
FFD: A Framework for Fake Flash Detection

Zimu Guo, Xiaolin Xu, Mark M. Tehranipoor and Domenic Forte
ECE Department, University of Florida

zimuguo@ufl.edu, {xiaolinxu,tehranipoor,dforte}@ece.ufl.edu

ABSTRACT
Counterfeit electronics have become a big concern in the global-
ized semiconductor industry where chips might be recycled, re-
marked, cloned or overproduced. In this work, we advance the
state-of-the-art counterfeit detection of flash memory, which is
widely used in electronic systems. Fake memories may be used
in critical systems, such as missiles, military aircrafts and heli-
copters, thus diminishing their reliability. In addition, there are
countless stories of fake flash drives in the general consumer mar-
ket. We propose a comprehensive framework called FFD to detect
fake flash memories (i.e., recycled, remarked and cloned parts).
FFD is validated with 200,000 commercial flash memory pages.
Experimental results show that our framework performs well in:
1) nearly 100% detection accuracy of flash with as little as 5%
usage, 2) estimating the flash memory usage with high resolution
(≤ 5% of its maximal endurance). Another contribution of this
work is a chip ID generation technique that can generate unique
flash fingerprints with greater than 99.3% reliability.

1. INTRODUCTION
The globalization of the semiconductor industry makes

it difficult to track electronic chips. Under these circum-
stances, the counterfeit electronic market continues to grow
each year. According to Industryweek, consumers and in-
dustrial businesses are losing approximately $250 billion per
year because of counterfeit components [5]. Besides the
detrimental impact on profit, the overall reliability of crit-
ical infrastructures also decreases if built with counterfeit
electronics. In 2012, a Senate Armed Services Committee
uncovered more than 1 million “bogus parts” in the Pen-
tagon supply chain [3], in which suspect components were
found from mission computers of important missiles, mili-
tary aircrafts, and helicopters.

Non-volatile memories (e.g., flash and solid-state disk) are
commonly utilized in today’s electronic systems. Thus a fake
(recycled, remarked, cloned, etc) flash memory may widely
devastate system reliability and security. For instance, 1,500
flash memory chips bought by Raytheon for missile system-
s were discovered as counterfeit [2]. According to a report
from eBay [1], fake flash drives and SSDs usually possess less
than half of their labeled capacity and slower access speed.
Moreover, these counterfeit types contribute to more than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062249

Figure 1: Detection coverage analysis.

80% of all the counterfeit types [9]. To address this problem,
the authors in [7] presented a flash-based PUF by manipu-
lating the reading operation. However, it is impossible to di-
rectly apply this approach on most commercial off-the-shelf
(COTS) flash chips since access to on-chip voltages is not
commonly available. Programming [10] and reading disturb
[8] were also proposed to implement hardware security prim-
itives. One drawback of the programming disturb approach
lies in the low robustness against flash aging. Though read-
ing disturb does not significantly degrade the flash memory,
it may take 6 hours to generate one useful ID [10].

In this paper, a fake flash memory detection (FFD) frame-
work is presented. This framework has three major con-
tributions: (i) recycled flash memory detection, (ii) usage
estimation, and (iii) aging-resilient flash ID generation, the
coverage of FFD is shown in Figure 1. If a flash memory has
an enrolled ID, its recycling, remarking and cloning status
can be easily verified. Our proposed FFD framework facil-
itates using the non-volatile nature of flash memory, that
enables the capability to store the model and helper data.
This feature makes it possible to conduct the off-line recy-
cling detection and usage estimation, in which all the helper
data stored locally in the flash memory. Our major contri-
butions in this paper are as follows:

• A comprehensive framework (FFD) that addresses coun-
terfeit detection of external COTS flash memory chips
as well as SoCs with embedded flash. The performance
is evaluated with more than 200,000-page data from 20
commercial flash memory chips.

• Recycled flash detection based on a score-usage mod-
el. A 100% detection accuracy can be achieved when
the flash memory is used for 5% of its maximal en-
durance. Remarked and cloned flash detection based
on saturation property for unclonable ID generation.
The reliability is greater than 99.3% with excellent u-
niqueness.

The rest of the paper is organized as follows. The back-
ground of flash memory is introduced in Section 2. Section 3
presents the partially programming effects which we observe
at the page and floating gate levels. The recycled flash de-
tection framework is proposed in Section 4. In Section 5, we

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3061639.3062249&domain=pdf&date_stamp=2017-06-18

present a reliable ID generation approach. The experimen-
tal results are provided in Section 6. Finally, we conclude
and provide future research directions in Section 7.

2. FLASH MEMORY PRELIMINARIES
This section briefly introduces the flash memory architec-

ture and the working mechanism of floating gate transistors.

2.1 Floating Gate Transistors
The schematic of a floating gate transistor is shown in

Figure 2.(a) [10]. The non-volatile property of flash memory
is realized by the charging and discharging of this floating
gate [6]. When the floating gate is discharged, it behaves
like a MOSFET and the threshold voltage remains relatively
low (the blue curve in Figure 2.(b)). If the floating gate is
charged, the threshold voltage is shifted (the red curve in
Figure 2.(b)). A read signal is designed to monitor whether
the floating gate is charged or not. Based on the storage
capacity, the floating gate transistors can be classified into
single-level cell (SLC), multiple-level cell (MLC) and triple-
level cell (TLC). The latter two floating gate transistors can
be charged to three or seven potentials.

2.2 Flash Organization and Operations
Flash memory can be classified into two types: NAND

flash and NOR flash. In a NAND flash, the bit line is pulled
low only if all word lines are high, while in a NOR flash, each
cell has one end grounded, another end is connected to a bit
line. Flash memory has three major operations: read, erase,
and program (write). The threshold voltage of a charged
transistor is driven high after programming. Thus logic “0s”
can be stored in the selected locations. Erase operation
discharges the floating gates to reduce the threshold voltage.
After erasing, logic “1s” are restored. To read a flash cell,
the corresponding transistor is turned on, and the amount
of current is detected. Several parameters of NAND flash
memory include: Page, the basic unit for programming and
Block, the basic units for erasing. A block commonly consists
of 32 to 256 pages. A ready signal will be presented to notify
the host controller when these operations are completed.

3. PARTIALLY PROGRAMMING
The programming operation of the flash memory is mon-

itored by internal sensors, and the memory cells will be
kept busy until the program/erase operations are complet-
ed. This process can be referred to as fully programming.
However, the fully programming process can be interrupt-
ed both externally (e.g., disconnect power) and internally
(e.g., circuit reset). If such interruption occurs, the pro-
gramming operation will be terminated immediately. As a
result, some data will not be programmed (referred as bit
errors). This interrupted programming is named as partially
programming. We define the time interval between the start
and interruption of programming as the partially program-
ming time.

For any COTS NAND/NOR flash memory, the program-
ming time can be controlled by issuing a RESET instruction.

Figure 2: Floating gate transistors [10].

Figure 3: Potential floating gate transistor programming states
for SLC flash memory.

In Figure 3, three programming states of floating gate tran-
sistors and their threshold voltages are depicted. Among all
the states, the erase state indicates whether a transistor is
charged or not. Prog. state 1 means that the transistors are
barely/not charged, such transistors store“1s” in erase state
and will introduce bit errors. If the transistor is charged
to Prog. state 2, its threshold voltage will be close to the
nominal reading voltage. However, such transistor may al-
so induce errors due to the threshold voltage variations. If
the transistor is fully or almost fully charged (Prog. state
3), there will not be any bit errors. The states of memory
cells: fully charged, partially charged or barely/not charged
depend on the following two factors:
• Page programming scheduling: the programming con-

troller determines the order and number of the floating
gate transistors being charged at different time.

• Physical process variations: the time length required
to fully charge each floating gate transistor varies due
to the process variations.

3.1 Programming Time Sweeping
In general, we refer to the above errors as floating gate

transistor failures (FG failures) for various flash memory
cells. One floating gate transistor is labeled as “failed” if its
output bit differs from the one programmed. To investigate
the floating gate transistor failures under various partially
programming times, we swept the partially programming
time from 0 microseconds to 300 microseconds with a step of
200 nanoseconds. For each programming, the whole page is
written with “0”s. In this section, this operation is executed
on five pages from five MLC flash chips. For each page,
the stored data are read 40 times consecutively, and the
corresponding FG failure rate is calculated as

FG failure rate =
of failed FG transistors

Total # of FG transistors
(1)

The results collected from one chip are presented in Figure
4. From this figure, the following properties of partially
programming are verified by all flash memory under test:
• When the programming time is relatively short (i.e.,
≤ 125 microseconds), all the floating gate transistors
are not or barely charged (Prog. state 1).

• When the programming time is long (i.e., ≥ 180 mi-
croseconds), most of the floating gate transistors are
fully charged (Prog. state 3).

• When the programming time is medium (i.e., 125 to
180 microseconds), around 40% of the floating gate
transistors are partially charged (Prog. state 1 and 2).

These observations can be also found in SLC flash memory.
According to these failure rate observations under differen-
t partially programming times, neither too short nor too
long programming time is useful for extracting the IDs and
detection the recycled flash memory, since no significant dis-
crimination is presented.

Besides sweeping the partially programming time, the ag-
ing effects are studied. More than 8,000 times partially
programming and erasing are performed on one page. The

Figure 4: Programming time sweeping
analysis.

Figure 5: Hamming distance rates
saturation observation.

Figure 6: Temperature and supply volt-
age variation analysis.

Hamming distance rates are computed between the first par-
tially programming and the rest of them. This result is p-
resented in Figure 5. In this figure, the rates increase as
more program/erase (P/E) cycles are performed. When the
number of P/E cycles performed is high, where is the shaded
range in Figure 5, the Hamming distance rate becomes near-
ly unchanged. This shaded ranged range is referred as the
saturation range. In this range, the locations of the float-
ing gate transistor failures are relatively stable even though
the usage increases. Thus, this property can be utilized to
generate reliable device ID.

3.2 Temperature/Supply Voltage Variations
Aside from the partially programming under nominal con-

dition, various ambient temperature and supply voltage test-
ing cases are also considered. To mimic the noise from the
power supply, we utilized two different supply voltages: 3.6V
(+10% high supply voltage, HV) and 3.0V (-10% low sup-
ply voltage, LV). In parallel, we conducted the experiments
by applying low temperature (LT, 0 ◦C), room temperature
(RT, 20 ◦C) and high temperature (HT, 80 ◦C) using a ther-
mostream device. Thus, 9 test corners (e.g. HTHV, LTNV,
etc.) are evaluated. For each test corner, the page is read
40 times after partially programmed for 150 microseconds.

Figure 6.(a) presents the results of the comparison of d-
ifferent temperatures and voltage corners. The intra-page
Hamming distance rates (HDR) computed under HT and
LT are close to the ones under room temperature (RT). Ac-
cording to this result, we can conclude that the temperature
variations have negligible effects on the flash memory. A
similar conclusion can be made for the supply voltage varia-
tions from Figure 6.(b). These properties make the partially
programmed flash memory as a good PUF/ID generator.

4. RECYCLED FLASH DETECTION
In this section, the framework for detecting recycled flash

memory and estimating usage is provided. In general, this
framework models the flash memory aging by investigating
the floating gate transistor failures. These failures are char-
acterized by partially programming a page as discussed in
Section 3. The capabilities of our framework can be catego-
rized into three parts: (i) Recycled flash memory deter-
mination makes a yes-or-no decision on whether the flash
memory under test is recycled or not. (ii) Rough usage
estimation generates a rough assessment about the num-
ber of P/E cycles the flash memory has experienced. (iii)
Accurate usage estimation refines the estimation result
in rough usage estimation by applying a slope analysis. The
recycled flash memory determination capability is crucial in
critical applications since it distinguishes low-quality from
high-quality flash memory chips. Both rough and accurate
usage estimation capabilities allow non-critical applications
to monitor the usage of the flash memory. The proposed
framework is broken into two parts: enrollment phase and

verification phase.

4.1 Enrollment Phase
The enrollment phase consists of two sub-phases: Model

enrollment employs one memory page to build the aging
model. In this phase, the enrollment will wear out (note
that this sacrifice is negligible since a flash memory consists
of an enormous number (more than 1 million) of pages). the
enrolled page by consecutively applying P/E cycles. Page
enrollment selects multiple pages across the flash memory
and enrolls their partially programmed page contents. The
enrolled data (model and page contents) can be stored some-
where in the flash memory under enrollment. Alternatively,
these data can be stored in a remote database.

4.1.1 Model Enrollment
The programming time sweep analysis introduced in Sec-

tion 3 should be performed first to determine a proper par-
tially programming time length (i.e., the medium range).
Once the partially programming time is determined, the
model enrollment in Figure 7 can be executed. This mod-
el enrollment procedure can be split into three processes
which are illustrated at the top right of this figure. During
the partially programming process, the page is partially pro-
grammed with the predefined time. In total, this process
will be performed for m times and the data programmed
are all “0s”. Then, the page content is read out and collect-
ed in a temporary storage. These stored data will be used
to formalize the model (post process). After each partial-
ly programming, the normal P/E cycles process conducts n
fully P/E cycles to mimic the regular operations of the flash
memory. During this process, random data are programmed
into the page under enrollment. The parameters (m and n)
satisfying Equation (2) are selected according to

m× (n + 1) = E (2)

where E stands for the endurance (i.e., the maximum num-
ber of P/E cycles allowed) of the page under enrollment.
Besides the endurance information, another criteria, usage,
is exploited to indicate how much a page is used. The usage

Figure 7: Model enrollment flow.

of a page is defined as the percentage of the P/E cycles it
has experienced out of the maximal endurance.

In this framework, the partially programmed page content
is exploited as the indicator of this page’s current usage.
According to Equation (2), the page usage u, after the kth

partially programming can be expressed as:

ui,j(k) =
k × (n + 1)

E
=

k

m
, 0 ≤ k ≤ m (3)

where, k = 0 refers to the first partially programming which
is performed on a brand new page. The subscripts i and j
indicate the chip and page indexes respectively.

After all the m partially programming trials, the float-
ing gate transistor failure map is formulated based on the
collected page data. In this map, the FG transistors are
sorted by their logic address and the failures are marked as
“1”. Thus, for each page, a binary failure map, FM , can be
built. During the post process, a score si,j will be computed
for the jth page from the ith chip based on its failure map:

si,j(k) =
HDR(FMi,j(0), FMi,j(k))

FRi,j(0)
, 0 ≤ k ≤ m (4)

where HDR(A,B) refers to the Hamming distance rate be-
tween two binary vectors A and B. FMi,j(k) stands for
the failure map after the kth partially programming from
the jth page of ith chip. FRi,j(0) presents the floating
gate transistor failure rate obtained from the first partial-
ly programming, this value can be computed by Equation
(1). The denominator in Equation (4) normalizes the Ham-
ming distance rate between the failure map of the 1st and
kth partially programming for each page. The comparisons
between with and without normalization are provided in Fig-
ure 8. The Hamming distance rates vary from page to page
even when their usages are the same, such variation hinders
building a general model. To tackle this issue, we normal-
ized the Hamming distance rates into scores, which converge
when the usage is the same, as shown in (Figure 8.(b)). This
relationship between actual memory usage ui,j(k) and our
normalized score si,j(k) is expressed as

si,j(k) = fi(ui,j(k)), 0 ≤ k ≤ m (5)

where fi(.) has a polynomial form as Equation (6).

fi(x) = p1x
r + p2x

r−1 + · · ·+ prx + pr+1 (6)

The value r can be determined by the designer and the co-
efficients p1, . . . , pr+1. The fitting results from one page are
provided in Figure 8.(b) in solid curve. For the ith flash
memory chip, only one model (fi(x)) should be enrolled us-
ing one arbitrary page. These coefficients can be stored ei-
ther in the flash memory itself or a remote database.

4.1.2 Page Enrollment
Following the model enrollment algorithm, the framework

randomly enrolls an arbitrary number of pages and these

Figure 8: Normalizing effects in score generation.

pages are exploited as the usage “checking points”. Each
selected page will be partially programmed with the same
time length. The data retrieved from each partially pro-
grammed page is converted into the floating gate transistor
failure map. Note that the page enrollment phase does not
completely wear out any memory pages. The number of en-
rolled pages can be determined by trading off the desired
performance and required storage.

4.2 Verification Phase
For recycled flash memory determination, a yes-or-

no decision is made on whether the flash memory under
test is recycled or not. In order to accomplish this task,
a threshold is computed based on the enrolled model. By
setting ui,j(k) as 0 in Equation (4), we can obtained this
threshold for the ith flash memory chip, thri.

thri = fi(0) (7)

After the threshold is determined, partially programming is
performed and the failure maps can be extracted from the
enrolled pages. Then, a score (si,j(v)) should be generated
for each of these pages by the following equation.

si,j(v) =
HDR(FMi,j(e), FMi,j(v))

FRi,j(e)
(8)

Where, FMi,j(e) refers to the enrolled failure map, while
FMi,j(v) represents the failure map generated during the
verification. The floating gate transistor failure rate FRi,j(e)
can be computed from the enrolled failure map FMi,j(e) by
Equation (1). Finally, the decision is made by comparing
thri and si,j(v). If si,j(v) is smaller than thr, the page un-
der test is new, otherwise, this page is labeled as used. An
overall decision of the flash memory under test can be made
by combining the decisions from its enrolled pages. Either
a majority voting or estimated usage averaging can be ex-
ploited to make the decision.

Rough usage estimation produces a rough assessment
of the usage of flash memory under test. Instead of compar-
ing this score with a threshold, the usage of the page under
test can be estimated by the following equation.

ui,j(v) = f−1
i (si,j(v)) (9)

where, f−1
i (.) indicates the inverse version of Equation (6).

ui,j(v) refers to the estimated usage.
However, this estimation is not accurate enough in prac-

tice, especially in the “high usage” situation (reasons can be
found in Section 6). To improve the accuracy, a new ap-
proach, Accurate usage estimation, which exploits the
slope difference in score curve at different usage range is pro-
posed. According to Figure 8.(b), the score grows faster in
the low usage range than in the high usage range. If more
accurate results are required to determine the remaining en-
durance, the accurate usage estimation should be applied
by performing additional P/E cycles. An example of uti-
lizing accurate usage estimation can be found in Figure 9.
The solid black curve indicates the enrolled model of the ith

flash memory and the blue circles refer to the scores gener-
ated from the jth page of this flash memory. The area in
the dashed rectangle is shown in the inset on the right side.
Assuming that the current page usage is ui,j(A). According
to Equation (8), si,j(A) can be computed by partially pro-
gramming this page. After q P/E cycles, the usage of this
page becomes ui,j(B) and the corresponding score at this
time point is si,j(B). Even though both ui,j(A) and ui,j(B)
are unknown, the horizontal coordinate difference between
points A and B can be calculated:

AC = ui,j(B)− ui,j(A) =
q

E
(10)

Figure 9: Example of accurate usage estimation.

where, E stands for the maximal page endurance (this infor-
mation can be found in the flash memory datasheet). Then,
the slope of segment AB can be obtained:

slope =
BC

AC
=

E × (si,j(B)− si,j(A))

q
(11)

By matching this slope with the points on the solid curve,
point D is found of same slope (dashed line) as the segment
AB. Since enrolled model is known, the usage at point D can
be computed as ui(D). Points D′ and D′′ share the same
horizontal coordinate as D. Additionally, the point D′′ is
approximately located in the middle of segment AC. Thus,
the unknown usage ui,j(A) can be inferred by Equation (12).

ui,j(A) = ui(D)− AC

2
= ui(D)− q

2E
(12)

Comparing with the rough usage estimation, the accurate
usage estimation provides a more precious result while pay-
ing more costs (e.g. performing additional P/E cycles).

5. ID GENERATION
The saturation range in Figure 5 can be utilized in ID

generation, which is composed by two phases: enrollment
and verification phase. In enrollment phase, P/E cycles
are conducted on one page. If the recycled flash detection
framework (presented in Section 4) has been implemented
in advance, the page for model enrollment can be reused
in this phase. Generally, t partially programming operation
should be done to produce t floating gate transistor failure
maps. Based on these failure maps, the following two types
of floating gate transistors are identified:
• Always-fail FG transistors: transistors always ex-

perience failures in failure maps (i.e., stable “1”s in the
failure maps).

• Never-fail FG transistors: transistors never fail in
any failure map (i.e., stable “0”s in the failure maps).

Once these two types of FG transistors and their address-
es are determined, the device ID can be enrolled following
the procedures in Figure 10. Since the number of always-
fail FG transistors differs from never-fail FG transistors, a
transistor pool should be constructed with equal number of
these two types of transistors. The enrolled ID with a length
of w bits is split into two parts: always-fail and never-fail.
These transistors are randomly selected and their addresses
are in ascending order. These enrolled addresses can be s-
tored in the flash memory after enrollment as helper data,
the enrolled ID is stored in a remote database for verifica-
tion. After the enrollment, these pages should be reserved
for the dedicated purpose of device ID generation. This page
address information should be stored in the flash memory
under enrollment.

During the verification phase, the enrolled page is par-
tially programmed. The device ID can be generated by the
failure map. Then, this regenerated device ID can be com-
pared with the enrolled ID for the verification purpose. Note
that differing from the previous work in [11] [12] that employ

Figure 10: ID and address enrollment.

the natural bias of memory circuit, our method leverages
the aging phenomenon of flash memory. Implementing the
proposed ID generation framework benefits both the critical
and non-critical applications by providing the remarked and
cloned flash memory detection capability. Especially for the
critical applications, the helper data for recycling detection
(e.g. the enrolled model and page contents) can be remotely
stored in the database. These data can be retrieved only
when the device’s ID is verified.

6. EXPERIMENTAL RESULTS
In this section, the performance of the proposed frame-

work is evaluated with COTS flash memory, the configura-
tion of which is listed in Table 1. 200,000 memory pages
from 20 flash memory chips are tested in total. As shown in
Section 3.2, the flash memory is insensitive to temperature
and supply voltage variation, we conducted experiments un-
der room temperature and nominal voltage condition.

Table 1: Experiment flash memory specifications

Manufactory Micron

Model # MT29F32G08CBACA

Page/Device size 4320 bytes/32Gb

Technology node 65 nm MLC NAND

Endurance 3,000 P/E cycles [4]

6.1 Recycled Flash Detection
In our experiment, 60 pages from 10 flash memory chips

are utilized. For each chip, one page is employed to gener-
ate the model and the other five pages for evaluation. Dur-
ing the model enrollment phase, 100 partially programming
steps are performed for each page. The partially program-
ming time is set to be 150 microseconds. This model is
represented in the 5-order polynomial from (i.e., r = 5 in
Equation (5)). Additionally, 29 normal P/E cycles are ex-
ecuted before each partially programming. For recycled
flash memory determination, the average detection ac-
curacies of 50 pages are provided in Figure 11. The results
denote a 100% detection accuracy even though the page is
slightly used (around 5% of the maximal endurance).

The rough usage estimation method estimates the us-
age, ui,j(v), according to Equation (9). For each page under
verification, 100 scores, si,j(v), are generated by Equation
(8). The estimated usage of each flash memory chip can
be computed by averaging the estimated usages. The com-
parisons between actual and estimated usages from 10 flash
memory chips are provided in Figure 12. The dots in differ-
ent colors refer to the results from different chips. The solid
line indicates the errorless estimation scenario. According
to this figure, the estimation accuracy decreases with high-
er usage. This is because when the usage becomes higher,
the growth of score keeps slowing down (Figure 8.(b)). As
a result, a small fluctuation in the score leads to a bigger
error. In our proposed framework, the accurate usage es-
timation improves the estimation accuracy in high usage
scenario by taking the score slope variations into consid-
eration. A significant improvement can be seen in Figure

Figure 11: Recycled flash memory
determination accuracy analysis.

Figure 12: Rough usage estimation
accuracy analysis.

Figure 13: Accurate usage estima-
tion accuracy analysis.

Figure 14: ID Uniqueness and robustness analysis.

13: the estimated usages are close to the errorless estima-
tion when the usage is higher than 50%. Note that in our
framework, additional P/E cycles (i.e., 10% of the maximal
endurance) are required to accomplish the usage estimation,
therefore, the usage estimation coverage is from 0% to 90%.

6.2 ID Generation
To evaluate the proposed ID generation method, the u-

niqueness and reliability of the IDs generated from 10 flash
memory chips are analyzed. The enrollment is performed
after 4,000 P/E cycles, which is 1.3 times of the chip’s max-
imal endurance [4]. A 256-bit ID and the corresponding
memory cell addresses are enrolled for each chip from each
page. For verification, the enrolled pages are stressed by
12,000 more P/E cycles, which is four times of the maximal
endurance. Then, 60 IDs for each chip are regenerated and
their reliability is evaluated. The inter-chip Hamming dis-
tance rate is obtained by comparing the IDs generated from
different chips. The evaluation results obtained from 1,000
IDs are presented in Figure 14. According to this figure, the
reliability of generated ID is no less than 99.3% while the
uniqueness is close to 50%.

Compared to ECID, the ID generated by the proposed
framework is completely unclonable. Its uniqueness also e-
liminates the chip identification errors. Additionally, since
this ID is very reliable, its output can also be used for the key
generation with little need for error correction codes (ECC-
s). If ECC is implemented, the helper data can be directly
stored in the flash memory due to its non-volatile nature.
This makes key generation from embedded flash more real-
istic than SRAM in SoCs.

7. CONCLUSION AND FUTURE WORK
In this paper, a comprehensive fake flash memory detec-

tion framework (FFD) is proposed for combatting recycled,
remarked and cloned flash chips. This framework utilizes the
floating gate transistor failure, which is induced by partially
programming, to achieve recycling detection and ID gener-
ation. 200,000-page data collected from 20 flash memory
chips are used to evaluate the performance of FFD. The re-
sults demonstrate that our framework performs well in three

perspectives scenarios: 1) 100% fake flash memory detection
accuracy when the flash memory is slightly used. 2) Usage
characterization with high accuracy, ≥ 95%. 3) The device
ID generated by the proposed method show excellent relia-
bility and uniqueness after large numbers of ID inquires. In
the future, we will extend this analysis to other flash mem-
ory types, such as TLC NAND and NOR flash memory.

8. REFERENCES
[1] All about fake flash drives 2013 | ebay. http://www.

ebay.com/gds/All-About-Fake-Flash-Drives-2013-/
10000000177553258/g.html.

[2] Feds close huge chip counterfeiting case.
http://venturebeat.com/2011/09/25/
feds-close-the-books-on-a-huge-chip-counterfeiting-scheme/.

[3] The global impact of counterfeit parts. https://www.
nts.com/ntsblog/global-impact-counterfeit-parts/.

[4] Micron technology, inc. - mt29f32g08cbacawp-z.
https://www.micron.com/parts/nand-flash/
mass-storage/mt29f32g08cbacawp-z.

[5] The ’ticking time bomb’ of counterfeit electronic
parts. http://www.industryweek.com/procurement/
ticking-time-bomb-counterfeit-electronic-parts.

[6] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti.
Introduction to flash memory. Proceedings of the
IEEE, 2003.

[7] M.-S. Kim, D.-I. Moon, S.-K. Yoo, S.-H. Lee, and
Y.-K. Choi. Investigation of physically unclonable
functions using flash memory for integrated circuit
authentication. IEEE Trans. Nanotechnol, 2015.

[8] P. Prabhu, A. Akel, L. M. Grupp, S. Y. Wing-Kei,
G. E. Suh, E. Kan, and S. Swanson. Extracting device
fingerprints from flash memory by exploiting physical
variations. In TRUST. Springer, 2011.

[9] M. M. Tehranipoor, U. Guin, and D. Forte.
Counterfeit Integrated Circuits: Detection and
Avoidance. 2015.

[10] Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and
E. C. Kan. Flash memory for ubiquitous hardware
security functions: true random number generation
and device fingerprints. In S&P, pages 33–47. IEEE,
2012.

[11] X. Xu and D. E. Holcomb. Reliable puf design using
failure patterns from time-controlled power gating. In
Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2016 IEEE
International Symposium on, pages 135–140. IEEE,
2016.

[12] X. Xu, A. Rahmati, D. E. Holcomb, K. Fu, and
W. Burleson. Reliable physical unclonable functions
using data retention voltage of sram cells. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 34(6):903–914, 2015.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

