
where SQL is the dominant database access
mechanism. However, a minority of applications (or
application components) should be specified in a
persistent programming language. It is an open
challenge to provide both efficient SQL and efficient
persistent programs in the same system, especially
when the environment is update-intensive.

3.5. Integration of Structured and Semistructured
Data

The advent of XML is likely to create an enormous
quantity of data whose form is hierarchical rather than
relational or object-oriented. Moreover, this is
"semistructured," in the sense that many different
forms of Web pages can fit a single schema. In spite of
vigorous recent activity by the database community on
query languages and environments for such data, the
area is still in its infancy.

Database researchers have proposed declarative
query languages for XML. However, given industrial
activity in the area, we guess that XML and its
evolving data manipulation languages will resemble a
traditional hierarchical database system with a
procedural data access language. The database
research community should undertake the substantial
effort o f unifying web and database technologies,
including the challenge of making web environments
semantically appealing. Representative issues include
handling sets of disparate, self-describing, potentially
deeply nested objects, developing suitable declarative
languages, loosely consistent transaction models,
automated resolution, versioning, and interactions
between updatability and caching.

4. The Grand Challenge
We propose that there be a grand vision that the
research community attempts to accomplish in the

S I G M O D R e c o r d , Vol . 27, No . 4, D e c e m b e r 1998 79

next decade. The grand challenge should encompass
most of the problems discussed in Section 3, but focus
them on an important goal. People outside the field
should find the goal easy to understand and exciting.
Other fields have used such grand challenges to focus
and motivate their fields.

We recommend a ten-year goal for the database
research community:

The Information Utility: Make it easy
for everyone to store, organize, access, and
analyze the majority of human information
online.

The majority of human information will be on the
Web in ten years. It will be an exabyte spread across
the planet in many formats. Absent new tools, finding
and understanding answers to our questions will be
even harder than it is today. An ideal system would
answer questions succinctly and would anticipate
questions by notifying us of interesting events.

In other words, the goal is tO turn the Web into a
more useful information utility Over the next decade.

5. Research Infrastructure
To encourage innovative work in pioneering areas, and
specifically to accelerate the changes of emphasis
advocated in this report, we recommend changing the
reward system for researchers. Program committees of
major conferences and journals should change their
method of selecting articles. Also, electronic
publication of technical reports has changed the way
scientific literature should be collected and
disseminated. We suggest changing the processes of
the database system research community as follows.

First, CoRR and individual web sites provide an
efficient electronic publication system
[http://xxx.lanl.gov/archive/cs]. Conferences and
journals should de-emphasize paper copies of their
proceedings - rather they should present web sites that
organize submissions and present editorial comments
on them. We suggest that conferences move to an "all
poster" or "mostly poster" presentation scheme. Many
articles are so specialized that attendance at the
presentation is limited to a few specialists interested in
the topic. These specialists can have a more efficient
group discussions at a poster session. Presentation
slots should be allocated to ideas that do not follow the
"delta-X" mentality, and to invited presentations that
summarize recent progress in established fields and
innovations in new fields.

In addition, we bel ieve that information
dissemination is best accomplished by accepting a
substantially larger number of articles. This would
make room for more innovative articles, w i thou t
crowding out the strong delta-x results that conference
re, viewing tends to favor.

Lastly, and perhaps most controversially, we
propose a public reviewing process. Every program
committee and editorial board goes to a great deal Of
work to review a large collection of submissions. We
want to somehow capture and publish this valuable
information. Once an author makes a document public,
e.g., by submitting it to CoRR, volunteer reviewers
should be able to publish their reviews in a moderated
forum. Organized reviews of related articles that
compare, and contrast the material will be especially
useful. We endorse the efforts of H. V. Jagadish to
explore these issues and start such a reviews database.

80 S I G M O D R e c o r d , Vol. 27, No . 4, D e c e m b e r 1998

