Check for
Updates

Arbitrary Precision and Complexity Tradeoffs for
Gate-Level Information Flow Tracking

Andrew Beckerf, Wei Hu#, Yu Tai?, Philip Brisk!, Ryan Kastner* and Paolo lennet
TEcole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
#University of California, San Diego, La Jolla, CA 92093
$Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
IUniversity of California, Riverside, Riverside, CA 92521
{andrew.becker, paolo.ienne}@epfl.ch; {weh040, kastner}@ucsd.edu;
taiyu@mail.nwpu.edu.cn; philip@cs.ucr.edu

ABSTRACT

Hardware has become an increasingly attractive target for
attackers, yet we still largely lack tools that enable us to
analyze large designs for security flaws. Information flow
tracking (IFT) models provide an approach to verifying a
hardware design’s adherence to security properties related
to isolation and reachability.

However, existing precise IF'T models are usually too com-
plex to actually use. Queries may fail to finish even for small
designs when verifying relatively simple properties. It is pos-
sible to create less complex models, but these come at the
cost of a severe loss of precision—they frequently indicate a
property fails when in fact it passes, which means verifica-
tion requires extensive additional manual investigation.

We present a new method to bridge the chasm between
precision and complexity in a finer-grained, controlled, and
disciplined manner. Our method allows using the most ap-
propriate precision/complexity tradeoff for the design size
and available computing resources, meaning it is now possi-
ble to create models that are not too complex to be usable,
but which offer more precision (fewer false positives) than
was previously possible.

1. INTRODUCTION

The constant increase in semiconductor hardware design
complexity practically ensures that modern chips will con-
tain security flaws. Typical supply chains are opaque [4],
and methods for sabotage are so stealthy [2], that malicious
design modifications could remain undetected for years. Fur-
thermore, attacks exploiting hardware design flaws are in-
creasingly common, and the target scope includes everything
from personal mobile devices to national air defence radar
systems [1].

Automated analysis methods that can verify a system ad-
heres to high-level security specifications could eliminate the
possibility of certain exploitable flaws. Information Flow

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC 17 June 18-22, 2017, Austin, TX, USA

(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4927-7/17/06.

DOLI: http://dx.doi.org/10.1145/3061639.3062203

Y Vi
Ill\gi(‘;e[s%se (D
Figure 1: (a) Original design netlist, (b) Corresponding
GLIFT “constructive method” model, (c) Whiteboxing a
GLIFT OR cell, (d) Illustration of a query on a GLIFT model,
(e) Precisely simplified GLIFT model, (f) Imprecise “all-OR”
GLIFT cell, (g) Imprecisely simplified GLIFT model.

Tracking (IFT) models [3, 11], for example, can help to ver-
ify non-interference [6], or that if one assigns ‘high’ and ‘low’
security labels to inputs and outputs, ‘low’-labelled outputs
are functionally unaffected by ‘high’-labelled inputs. This
means IFT models can be used to check properties like isola-
tion and reachability [6], useful e.g. to detect hardware Tro-
jans [4]. Of particular interest are gate level IFT (GLIFT)
models [10] which add a “taint” label to each signal in the
raw design netlist and model how tainted information can
flow gate-to-gate from inputs to outputs.

Fig. 1(a) shows a simple logic circuit (a MUX) and Fig. 1(b)
shows how the typical constructive mapping approach re-
places each gate in the netlist with a GLIFT cell that im-
plements the very same logic funtionality but also includes
extra inputs and outputs to label and track tainted flows.
Fig. 1(c) details the GLIFT OR cell, which expresses that the
output is tainted either if both inputs are tainted or if one
input is tainted and the other is at the logic value 0 (that is,
it exposes the state of the tainted input to the output). A
typical Boolean SAT query on this GLIFT model, albeit a
trivial one in this elementary example, is shown in Fig. 1(d):
the user asks whether there is any condition under which the
tainted input b may leak to the output given the knowledge

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3061639.3062203&domain=pdf&date_stamp=2017-06-18

of some of the inputs and labels; the answer is clearly “no”
in this case (and hence the query is UNSAT) because s = 1
and the output is logically connected to a (remember that
the circuit is a MUX).

Fig. 1(e) shows the result of a recent precise simplification
approach [7] where the GLIFT OR cell at the circuit output
is replaced with a lower-cost imprecise version (a GLIFT
XOR cell) shown in Fig. 1(f). The simplification is possible
because the internal nodes p and q are mutually exclusive
(due to the signal s) and thus the output GLIFT OR cell can
be replaced with a GLIFT X0R gate without any change in
the functionality—even though taken alone, a GLIFT XOR
cell overapproximates label propagation of a GLIFT OR cell.
Thus, the model is smaller but the propagated label value
is still perfectly correct under all conditions.

Finally, notice that in Fig. 1(g) the same simplification in
the taint propagation logic is applied to one of the GLIFT
AND cells. Again, the simpler imprecise cell overapproxi-
mates the label (is 1 when it should be 0), but in this case
the label may propagate to one of the model’s label out-
puts. This GLIFT model is now imprecise because that
same SAT query is now satisfiable: the GLIFT model now
reports a false positive: a reported information flow that
does not actually exist. It is worth emphasizing that this
does not compromise security in any way; it burdens the
designer to assess whether each reported flow is indeed real.

Unfortunately, SAT queries on precise GLIFT models can
take weeks, or even longer, for moderate- to large-sized de-
signs. Designers are thus typically forced to use an “all OR”
model, where this simplification (replacing the correct la-
bel propagation logic with a simple OR gate) is applied ev-
erywhere. This makes it possible to query models of more
complex designs, but there is no control whatsoever on in-
troduced false positive flows.

Contribution: This paper describes automation tech-
niques for circuit designers to make principled tradeoffs
between the precision and complexity of GLIFT models.
Specifically, we propose two new QBF-SAT problem formu-
lations and describe algorithmically how to apply the solver
to iteratively generate a simplified GLIFT model for a target
level of imprecision. Our first formulation allows imprecision
by forcing the solver to choose a set of bit vectors to exclude
from the precise equivalence constraint; this approach works
in principle, but suffers from severe scalability issues. Our
second formulation addresses this shortcoming by instead
forcing the solver to choose a set of bit vector patterns,
including don’t-cares, subject to additional constraints on
the allowed number of extra imprecise flows. We analyze
the tradeoff space for an example set of designs and show
how our approach can be used to create GLIFT models that
trade-off between precision and complexity in a reasonably
controllable way.

2. RELATED WORK

Precision and complexity are contradictory modelling
goals [9]. In practice, formally verifying properties of GLIFT
models is intractable without accepting very low precision.
Designers may simply abandon GLIFT in favor of a higher-
level model [11], may try to simplify without sacrificing
precision [7], or may use very imprecise models with “all
OR” label propagation [3].

Constructively-generated GLIFT logic often exhibits in-
ternal redundancy [8, 9] which can be exploited to generate

ab aa; bb;
b
y (a) V1
aa, bb, /

T T l
i e s ¥ R B
‘ GLIFT HIMPREC.‘ IMPREC.HIMPREC.‘

(®)

AND #1 #2 #3
HYl Y1, Y1, ‘ ‘Y13

hy—01 2 37

YY1,

(c)

Figure 2: Original circuit gate (a), to its corresponding
GLIFT cell (b), to a GLIFT supercell (¢). h; tunes the
(im)precision of the supercell.

simplified GLIFT models that do not incur reduced preci-
sion [7]; however, the internal redundacy varies from design
to design, and the simplifications that can be achieved in
practice are limited. Alternatively, applying constructive
mapping after first applying some logic synthesis optimiza-
tions to the design allows generating slightly simpler GLIFT
models, at the cost of some precision [7]. However, the opti-
mization achieved is limited, not controllable, and does not
adapt to verification needs.

In response, this paper introduces a novel methodology to
make arbitrary tradeoffs between GLIFT model complexity
(correlated to GLIFT query time [7]) and precision, enabling
tractable GLIFT model queries that sacrifice considerably
less precision than with “all OR”.

3. PRECISE GLIFT MODELS

3.1 Instrumented Model Construction

Fig. 2(a) shows one gate in the original design netlist.
Fig. 2(b) shows the original, locally-precise GLIFT cell af-
ter constructive mapping. Precisely simplifying the model
requires constructing a so-called “instrumented model”; in-
corporating it in a QBF-SAT problem formulation, and iter-
atively driving the solver to find the best solution. The in-
strumented model is constructed by replacing each GLIFT
cell with a GLIFT “supercell” (Fig. 2(c)), where a multi-
plexer selects a label propagation function according to a
select line h; whose value will eventually be determined by
the solver. The choice of propagation functions determines
the generated model’s precision and complexity.

While so far we’ve only discussed OR gates as imprecise la-
bel propagation functions, others are possible, and each with
varying costs. By allowing a choice of alternative functions,
the solver has potentially more freedom to choose alternative
functions elsewhere without changing overall model func-
tionality. Thus, although the choice of propagation function
is a local substitution, it affects the global context.

The eventual solution specifies a concrete value for each h;
in the instrumented model, a two-bit signal that selects the
appropriate propagation function, denoted y;, . Once the se-
lection has been made, the instrumented model is converted
to RTL and each h; is replaced with its constant value, elimi-
nating the unselected GLIFT cells and the multiplexer, leav-
ing only the one GLIFT cell with the solver-chosen propa-
gation function for each original gate.

slots i

Replacement

L Precise
Counter

Model

Figure 3: Diagram of the QBF-SAT problem for the explicit
method. The QBF-SAT solver tries to force the output of
this circuit to 1 for all possible values of the primary inputs
i under the constraint that the configuration found must
use at least 7 imprecise GLIFT cells. The solution of the
QBF-SAT problem returns an assignment for h (the cho-
sen configurations for the supercells) and slots that limits
global model imprecision. That limit is effected by the Re-
placement Acceptance Criteria Evaluator, whose operation
is visualized in Fig. 4.

3.2 SAT and QBF-SAT

This approach is based on an extension to the following
variant of the Boolean Satisfiability (SAT) problem, which
can determine the universal truth value of a Boolean for-
mula:

Vi € {0,1}" 5 6(0) 8
In other words, SAT solvers can determine if some accep-
tance function ¢ evaluates to 1 under all possible values of
i.
Quantified Boolean Formula Satisfiability (QBF-SAT)
adds an extra layer of quantification:

3h € {0,1}™.Vi € {0,1}" : ¢(h, 1) (2)

Thus, QBF-SAT can be used to determine if there exists
any value for h for which ¢(h,i) evaluates to 1 under all
possible values of i. A QBF-SAT solver lies at the core of
both precise and imprecise GLIFT model synthesis.

3.3 Simplification as QBF-SAT

The QBF-SAT problem is formulated so the acceptance
function ¢(h,7)’s output is 1 when both of the following
conditions are satisfied:

e when h—the concatenation of all supercells’ select lines—
configures at least some minimum number 7 of super-
cells to use a locally-imprecise propagation function

e and when the instrumented model’s output label val-
ues are identical to those of the original precise GLIFT
model

By iteratively solving and adjusting 7, the GLIFT model
with the most possible replacements can be generated.

4. IMPRECISE GLIFT MODELS

Precise GLIFT simplification, as described in the preced-
ing section, exploits internal redundancy created by the con-
structive method to simplify some GLIFT cells without af-
fecting model precision. However, the strict equivalence con-
straint still yields costly implementations. In this section, we

) Output Labels Output Labels
Inputs Instrumented model Precise model

010010010..0110101000 01101001 01101001
010010010..0110101001 01001010 _ 01001010
——>010010010..0110101010 11fl0111 @ 11810101
010010010..0110101011 10010101 _ 10010101
—>010010010..0110101100 1111111 © 1f111010
010010010..0110101101 10100110 10100110

010011110..0110101001 00010100 00010100
010011110..0110101010 10010101 10010101
010011110..0110101011 10010100 10010100
010011110..0110101100 10100010 10100010

@ TEETIGIREMGEEEGNEG] flioo1001 [§1001001
111010001..0101010011 10111001 10111001
111010001..0101010100 00101110 00101110

Slots (N =2)
Input vector Output mask
‘ 010010010..0110101100 01000111
‘ 010010010..0110101010 00001111

Figure 4: The imprecision acceptance criteria for the ex-
plicit method. This is an example of an invalid super-
cell configuration, showing how the slots determine which
imprecision-generating inputs are accepted. Here the in-
strumented model is not a valid approximation due to three
problems (indicated in negative, red): (1) The instrumented
model’s outputs change under three input vectors but there
are only two slots. (2) When the first input vector is applied,
one false positive is not in a position allowed by the slot’s
output mask. (3) With the second input vector, one of the
changes is not a false positive, but a false negative.

relax the strict equivalence constraint, which exposes more
simplification opportunities as long as we are willing to ac-
cept some ‘false-positive’ detected flows in addition to those
that are already present in the constructive GLIFT model.
In other words, an imprecise GLIFT model may report a
flow (i.e., an output with label 1) when the precise model
reports that no such flow exists (i.e., the same output is
labeled 0). We describe techniques to formulate the QBF-
SAT constraints to allow false positives for specific sets of
input vectors, where the solver automatically chooses the
best such vectors (it is also possible to restrict false posi-
tives to only a subset of output labels). By changing one
parameter to these constraints, the user can explore trade-
offs between GLIFT model precision and complexity.

4.1 Explicit Acceptance by Bit-Vectors

Let (x) denote a bit-vector of length |x| whose binary
encoding is equal to x. A slot is a bit-vector (s) contain-
ing an “input vector” and an “output mask”, and describes
which model input values may trigger a false positive, and
in which output label(s). When generating an imprecise
GLIFT model, the designer specifies a number of N slots,
thereby providing a degree of control over the amount of
imprecision that may be inserted.

Fig. 3 illustrates the QBF-SAT problem instance that is
used to simplify a precise GLIFT model to an imprecise
one. The user provides a precise GLIFT model, which is au-
tomatically used to create an instrumented model (in which
GLIFT gate replacement configuration options are avail-
able, as in Fig. 2(c)). The Replacement Acceptance Criteria
Evaluation function ensures that the constraints encoded in
the slots (whose contents are themselves determined by the
solver) are checked. For input bit vectors that don’t match
a slot, the imprecise and precise GLIFT models must pro-
duce identical labels; in case of a match, the labels may be
identical or a false positive. The user also provides an in-

teger parameter, 7, which is a lower bound on the number
of locally-imprecise GLIFT cell replacements to be made;
the Replacement Counter and comparator (>) ensure that
this lower bound is achieved. The AND gate at the bottom
ensures that both criteria are satisfied, i.e.: (1) the impre-
cise GLIFT model accounts properly accounts for all 21l glot
and non-slot bit vectors; and (2) at least 7 locally-imprecise
GLIFT cells are used instead of precise GLIFT cells.

4.1.1 Imprecision Acceptance Criteria

Fig. 4 illustrates several relevant aspects of the imprecise
acceptance criteria. In this example, there are N = 2 slots,
each of which has a corresponding output mask. For each
bit in the output mask, a value of 1 indicates that a false
positive is allowed in that bit position, and a value of 0
indicates that a false positive is not allowed there.

Three errors occur in Fig. 4 that would not be accepted by
our model: First, a bit vector not matching any slot yields
a false positive. Second, a bit vector that does match a slot
yields a false positive corresponding to a bit position whose
output mask has a value of 0. Third, the model generates
a false negative in an allowable bit position, rather than a
false positive. Our problem formulation ensures that these
types of errors do not occur.

4.1.2 QBF-SAT Formulation

The added elements of imprecision require an updated
QBF-SAT problem formulation that goes beyond the precise
formulation introduced in Section 3.2. The formulation for
the function illustrated in Fig. 3 is:

3(h, slots) € {0,1}™ Vi € {0,1}" : ¢(h, slots,i) (3)

Notice that the function ¢ in Equation 3 has no param-
eter 7, which is shown as an input in Fig. 3. We fix the
value of 7 for each QBF-SAT problem instance; we itera-
tively adjust 7 and re-solve, using a binary search method
to generate a sequence of models with progressively more re-
placements, quickly converging on the model that maximizes
the number of replaced GLIFT cells while still adhering to
the constraints described above.

4.1.3 Solver Runtime

Fig. 5 reports the runtime of the QBF-SAT solver as a
function of the number of slots (N) provided by the user,
given a one-hour time limit. For N < 56, the solver was able
to replace seven cells in 207 seconds or less; for N = 64, the
solver could only find five replacements within the allotted
hour, so a dashed line is shown to the timeout. These results
indicate that acceptance by bit vectors scales poorly.

4.2 Acceptance by Patterns

Our solution is to calculate acceptance not by bit vectors,
but by patterns of bit vectors. Acceptance by patterns allows
each slot to encode allowable false positive flows for multiple
bit vectors. A pattern includes one or more don’t-care values
encoded by an X in place of an individual bit, as shown in
Fig. 6; a pattern with j don’t-cares covers 2’ distinct bit
vectors.

Fig. 7 depicts a new acceptance function. It is similar to
the function shown in Fig. 3, but with a few key differences.
The slot encoding allows for don’t-care bits (not shown);
the user specifies a parameter MaxFP which provides an up-
per limit on the number of unique bit vectors that can be

20 10000
Max. # Replacements in 1hr 3600

= 18 Solver Runtime (s), [T=7] ’.'
— 16
£ 1000
o 14
c
g 12
@
o 10 100
K
é; 8

6
¥ 10
g 4

2

0 1

3 4

8 16 24 32 40 48 56 64
N (# of slots)

Figure 5: A chart showing with columns (axis on left)
the maximum number of GLIFT cell replacements and the
QBF-SAT solver runtime to find those replacements for the
too_large experiment with various N values (i.e. numbers
of slots), given a l-hour solver timeout. The data at N=64
shows that the solver was not even able to find the same
seven replacements it could with fewer slots; it could only
find five. Note how the solver runtime increases rapidly, and
yet we find no additional GLIFT cell replacements.

Output Labels

Instrumented model

Output Labels

Inputs i Precise model
01101001
01001010
11010111
1001[1 1
11111010
10100110

01101001
01001010
11010111
1001fh [l
11111010
10100110

010010010..0110101000
010010010..0110101001
010010010..0110101010
~010010010..0110101011
010010010..0110101100
010010010..0110101101

00010100
1001010
10010000
10100010

00010100
1001f1010
10010000
10100010

010010110..0110101001
010010110..0110101010
~010010110..0110101011
010010110..0110101100

01001001
10111001
00101110

01001001
10111001
00101110

111010001..0101010010
111010001..0101010011
111010001..0101010100

Slots (N=1)
Input pattern

‘ 010010x10..011010101X

Output mask

00001111

Figure 6: The imprecision acceptance criteria for the pattern
method. This figure shows how changes to the GLIFT model
truth table (i.e. false positives) are allowed in the pattern
method and how the estimated upper bound on additional
false positives is computed. Individual input vectors are now
replaced by patterns including don’t-cares. Acceptable false
positives (three in the example, indicated in negative, dark
blue) must match at least one of the input patterns’ covered
rows and also in the output mask’s columns.

covered by patterns (note that multiple patterns may cover
the same bit vector); and a “Bound Evaluator” component,
which enforces the aforementioned upper bound. This pro-
vides the user an extra degree of freedom in addition to the
number of slots. Specifically, MaxFP can be interpreted as an
upper bound on the number of bit vectors that may intro-
duce at least one false positive flow.

The truth table cell coverage for a given slot is computed
as: 2MUnPut-mask) Hy (Gutput_mask) where HW is the Hamming
weight function. The coverage value for each slot is then
summed and compared to the provided threshold MaxFP.

7]

Solver Runtime (s), [t

(fixed)

MaxEFP slots h

N
nst rumented|
Model

Precxse
Model

Bound
Evaluator

Counter

Replacement Acceptance
Criteria Evaluator

{{R

Figure 7: The QBF-SAT problem for the patterns method.
The QBF solver addresses essentially the same problem as
the explicit method with two important differences: (1) The
semantics of the slots are now changed to contain don’t-
care patterns, and the acceptance function is changed ac-
cordingly. (2) The upper bound on how imprecise the h
can validly make the model is now limited by the constant
parameter MaxFP. The criteria used in this circuit are illus-
trated in Fig. 6.

The appropriate parameter value for MaxFP varies from
design to design, and some sense of the number of existing
flows in the design can help to bound the desired number of
false-positive flows. Our approach is to simulate the original
precise model with a relatively small number (22°) of uni-
formly random input and input label values. We then scale
the result to the size of the model input space 2‘”, where |I|
is the number of inputs and input labels. This provides a
rough estimate of the number of original flows, allowing for
quick calibration of the MaxFP parameter.

This is not a hard upper bound, and could easily overesti-
mate the number of precise flows when scaled to the size of
the full model input space. As an example, the alu4 bench-
mark circuit has 28 model inputs, so its MaxFP parameter is
256 times the number of flows sampled in the precise model.

S. EXPERIMENTAL RESULTS
5.1 Methodology

To empirically verify our claim that we can generate cir-
cuits with arbitrary tradeoffs between added false positives
and complexity, we must have a method to measure at least
an estimate of the actual number of false-positive flows that
a given imprecise model produces. To estimate, we use a set
of designs from the standard IWLS benchmark set, and for
each we use the same pseudorandomly generated 2%° model
input vectors used for estimating MaxFP, which were gen-
erated using Linear Feedback Shift Registers (LFSRs) with
periods longer than 2%°. Then we simply count the number
of flows detected and subtract the number of flows detected
for the same sample with the precise model.

Due to the time and expense of an exhaustive exploration
of the possible configuration space for each experiment, we
employed a binary search method to find the maximum pos-
sible number of replacements given N (the number of slots)
and MaxFP, described by the pseudocode in Fig. 8, and ran
multiple experiments changing MaxFP to estimate 80%, 60%,
40%, 20%, 10%, 5%, 2%, and 1% false positive rates. All ex-
periments ran on Xeon E5-2680 v3 processors with at least
64GiB of available RAM, with a QBF-SAT instance timeout
of 1 hour, using Yices 2.5.1 [5] in “exists-forall” mode.

delta := infinity

tau := None
N o=/
MaxFP := //...
solution = Solve(tau, N, MaxFP)
min_fail := 0
if not solution:
exit
while delta > 1:
delta := (min_fail - max_succ)
tau := max_succ + (delta / 2)

1= Solve(tau, N,
if solution:

solution MaxFP)

max_succ := size(get_replacements(solution))
else:
min_fail := tau

Figure 8: Pseudocode for the configuration space explo-
ration algorithm. Given N false positive pattern slots and
a bound on the percent of false-positives in the generated
model, this algorithm finds the configuration for the gener-
ated GLIFT model with the maximum number of replace-
ments possible given the values for N and MaxFP.

120 10000
3220 2587 2962 2734 3328 2927
100 821 1977
£ 1000
=
£ 80
."E’ Max Replacements
“E’ — Solver Time (s)
& 60 100
o
<
o
3
b 40
3 10
=
20
0 1
1 2 5 10 20 40 60 80

MaxFP %

Figure 9: Similar to Fig. 5, but with MaxFP on the hor-
izontal axis as the user-controlled variable, with two pat-
tern slots, for too_large. Note how many more replace-
ments (columns, left axis) are found than with the ‘explicit’
method, and the runtime (line, right axis) stability.

5.2 Discussion

Fig. 9 serves as a counterpoint to Fig. 5. With the ‘pat-
tern’ technique, we can find many times the number of re-
placements as ‘explicit’, and with more reasonable runtime,
too. Some experiment instances used almost the entire al-
loted hour of solver time while others finished within min-
utes. Space constraints prevent us from presenting all the
runtime data; this example serves as a representative indi-
cation of what to expect.

In Fig. 10 we show the actual area reduction achieved
versus the measured false positive rate. The results reported
here are only for the results of the search algorithm in Fig. 8
with two pattern slots, not intermediate steps. While this
is still a busy chart, one can see how generally a higher
measured false positive rate corresponds with a bigger area
reduction. One can also see that the region between the “all-
OR” data points is not quite covered. This is likely due to
our approach maximizing the number of imprecise GLIFT
cells, not the simplicity of imprecise GLIFT cells. We also
suspect the visible “noise” in the ttt2 data is due to the same
cause. Future work will explore, for example, weighting each

Solver Runtime (s)

80 gz e— -

MCT552 N
70 #too_large .
481

=]

L] L] \"
Axl Z
60 | p a4 R
aw2 e --""All-OR
§ 50 |=csso
S 40
5 » H
E} >
8 30 >
4
© W AA
3 >
g 2 . e
+« > d * *
10 | * » A n
m * oy L)
A A L) A A
0
0.001 0.01 0.1 1 10 100 1000

Measured FP Rate (% of est. precise flows)

Figure 10: A comparison of area reduction to the measured
additional false positive rate (as a percentage of the origi-
nal number of flows) among the sampled 22° input vectors,
given two pattern slots. Allowing extra false positives re-
duces the model’s area, and we can generate models with
arbitrary imprecision. The corresponding “all-OR” models
are highlighted.

1000

mttt2
= L MCT552
2 100 '3\ *too_large
2 s N 481
@ L] | Axi
$ 10 = i M E N balua
g N " All-OR ~- “alu2
o 1 am m - ¥ C880
3 4 M
k<) []
< 0.1 R
=~ "
o L
g oo
a
w &
g 0001 ¢
5
3
$ 0.0001
= 0 20 40 60 80 100 120

MaxFP Parameter (%)

Figure 11: The measured additional false positive rate (on
a log axis) among the sampled 22° input vectors versus the
MaxFP parameter. The MaxFP bound is loose, but clearly
effective at controlling the actual false positive rate. The
corresponding “all-0R” models are again highlighted.

supercell option; this weight could be the number of gates in
the chosen propagation function to potentially make a better
proxy for simplicity. Still, overall, these data show that we
do effectively trade off complexity (by proxy of area) and
the false positive rate for the generated GLIFT models.

In Fig. 11, we show the measured additional false positive
rates for the same experiments versus the MaxFP parameter
used. Here one can clearly make out that increasing the
bounded false positive rate generally induces more aggres-
sive imprecision.

Together, Fig. 10 and Fig. 11 show that not only can we
trade off complexity and imprecision, but we have a control-
lable and flexible method to do so, as well.

6. CONCLUSIONS

Gate-level information flow tracking offers the promise of
verifying important security properties at the Boolean gate
level. Unfortunately, precise GLIFT models are often too
complex to practicably use for verifying security proper-
ties. Previous work mostly involved extreme simplifications
like reducing all GLIFT label propagation to OR; more re-
cent work introduced some limited means of trading a small

amount of precision for a reduction in complexity, but with-
out any controllability. While imprecision does not reduce
security, it adds the burden of manually verifying all re-
ported flows. Excessively imprecise models are of limited
use, however, as the false positive rate is very high. We
present the first known method to systematically generate
imprecise GLIFT models with a controllable tradeoff be-
tween precision and complexity, potentially allowing the use
of more precise models than previously was possible and re-
ducing manual verification burden.

In future studies we hope to reduce the complexity of the
false positive rate calculation logic while sacrificing as little
controllability as possible, to assign weights to alternative
propagation functions, and to demonstrate how imprecise
GLIFT models can help with verification in the real world.

7. REFERENCES

[1] S. Adee. The hunt for the kill switch. Spectrum, IEEE,
45(5):34-39, May 2008.

[2] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson.
Stealthy dopant-level hardware trojans. In the 15th
International Conference on Cryptographic Hardware and
Embedded Systems, CHES’13, pages 197-214, Berlin,
Heidelberg, 2013. Springer-Verlag.

[3] M. Bidmeshki and Y. Makris. Vericoq: A verilog-to-coq
converter for proof-carrying hardware automation. In 2015
IEEE International Symposium on Circuits and Systems,
ISCAS 2015, Lisbon, Portugal, May 24-27, 2015, pages
29-32, 2015.

[4] G. Bloom, E. Leontie, B. Narahari, and R. Simha.
Hardware and security: Vulnerabilities and solutions, 2012.

[5] B. Dutertre. Yices 2.2. In A. Biere and R. Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of
Lecture Notes in Computer Science, pages 737-744.
Springer, July 2014.

[6] J. A. Goguen and J. Meseguer. Security policies and
security models. In 1982 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, April 26-28, 1982, pages
11-20, 1982.

[7] W. Hu, A. Becker, A. Ardeshiricham, Y. Tai, P. Ienne,

D. Mu, and R. Kastner. Imprecise security: Quality and
complexity tradeoffs for hardware information flow
tracking. In Proceedings of the 35th International
Conference on Computer-Aided Design, ICCAD ’16, pages
95:1-95:8, New York, NY, USA, 2016. ACM.

[8] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood,

D. Mu, and R. Kastner. Theoretical fundamentals of gate
level information flow tracking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 30(8):1128-1140, Aug 2011.

[9] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood,

D. Mu, and R. Kastner. On the complexity of generating
gate level information flow tracking logic. IEEE
Transactions on Information Forensics and Security,
7(3):1067-1080, June 2012.

[10] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood. Complete information flow
tracking from the gates up. In international conference on
Architectural support for programming languages and
operating systems, ASPLOS’09, pages 109-120, New York,
NY, USA, 2009.

[11] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A
hardware design language for timing-sensitive
information-flow security. In the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages
503-516, New York, NY, USA, 2015.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

