
FunTAL: Reasonably Mixing a Functional Language

with Assembly ∗

Daniel Patterson

Northeastern University, USA

dbp@ccs.neu.edu

Jamie Perconti

Northeastern University, USA

jamieperconti@gmail.com

Christos Dimoulas

Harvard University, USA

chrdimo@seas.harvard.edu

Amal Ahmed

Northeastern University, USA

amal@ccs.neu.edu

Abstract

We present FunTAL, the first multi-language system to

formalize safe interoperability between a high-level func-

tional language and low-level assembly code while sup-

porting compositional reasoning about the mix. A central

challenge in developing such a multi-language is bridging

the gap between assembly, which is staged into jumps to

continuations, and high-level code, where subterms return a

result. We present a compositional stack-based typed assem-

bly language that supports components, comprised of one

or more basic blocks, that may be embedded in high-level

contexts. We also present a logical relation for FunTAL that

supports reasoning about equivalence of high-level com-

ponents and their assembly replacements, mixed-language

programs with callbacks between languages, and assembly

components comprised of different numbers of basic blocks.

CCS Concepts •Theory of computation → Semantics

and reasoning; •Software and its engineering → For-

mal language definitions

Keywords multi-language semantics, typed assembly lan-

guage, inline assembly, contextual equivalence, logical rela-

tions

∗ We use blue sans-serif to typeset our functional language F and red

roman to typeset our typed assembly language T. This paper will be much

easier to follow if read/printed in color.

1. Introduction

Developers frequently integrate code written in lower-level

languages into their high-level-language programs. For in-

stance, OCaml and Haskell developers may leverage the FFI

to make use of libraries implemented in C, while Rust devel-

opers may include inline assembly directly. In each of these

cases, developers resort to the lower-level language so they

can use features unavailable in the high-level language to

gain access to hardware or fine-tune performance.

However, the benefits of mixed-language programs come

at a price. To reason about the behavior of a high-level

component, developers need to think not only about the se-

mantics of the high-level language, but also about the way

their high-level code was compiled and all interactions with

low-level code. Since low-level code usually comes without

safety guarantees, invalid instructions could crash the pro-

gram. More insidiously, low-level code can potentially alter

control flow, mutate values that should be inaccessible, or in-

troduce security vulnerabilities that would not be possible in

the high-level language. Unfortunately, there are no mixed-

language systems that enable non-expert programmers to

reason about interactions with lower-level code—i.e., sys-

tems that guarantee safe interoperability and provide rules

for compositional reasoning in a mixed-language setting.

Even if developers don’t directly write inline assembly,

mixed-language programs are a reality that compiler writ-

ers and compiler-verification efforts must contend with. For

instance, mixed programs show up in modern just-in-time

(JIT) compilers, where the high-level language is initially

interpreted until the runtime can identify portions to stati-

cally compile, at which point those portions of the code are

replaced with equivalent assembly. These assembly compo-

nents will include hooks to move back into the interpreted

runtime, corresponding closely to the semantics of a mixed-

language program. Verifying correctness of such JITs re-

quires proving that the high-level fragment and its compiled

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain
ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062347

495

https://www.acm.org/publications/policies/artifact-review-badging
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3062341.3062347&domain=pdf&date_stamp=2017-06-14

replacement are contextually equivalent in the mixed lan-

guage. Contextual equivalence guarantees that in any whole

program replacing the high-level fragment with the com-

piled version will not change the behavior of the program.

In the case of traditional compilers, compiled components

are frequently linked with target code compiled from a dif-

ferent source language, or with low-level routines that form

part of the runtime system. Perconti and Ahmed [1, 22] ar-

gue that correctness theorems for verified compilers that ac-

count for such linking must include mixed-language reason-

ing. Specifically, they set up multi-languages that specify the

rules of source-target interoperability and then express com-

piler correctness as multi-language equivalence between a

source component eS and its compiled version eT . Hence,

the theorem ensures that eT linked with some arbitrary target

code e′T will behave the same as eS interoperating with e′T .

All of the above scenarios call for the design of a multi-

language that specifies interoperability between a high-level

language and assembly, along with proof methods for rea-

soning about equivalence of components in this setting. Note

that Perconti and Ahmed [22] left the design of a multi-

language that embeds assembly as future work. Since they

did not show how to verify a code generation pass to as-

sembly, they didn’t need to define interoperability between

a high-level, expression-based language and a low-level lan-

guage with direct jumps.

In this paper, we present FunTAL, a multi-language sys-

tem that allows assembly to be embedded in a typed func-

tional language and vice versa. A key difficulty is ensuring

that the embedded assembly has local and well-controlled

effects. This is challenging because assembly is inherently

non-compositional—control can change to an arbitrary point

with direct jumps and code can access arbitrary values far up

on the call-stack. To allow a compositional functional lan-

guage to safely interoperate with assembly, such behavior

must be constrained, which we do using types at the assem-

bly level. Moreover, we need to identify the right notion of

component in assembly: intuitively, an assembly component

may be comprised of multiple basic blocks and we should

be able to show equivalence between terms of the functional

language (i.e., high-level components) and multi-block as-

sembly components. But how do we identify which blocks

should be grouped together into a component without impos-

ing so much high-level structure on assembly that it ceases

to be low level? Even once we identify such groupings,

we must still contend with the control-flow gap between a

direct-style functional language in which terms return results

and assembly code that is staged into jumps to continuations.

Finally, we must find a way to embed functional code in as-

sembly so we can support callbacks from assembly to the

functional language.

Contributions We make the following contributions:

• We design a compositional typed assembly language

(TAL) called T, building on the stack-based typed assem-

bly language of Morrisett et al. [18] (henceforth, STAL).

The central novelty of our TAL T are extensions to an

STAL-like type system that help us reason about multi-

block components and bridge the gap between direct-

style high-level components and continuation-based as-

sembly components (§3).

• We present a multi-language FT in the style of Matthews-

Findler [16] that supports interoperability between a sim-

ply typed functional language F with recursive types and

our TAL T (§4).

• We develop a novel step-indexed Kripke logical relation

for reasoning about equivalence of FT components (§5).

It builds on prior logical relations for mutable state [4, 10,

22], but is the first to support reasoning about equivalence

of programs that mix assembly with lambdas (including

callbacks between them), and of assembly components

comprised of different numbers of basic blocks. The cen-

tral novelty lies in the mechanics of accommodating as-

sembly and equivalence of multi-block components.

The technical appendix [21] includes complete language

semantics, definitions, and proofs, some of which are elided

in this paper. Our artifact provides an in-browser type

checker and machine stepper for the multi-language to aid

understanding and experimentation with FT programs. The

artifact, available at https://dbp.io/artifacts/funtal,

includes runnable versions of all examples in the paper.

2. Main Ingredients of the Mix

We design a compositional TAL T that draws largely from

Morrisett et al.’s STAL [18], which has a single explicit

stack and assembly instructions to allocate, read, write, and

free stack cells. We follow much of their basic design, in-

cluding the use of stack-tail polymorphism to hide values on

the stack so they will be preserved across calls, and the use

of register-file and stack typing to specify preconditions for

jumping to a code block.

Our main novelty is identifying the notion of a TAL com-

ponent. In T, we need to be able to reason about a component

eT because we will eventually be embedding these compo-

nents as terms in a high-level functional language called F. A

component eT must be composed of assembly instructions,

but we don’t want to restrict it to a single basic block so we

use a pair (I,H) of an instruction sequence I and a local

heap fragment H that maps locations to code blocks used in

local intra-component jumps.

The combined language FT is a typical Matthews-Findler

multi-language [16], where the syntax of both languages

are combined and boundary terms are added to mediate

interactions between the two. A boundary term τFT eT
means that the T component eT within the boundary will

be used in an F context at type τ . To be well-typed, the

inner component eT should have the type translated from

τ according to the multi-language type translation in §4.

496

FT exists to enable reasoning about the equivalence of

F expressions and T components, or mixed combinations

of the two. Intuitively, we would like to treat blocks of

assembly as similar to functions in high-level languages.

Semantically, functions are objects that, given related inputs,

produce related outputs. Following STAL we can, at least,

model the state of the stack and a subset of the registers as

inputs. But blocks of assembly instructions do not have clear

outputs to relate, leading us towards one of our central novel

contributions.

In STAL, every basic block has type ∀[∆].{χ;σ}, where

∆ contains type parameters, and χ and σ are respectively the

register and stack typing preconditions. Since every block is

in continuation style, blocks never return, always jumping

to the next block, so there never need be outputs to relate

— the output of a block is just the input constraints on the

block to which it jumps. In our mixed-language setting we

must, therefore, provide components with return continua-

tions which when called from high-level code contain a halt-

ing instruction, and when called from assembly jump to the

next step in execution. In order to determine the result type—

i.e., the type of the value that is either halted with or passed

to the next block—we extend the STAL code pointer type to

∀[∆].{χ;σ}q, where q is our critical addition.

A return marker q specifies the register or stack position

where the return continuation is stored. This allows us, fol-

lowing a basic calling convention, to determine the type of

the value that will be passed to that continuation. As we will

see in later sections, there are a few other forms that q can

take, but they all support our ability to reason about T com-

ponents as semantic objects that produce values of a specific

type. This allows us to reason not only about the equivalence

of structurally different assembly components made up of

different numbers of basic blocks, but of components made

up of entirely different mixes of languages.

3. Typed Assembly Language: T

Syntax Figure 1 presents the full syntax of T, our typed

assembly language. Value types τ are the types ascribed

to values small enough to fit in a register, including base

values, recursive and existential types, and mutable (ref) or

immutable (box) pointers to heap values. We ascribe value

types τ to word values w, which include unit (), integers

n, locations ℓ, existential packs, and recursive folds. We

additionally follow STAL’s convention that a word value w
applied to a type instantiationω is itself a value w[ω]. Small

values u include word values w, but also can be a register r
that contains a word value. Instructions accept small values

u as operands; hence, in the operational semantics, if u is a

register we first load the value from the register, while if u
is a word value we use it directly.

We ascribe heap-value types ψ to heap values h. These

include tuples of word values 〈w, . . . ,w〉 and code blocks

code[∆]{χ;σ}q.I, which have types 〈τ, . . . , τ 〉 and

Value type τ ::= α | unit | int | ∃α.τ | µα.τ

ref 〈τ, . . . , τ〉 | boxψ

Word value w ::= () | n | ℓ | pack〈τ,w〉 as ∃α.τ

foldµα.τ w | w[ω]

Register r ::= r1 | r2 | · · · | r7 | ra

Small value u ::= w | r | pack〈τ,u〉 as ∃α.τ

foldµα.τ u | u[ω]

Type instantiation ω ::= τ | σ | q

Heap value type ψ ::= ∀[∆].{χ;σ}q | 〈τ, . . . , τ〉

Heap value h ::= code[∆]{χ;σ}q.I | 〈w, . . . ,w〉

Register typing χ ::= · | χ, r : τ

Stack typing σ ::= ζ | • | τ :: σ

Return marker q ::= r | i | ǫ | end{τ ;σ}

Type env ∆ ::= · | ∆, α | ∆, ζ | ∆, ǫ

Heap typing Ψ ::= · | Ψ, ℓ : νψ

where ν ::= ref |box

Memory M ::= (H,R, S)

Heap fragment H ::= · | H, ℓ 7→ h

Register file R ::= · | R, r 7→ w

Stack S ::= nil | w :: S

Instruction sequence I ::=

ι; I instruction sequencing

jmp u jump to u within same component

call u {σ, q} jump to u, with return address at q

ret r {rr} jump back to code at r with result in rr

halt τ, σ {rr} halt with value type τ in register rr

Single instruction ι ::=

aop rd, rs, u store result of add|mul|sub in rd

bnz r, u jump to u if r contains 0

ld rd, rs[i] load from ith position in tuple at rs

st rd[i], rs store to ith position in mutable tuple at rd

ralloc rd, n alloc mutable n-tuple from stack

balloc rd, n alloc immutable n-tuple from stack

mv rd, u move value u into register rd

salloc n allocate n stack cells with unit values

sfree n free n stack cells

sld rd, i load ith stack value into rd

sst i, rs store rs into ith stack slot

unpack 〈α, rd〉 u unpack existential, binding to α, rd

unfold rd, u unfold recursive type

Component e ::= (I,H)

Halt instruction v ::= halt τ, σ {rr}

Evaluation context E ::= ([·], ·)

Figure 1. T Syntax

497

∀[∆].{χ;σ}q, respectively. Note that we have mutable

(ref) references to tuples but only immutable (box) ref-

erences to code, since we prohibit self-modifying code.

Code blocks code[∆]{χ;σ}q.I specify a type environ-

ment ∆, a register file typing χ, and a stack type σ for an

instruction sequence I. Here χ and σ are preconditions for

safely jumping to I: χ is a mapping from registers r to the

type of values τ the registers must contain, while σ is a list

of value types on top of the stack that may end with an ab-

stract stack-tail variable ζ. The type variables in ∆, which

may appear free in χ, σ, and I, must be instantiated when

we jump to the code block. If this code block is stored at

location ℓ, and register r contains ℓ, we can jump to it via

jmp r[ω] where ω instantiates the variables in ∆. (We use

vector notation, e.g., ω or τ , to denote a sequence.)

As discussed in §2, our code blocks include a novel return

marker q, which tells us where to find the current return

continuation. Here q can be a register r inχ, or a stack index

i that is accessible in σ (i.e., the ith stack slot is not hidden

in the stack tail ζ). Return markers can also range over type

variables ǫ which we use to abstract over return markers

(as we explain below). There is also a special return marker

end{τ ;σ} which means that when the current component

finishes it should halt with a value of type τ and stack of

type σ. In T, this would mean the end of the program with a

halt instruction, but within a multi-language boundary the

same halt results in a transition to the high-level language.

A memory M includes a heap H which maps locations ℓ
to heap values h, a register file R which maps registers r to

word values w, and a stack S which is a list of word values.

An instruction sequence I is a list of instructions termi-

nated by one of three jump instructions (jmp, call, ret) or

the halt instruction. The distinction between jump instruc-

tions is a critical part of T explored in depth later in this

section. Individual instructions ι include many standard as-

sembly instructions and are largely similar to STAL.

A component e is a tuple (I,H) of instructions I and a

local heap fragment H. The local heap fragment can contain

multiple local blocks used by the component. We distinguish

the halt instruction as a value v, as it is the only T instruc-

tion sequence that does not reduce.

Operational Semantics We specify a small-step opera-

tional semantics as a relation on memories M and com-

ponents e: 〈M | e〉 7−→ 〈M′ | e′〉. Operationally, we merge

local heap fragments to the global heap and then use the

evaluation context E to reduce instructions according to re-

lation: 〈M | I〉 7−→ 〈M′ | I′〉. In T, evaluation contexts

E are not particularly interesting, but when T is embedded

within the multi-language, E will include boundaries. While

Figure 1 includes operational descriptions of the instruc-

tions, the full semantics are standard and elided.

Type System In Figure 2 we present a selection of typ-

ing rules for T. We elide various type judgments and well-

formedness judgments for small values, heap fragments, and

Ψ;∆;χ;σ;q ⊢ ι⇒ ∆′;χ′;σ′;q′ where ·[∆];χ;σ ⊢ q

Ψ;∆;χ ⊢ u : τ q 6= rd u 6= q

Ψ;∆;χ;σ;q ⊢ mv rd, u ⇒ ∆;χ[rd : τ];σ;q

χ(rs) = τ

Ψ;∆;χ;σ; rs ⊢ mv rd, rs ⇒ ∆;χ[rd : τ];σ; rd

Ψ;∆;χ;σ;q ⊢ I where ·[∆];χ;σ ⊢ q

Ψ;∆;χ;σ;q ⊢ ι⇒ ∆′;χ′;σ′;q′ Ψ;∆′;χ′;σ′;q′ ⊢ I

Ψ;∆;χ;σ;q ⊢ ι; I

χ(r) = τ

Ψ;∆;χ;σ; end{τ ;σ} ⊢ halt τ, σ {r}

Ψ;∆;χ ⊢ u :box ∀[].{χ′;σ}q ∆ ⊢ χ ≤ χ′

Ψ;∆;χ;σ;q ⊢ jmp u

χ(r) = box ∀[].{r′ : τ ;σ}q′

χ(r′) = τ

Ψ;∆;χ;σ; r ⊢ ret r {r′}

Ψ;∆;χ ⊢ u :box ∀[ζ, ǫ].{χ̂; σ̂}q̂ ∆ ⊢ χ̂ \ q̂
ret-addr-type(q̂, χ̂, σ̂) = box ∀[].{r : τ ; σ̂′}ǫ

∆ ⊢ τ ∆ ⊢ σ̂′[σ0/ζ]

∆ ⊢ ∀[].{χ̂[σ0/ζ][end{τ
∗;σ∗}/ǫ]; σ̂[σ0/ζ][end{τ

∗;σ∗}/ǫ]}q̂

∆ ⊢ χ ≤ χ̂[σ0/ζ][end{τ
∗;σ∗}/ǫ]

σ = τ :: σ0 σ̂ = τ :: ζ σ̂′ = τ ′ :: ζ

Ψ;∆;χ;σ; end{τ∗;σ∗} ⊢ call u {σ0, end{τ
∗;σ∗}}

Ψ;∆;χ ⊢ u :box ∀[ζ, ǫ].{χ̂; σ̂}q̂

∆ ⊢ χ̂ \ q̂ ret-addr-type(q̂, χ̂, σ̂) = ∀[].{r : τ ; σ̂′}ǫ

∆ ⊢ τ ∆ ⊢ σ̂′[σ0/ζ]

∆ ⊢ ∀[].{χ̂[σ0/ζ][i+k−j/ǫ]; σ̂[σ0/ζ][i+k−j/ǫ]}q̂

∆ ⊢ χ ≤ χ̂[σ0/ζ][i+k−j/ǫ]
σ = τ0 :: · · · :: τj :: σ0 σ̂ = τ0 :: · · · :: τj :: ζ

j < i σ̂′ = τ ′

0 :: · · · :: τ ′

k :: ζ

Ψ;∆;χ;σ; i ⊢ call u {σ0, i+k−j}

Ψ;∆;χ;σ;q ⊢ e : τ ;σ′

Ψ ⊢ H :Ψ′ ∀(ℓ : ν ψ) ∈ Ψ. ν = box
ret-type(q,χ,σ) = τ ;σ′ (Ψ,Ψ′);∆;χ;σ;q ⊢ I

Ψ;∆;χ;σ;q ⊢ (I,H) : τ ;σ′

ret-type(r,χ,σ) = τ ;σ′if χ(r) = box ∀[].{r′ : τ ;σ′}q

ret-type(i,χ,σ) = τ ;σ′if σ(i) = box ∀[].{r′ : τ ;σ′}q

ret-type(end{τ ;σ′},χ,σ) = τ ;σ′

ret-addr-type(r,χ,σ) = ∀[].{r′ : τ ;σ′}q′

if χ(r) = box ∀[].{r′ : τ ;σ′}q′

ret-addr-type(i,χ,σ) = ∀[].{r′ : τ ;σ′}q′

if σ(i) = box ∀[].{r′ : τ ;σ′}q′

Figure 2. Selected T Typing Rules

498

register files as they are standard, focusing instead on novel

rules for instructions, instruction sequences, and compo-

nents. Full details appear in our technical appendix [21].

Instructions ι and instruction sequences I are typed under

a static heap Ψ, a type environment ∆, a register file typing

χ, a stack typing σ, and return marker q. An instruction ι
may change any of these except the static heap. Critically,

the instruction and instruction-sequence judgments impose

restrictions on the return marker q (written ·[∆];χ;σ ⊢ q)

to ensure that a block of instructions knows to where it is

returning. This means that q cannot be ǫ and if q is a register

or stack index its type should be visible in χ or σ. The

judgment ∆′[∆];χ;σ ⊢ q ensures that if q is ǫ, then ǫ is in

∆ not ∆′, which in this case is empty.1 It also checks that

we can look up the types expected by the return continuation

at q using ret-type(q,χ,σ) (see bottom of Figure 2).

The mv instruction shown in Figure 2 has two cases. In

the first case, we are loading a small value u with type τ
into register rd, which we know is not the return marker q.

We also restrict u to not be the current return marker q, as in

that case the second mv rule described below must be used.

After the mv, the register-file typing now reflects the updated

register, which we write as χ[rd : τ], and no other changes

have occurred. The second case is that we are moving the

value in register rs into register rd, where rs is the current

return marker so it is pointing to the return continuation. In

this case, not only do we update the register file, we also

change the return marker to reflect that the continuation is

now in rd. Other instructions, like sst and sld, similarly

have cases depending on whether the operation will change

where the return continuation is stored.

Instruction typing judgments are lifted to instruction se-

quences by matching the postcondition of the instruction at

the head of the list to the precondition of the rest of the se-

quence, as shown in Figure 2. We illustrate how sequences

are type-checked with the following small example. Note

that each instruction’s postcondition is used as the precon-

dition of the next.

· ; · ; · ; • ; ra ⊢ mv r1, 42;⇒ · ; r1 : int ;• ; ra

salloc 1; ⇒ · ; r1 : int ;unit :: • ; ra

sst 0, r1; ⇒ · ; r1 : int ; int :: • ; ra

First, we load 42 into register r1, which is reflected in

the register file typing r1 : int. We then allocate one cell on

the stack, which starts out as unit. Now that there is space,

we can store the value of register r1 into the 0th slot on the

stack, which is then reflected in the stack typing.

Next in Figure 2, we show the halt instruction, which

requires the end{τ ;σ} return marker, indicating the type

of the value in the register specified and the type of the

stack. This instruction is how T programs terminate; in our

1 Code pointers can have ǫ in the return marker of their return continuation,

but by the time they are jumped to this ǫ must be instantiated. An example

of this is shown later in this section.

FT multi-language, this will also be how a T component

transfers a value back to a wrapping F component.

Next are the three jump instructions. First is the intra-

component jump jmp instruction. This requires that the

location u being jumped to be a code pointer (of type

box ∀[].{χ′;σ}q) that has preconditions χ′ and σ for the

register file and stack respectively, and return marker q. The

current register file χ must be a subset of the expected χ′,

which means that we can have more registers with values in

them, but the types of registers that occur in χ′ must match.

We also, critically, require that the return marker q on the

code block being jumped to be the same as the current return

marker. This captures the intuition of an intra-component

jump. As noted before, blocks being jumped to must have

fully instantiated return markers—informally, blocks can-

not abstract over their own return markers. This restriction

is only on instruction sequences; a component can have lo-

cal blocks with abstract return markers. Consider the code

pointer type:

box ∀[ǫ].{ra : box ∀[].{r1 : τ ;σ}ǫ;σ}ra

This type is a pointer to a code block with a return marker

type parameter ǫ that requires a stack of type σ and for

register ra, the return marker, to be a code pointer. This inner

code pointer is the continuation, as the entire block has ra as

its return marker, but the return marker for this continuation

is ǫ. When the continuation in ra is jumped to it requires

that the stack still have type σ and that a value of type τ be

stored in register r1. Since code pointers can’t be jumped to

until all their type variables are instantiated, the caller of this

whole code block must provide a concrete continuation in

register ra and instantiate ǫ with the corresponding concrete

return marker before jumping.

As a concrete example consider the following well-typed

jmp instruction:

ℓ : box∀[].{r2 : unit; int :: •}end{unit; •} ; · ;

r1 : int, r2 : unit ; int :: • ; end{unit; •} ⊢ jmp ℓ

As required, the jmp is to a code block ℓ that has the same

return marker end{unit; •}. The current registers has r1

set, which the block does not require, but also has the register

r2 set that the block does require. Finally, the stack type

int :: • matches what the block expects. Note that since the

stack currently has an int on it but the return marker says

the stack must be empty, we will have to pop the integer off

the stack either in the block ℓ or in some subsequent block

that we jump to from ℓ before we halt.

The next instruction in Figure 2 is ret, which is the inter-

component jump for returning from a component. Notably,

the location being jumped to must be in a register; if it were

still on the stack the type of σ would include itself. We

require, first, that the register r being jumped to points to

a code block with no type variables, and second that the

register r′ map to type τ , as required by the block being

returned to. This is a type-enforced calling convention for

499

the return value. Importantly, we make no restriction on

the return marker q′ on the block being jumped to. This

is because with ret we are jumping back to a different

component, which will in turn have its own return marker.

The last two typing rules shown in Figure 2 are for the

call instruction which is our other inter-component jump.

The first applies when the current component will terminate

by halting. The second applies when the current component

will terminate by jumping to another T component.

In some assembly languages, there is a convention that

certain registers (“callee-saved”) will be preserved such that

when a call returns, those registers have the same values

as before. However, we follow STAL in protecting values

solely through stack-tail polymorphism, where a value can

be stored in a part of the stack that has been abstracted away

as a type variable. Static typing ensures that a callee that tried

to read, write, or free values within the abstract tail would not

type check. Values that are accessible can be passed in front

of the abstract tail, and the callee is free to allocate values

in front, but typing constraints may force them to free the

values before returning.

As a concrete example of the first typing rule, consider

the following well-typed call instruction:

ℓ : box∀[ζ, ǫ].{ra : box ∀[].{r1 : int; ζ}ǫ; unit :: ζ}ra ; · ;

r1 : int, ra : box ∀[].{r1 : int; int :: •}end{int; •} ;

unit :: int :: • ; end{unit; •}

⊢ call ℓ {int :: •, end{int; •}}

We focus here on the stack and return continuation. The

call instruction specifies a tail int :: • to protect. The

block at ℓ being jumped to must have a stack that has the

same front and an abstract tail, here unit :: ζ. Further, the

block being jumped to must return to a continuation (here

stored at ra) with an abstract return marker ǫ. Once ǫ is

instantiated with end{int; •} the return continuation must

match the current register file typing.

In the second call typing rule, the return marker is a

stack position i. The index i must be greater than the number

of entries j on the input stack σ in front of the tail σ0 speci-

fied in the instruction. The location being jumped to, u, must

be a code pointer with input registers χ̂ and stack σ̂. Note

that the prefix of σ̂ matches the prefix of σ, τ0 :: · · · :: τj,
but σ̂ has the abstract tail ζ.

The final formal parameter to call, i + k − j, is the re-

turn marker that the continuation for u must use. In partic-

ular, this is computed by taking the starting stack position i
and then noting how the stack is modified between the input

stack σ̂ and output stack σ̂′ by the code block pointed to by

u. After the call, the stack has k values in front but we know

that position i was beyond the exposed j values, so the value

on the stack at position i is now at position i + k − j.
The fact that ret-addr-type(q̂, χ̂, σ̂) is ∀[].{r : τ ; σ̂′}ǫ

ensures that the block being jumped to has a return continu-

ation where a value of type τ is stored in some register, the

f = (mv ra, ℓ1ret; call ℓ1 {•, end{int; •}},H)

H(ℓ1) = code[ζ, ǫ]{ra : ∀[].{r1 : int; ζ}ǫ; ζ}ra.

salloc 1; sst 0, ra; mv ra, ℓ2ret[ζ, ǫ];

call ℓ2 {∀[].{r1 : int; ζ}ǫ :: ζ, 0}

H(ℓ1ret) = code[]{r1 : int; •}end{int; •}.

halt int, • {r1}

H(ℓ2) = code[ζ, ǫ]{ra : ∀[].{r1 : int; ζ}ǫ; ζ}ra.

mv r1, 1; jmp ℓ2aux[ζ, ǫ]

H(ℓ2aux) = code[ζ, ǫ]{r1 : int, ra : ∀[].{r1 : int; ζ}ǫ; ζ}ra.

mult r1, r1, 2; ret ra {r1}

H(ℓ2ret) = code[ζ, ǫ]{r1 : int; ∀[].{r1 : int; ζ}ǫ :: ζ}0.

sld ra, 0; sfree 1; ret ra {r1}

Figure 3. T Example: Call to Call

f ℓ1 ℓ2

ℓ2aux

ℓ2retℓ1ret

call

ra 7→ℓ1ret
•

call

ra 7→ℓ2ret
ℓ1ret ::•

jmp

r1 7→1, ra 7→ℓ2ret
ℓ1ret ::•

ret

r1 7→2
ℓ1ret ::•

ret

r1 7→2
•

halt

r1 7→2
•

Figure 4. T Control Flow: Call to Call (Fig. 3)

stack has type σ̂′, and the return marker is ǫ. Operationally

u will get instantiated with i + k − j for ǫ, which based on

the form of σ̂′ means that the return continuation has pre-

served the original return location.

The register file subtyping constraint

∆ ⊢ χ ≤ χ̂[σ0/ζ][i+k−j/ǫ]

ensures that the current register type χ is a subtype of the

target χ̂ once it has been concretely instantiated with the

stack tail and return address.

We similarly check with

∆ ⊢ ∀[].{χ̂[σ0/ζ][i+k−j/ǫ]; σ̂[σ0/ζ][i+k−j/ǫ]}q̂

that the code block type is well-formed when concretely

instantiated, and with ∆ ⊢ σ̂′[σ0/ζ] that the resulting

stack is well-formed once concretely instantiated. Finally,

we ensure with ∆ ⊢ χ̂ \ q̂ that if q̂ is a register then χ̂
is well-formed without it. This means that while q̂ may have

free type variables ǫ and ζ, the rest of χ̂ cannot.

Example In Figure 3, we show an example T program

demonstrating call, jmp, ret, and halt. The control flow,

in Figure 4, shows the instructions causing jumps between

basic blocks and the state of the relevant registers and stack

at jump-time. In this diagram, ℓ2 and ℓ2aux are in the same

component, while the rest are made up of distinct compo-

nents that together make up the component f .

500

4. FT Multi-Language

We present a minimal functional language F and then embed

F and T within a Matthews-Findler style multi-language.

Particularly notable are the boundary translations for higher-

order functions and code blocks. In §5, we design a logical

relation with which we can show equivalence of programs

that differ both structurally and algorithmically.

Type τ ::= α | unit | int | (τ)→ τ | µα.τ | 〈τ〉

Expression e ::= x | () | n | e p e | if0 e e e | λ(x : τ).e | e e

foldµα.τ e | unfold e | 〈e〉 | πi(e)

where p ::= + | − | ∗

Value v ::= () | n | λ(x : τ).e | foldµα.τ v | 〈v〉

Evaluation ctxt E ::= [·] | E p e | v p E | if0 E e e | E e | v v E e

foldµα.τ E | unfold E | 〈v, E, e〉 | πi(E)

Figure 5. F Syntax

4.1 Functional Language: F

In Figure 5 we present the syntax of F, our simply-typed

call-by-value functional language with iso-recursive types,

conditional branching, tuples, and base value integers and

unit. The language is featureful enough to implement simple

programs, while lacking certain expressiveness (like muta-

tion) that we can add by way of the embedded assembly. The

typing and operational semantics are standard and provided

in the technical appendix [21].

4.2 Embedding T in FT

Syntax In Figure 6 we present the syntax of our multi-

language FT, which is largely made up of extensions to syn-

tactic categories of either T (Figure 1) or F (Figure 5). Note

that both expressions e and components e are components

e in this language. Henceforth, when we refer to an F or T

term we are referring to the terms that originated in that lan-

guage, which can now of course include nested components

of the other language. We add boundaries τFT e (T inside,

F outside) and T Fτ e (F inside, T outside) to mediate be-

tween the languages. In both cases, the F type τ directs the

translation. In particular, the τFT e contains a T component

e with T translated type τT , while the T Fτ e contains an

F expression e of type τ . Like Matthews-Findler [16], we

reduce the component within the boundary to a value, after

which we carry out a type-directed value translation using

translation metafunctions τFT(·) and TFτ (·), e.g.:
τFT e 7−→∗ τFT v 7−→ τ

FT(v)

To T instructions ι, we add an import instruction to wrap

the boundary and to specify what register the translated value

should be placed in. The import instruction also specifiesσ,

the tail of the stack that should be protected while evaluating

the F expression e, which could in turn include T code. Con-

sider the following concrete example, which computes the F

Type τ ::= · · · | (τ)
φ;φ
−→ τ ′

Expression e ::= · · · | τFT e | λ
φ
φ
(x : τ).t | t t′

Return marker q ::= · · · | out

Instruction sequence I ::= · · · | protect φ, ζ; I

Instruction ι ::= · · · | import rd,
σT Fτ e

Stack prefix φ ::= · | τ :: φ

Stack typing σ ::= φ :: ζ | φ :: •

Evaluation ctxt E ::= · · · | τFT E

Evaluation ctxt E ::= · · · | (import rd,
σT Fτ E; I, ·)

Type τ ::= τ | τ

Component e ::= e | e

∆ ::= · | ∆, α | ∆, α | ∆, ζ | ∆, ǫ

Evaluation ctxt E ::= E | E

Figure 6. FT Multi-Language Syntax

expression 1 + 1 and loads it into register r1, protecting the

whole stack—here, just the empty stack—while doing it:

· ; · ; · ; • ; end{int; •} ⊢ import r1, •T F int (1 + 1)

⇒ · ; r1 : int ;• ; end{int; •}

When translating T code blocks into F functions, we will

need to instantiate the stack tail variable ζ on the T code

block. For this reason, we introduce the protect instruc-

tion, which specifies a stack prefix φ to leave visible and

a type variable ζ to bind to the tail. We will see the value

translation later in the section.

While normal F lambdas are embedded in the multi-

language, they do not allow stack modification in embed-

ded T code. However, we may want to allow that sort of

modification. For this reason, we introduce an optional new

stack-modifying lambda term λ
φi

φo
(x : τ).e, which specifies

the stack prefix φi it requires on the front of the stack when

it is called, and the stack prefix φo that it will have replaced

φi with upon return. Correspondingly, we introduce a new

arrow type that captures that relationship. Note that the ordi-

nary lambda can be seen as a special case when φi and φo

are both the empty prefix ·, which corresponds to the entire

stack being the protected tail. While there is no fundamental

reason these stack-modifying lambdas must be included, we

can use them, for instance, to write a function that pushes

the number 7 onto the stack using embedded assembly:

λ•int :: •(x : int).
unitFT (protect ·, ζ; mv r1, 7; salloc 1;

sst 0, r1; mv r1, ();

halt unit, int :: ζ {r1}, ·)

The inline assembly of this function first captures the

current stack as an abstract ζ, then loads 7 into register r1,

allocates a cell on the stack and stores the value there, before

clearing out r1 and halting on it. Without stack-modifying

lambdas, this would fail to type check since the stack at

501

Ψ;∆;Γ;χ;σ;q ⊢ e : τ ;σ′

Ψ;∆;Γ;χ;σ;out ⊢ t : (τ1 · · · τn)→ τ ′;σ0

Ψ;∆;Γ;χ;σi−1;out ⊢ ti : τi;σi

Ψ;∆;Γ;χ;σ;out ⊢ t t1 · · · tn : τ
′;σn

Ψ;∆;Γ; ·;σ; end{τT ;σ′} ⊢ e : τT ;σ′

Ψ;∆;Γ;χ;σ;out ⊢ τFT e : τ ;σ′

Ψ;∆, ζ;Γ, x : τ ;χ;φi :: ζ;out ⊢ t : τ ′;φo :: ζ

Ψ;∆;Γ;χ;σ;out ⊢ λ
φi

φo
(x : τ).t : (τ)

φi;φo
−→ τ ′;σ

Ψ;∆;Γ;χ;σ;q ⊢ I where ·[∆];χ;σ ⊢ q

σ = φ :: σ0 σ′ = φ :: ζ Ψ;∆, ζ;Γ;χ;σ′;q ⊢ I

Ψ;∆;Γ;χ;σ;q ⊢ protect φ, ζ; I

Ψ;∆;Γ;χ;σ;q ⊢ ι⇒ ∆′;χ′;σ′;q′ where ·[∆];χ;σ ⊢ q

σ = τ0 :: · · · :: τj :: σ0 σ′ = τ ′

0 :: · · · :: τ ′

k :: σ0

σ∗ = τ0 :: · · · :: τj :: ζ σ′∗ = τ ′

0 :: · · · :: τ ′

k :: ζ
Ψ;∆, ζ;Γ;χ;σ∗;out ⊢ e : τ ;σ′∗

q = i > j or q = end{τ̂ ; σ̂}

Ψ;∆;Γ;χ;σ;q ⊢ import rd,
σ0T Fτ

e

⇒ ∆; (rd : τ
T);σ′; inc(q,k−j)

Figure 7. Selected FT Typing Rules

the end of the body of the lambda would be different than

it had been at the beginning. In our technical appendix and

artifact we use this feature to implement a very basic mutable

reference library.

Finally, in Figure 6 we also add a new return marker out,

which is used for F code, since F follows normal expression-

based evaluation and thus has no return continuation.

Type System The typing judgments for FT, for which we

show a selection in Figure 7, include modified versions from

both T and F judgments as well as rules for the new forms.

Since this is a multi-language and not a compiler, the typing

rules for T must now include an F environment Γ of free F

variables. Similarly, the typing rules for F must now include

all of the context needed by T, since in order to type-check

embedded assembly components we will need to know the

current register (χ), stack (σ), and heap (Ψ) typings.

Most of these modifications are straightforward; we show

the rule for F application in Figure 7 as a representative.

Note that the stack typings σi are threaded through the

arguments according to evaluation order, as each one could

include embedded T code that modified the stack.

For the boundary term, τFT e, we require that the T com-

ponent e within the boundary be well typed under transla-

tion type τT and return marker end{τT ;σ′}, which cor-

responds to the inner assembly halting with a value of type

〈M | E[τFT (halt τT , σ {r}, ·)]〉

7−→ 〈M′ | E[v]〉 if τFT(M.R(r),M) = (v,M′)

〈M | E[import rd,
σ′

T Fτ v; I]〉

7−→ 〈M′ | E[mv rd,w; I]〉 if TFτ (v,M) = (w,M′)

Figure 8. FT Operational Semantics: Language Boundaries

αT = α

unit
T = unit µα.τT = µα.(τT)

int
T = int 〈τ1, . . . , τn〉

T = box 〈τ1
T , . . . , τn

T 〉

(τ1, . . . , τn)→ τ ′T =

box ∀[ζ, ǫ].{ra : box ∀[].{r1 : τ ′T ; ζ}ǫ;σ′}ra

where σ′ = τn
T :: · · · :: τ1

T :: ζ

(τ1, . . . , τn)
φi;φo
−→ τ ′T =

box ∀[ζ, ǫ].{ra : box ∀[].{r1 : τ ′T ;φo :: ζ}ǫ;σ′}ra

where σ′ = τn
T :: · · · :: τ1

T :: φi :: ζ

Figure 9. FT Boundary Type Translation

τT . In that case, the boundary term is well typed under τ
at the out return marker that corresponds to F code. Note

that the boundary makes no restriction on modification of

the stack. Also in the figure is the typing rule for the stack-

modifying lambda term, which is an ordinary lambda typ-

ing rule except it types under stacks with the given prefixes

φi and φo and abstract tails ζ; as noted before, the regular

lambda is a special case when φi and φo are empty.

As described above, we add two new T instructions. The

protect instruction is used to abstract the tail of the stack,

which we can see in the transformation of the stack φ :: σ0

into φ :: ζ when typing the subsequent instruction sequence

I, where ζ is a new type variable introduced to the type env-

ironment. Note that there is no way to undo this; it lasts

until the end of the current T component. If q is i, protect
should not be allowed to hide the ith stack slot in ζ; this is

enforced by the restrictions on q (see §3) when typing I.
The other new instruction is the T boundary instruction

import. Ignoring stacks, the rule is quite simple: it takes an

F term e of type τ , well typed under the out return marker,

and translates it to type τT , storing the result in register rd.

This story is complicated by the handling of stacks, as it is

important for import instructions to be able to restrict what

portion of the stack the inner code can modify. In particular,

since the F code does not have the same return marker q, we

must be sure that q cannot be clobbered by T code embedded

in e. To do this, we specify the portion of the stack σ0 that is

abstracted as ζ in e, and ensure that either q is stored in that

stack tail or it is the halting marker. Finally, since the front of

the stack could grow or shrink to k entries, if q were a stack

index i we increment it by k − j using the metafunction inc,

which otherwise is identity.

502

TFint(n,M) = (n,M)

TFµα.τ (foldµα.τ v,M) = (foldµα.τT v,M′)

where TFτ [µα.τ/α](v,M) = (v,M′)

TF〈τ1, . . . , τn〉(〈v0, . . . , vn〉,M) =

(ℓ, (Mn+1, ℓ 7→ 〈w0, . . . ,wn〉))

where M0 = M, and TFτi(vi,Mi) = (wi,Mi+1)

TFunit((),M) = ((),M)

TF(τ)→ τ ′

(λ(x : τ).t,M) = (ℓ, (M, ℓ 7→ h))

where h = code[ζ, ǫ]{ra : ∀[].{r1 : τ ′T ; ζ}ǫ; τT :: ζ}ra.

salloc 1; sst 0, ra; import r1,
ζT Fτ ′

e;

sld ra, 0; sfree n+1; ret ra {r1}

e = (λ(x : τ).t)τFT (sld r1, n+1−i;

halt τT , σ {r1}, ·)

σ = ∀[].{r1 : τ ′T ; ζ}ǫ :: τT :: ζ
unitFT((),M) = ((),M)
intFT(n,M) = (n,M)
µα.τFT(foldµα.τT w) = (foldµα.τ v,M′)

where τ [µα.τ/α]FT(w,M) = (v,M′)
〈τ0, . . . , τn〉FT(ℓ,M) = (〈v0, . . . , vn〉,Mn+1)

where M(ℓ) = 〈w0, . . . ,wn〉,

M0 = M, and τiFT(wi,Mi) = (vi,Mi+1)
(τn)→ τ ′

FT(w,M) = (v, (M, ℓend 7→ hend))

where v = λ(xn : τn).
τ ′

FT (protect ·, ζ;

import r1, ζT Fτ1 x1; salloc 1; sst 0, r1; . . .

import r1, ζT Fτn xn; salloc 1; sst 0, r1;

mv ra, ℓend[ζ]; callw {ζ, end{τ ′T ; ζ}}, ·)

hend = code[ζ]{r1 : τ ′T ; ζ}end{τ
′T ; ζ}.

halt τ ′T , ζ {r1}

Figure 10. FT Boundary Value Translation

Operational Semantics The operational semantics for

boundary terms, shown in Figure 8, translate values using

the type-directed metafunctions τFT(·) (T inside, F outside)

and TFτ (·) (F inside, T outside).

Figure 9 contains the type translation guiding these meta-

functions. Note that F tuples are translated to immutable ref-

erences to T heap tuples. The most complex transformation

is for function types, which are translated into code blocks

that pass arguments on the stack and follow the calling con-

vention described in §3 where return continuations can be

instantiated alternately by T or F callers.

We show the value translations in Figure 10, eliding only

the stack-modifying lambda, which is similar to the lambda

shown. The most significant translations are between T code

blocks and F functions. In particular, we must translate be-

tween variable representations and calling conventions—this

means the arguments are passed on the stack, and a return

continuation must be in register ra. Finally, we must trans-

late the arguments themselves, and translate the return value

back, cleaning up temporary stack values.

Critically, when translating an F function to a T code

block, we must protect the return continuation, since embed-

ded assembly blocks within the body of the function could

write to register ra. To do that, we store ra’s contents on

the stack and protect the tail. In the stack-modifying lambda

case, this is complicated slightly by needing to re-arrange the

stack to put the protected value past the exposed stack prefix

φi. To evaluate the F function, we load each argument from

the stack, translate it to F, apply the function, and import the

returned value back to T. After doing this, we load the return

continuation off of the stack, clear the arguments according

to the calling convention and return. Note that in the stack-

modifying lambda case, we have to be careful to clear the

arguments but keep the output prefix φo.

Example In Figure 11, we present an example of the type

of transformation that a JIT compiler could perform and

the resulting higher-order callbacks that appear in the multi-

language program. At the top of the figure is the F source

program which has three functions: g passes 1 to its argu-

ment, h doubles its argument, and f passes h to its argument.

The functions themselves are intentionally minimal, but we

assume the JIT compiler determined that f and h should be

compiled to assembly and present the transformed program

in the lower half of the figure. Here, f and h have been re-

placed by code blocks pointed to by ℓ and ℓh respectively.

We present a control-flow diagram for the transformed

program in Figure 12, where arrows in F boxes correspond

to argument passing and return values, whereas arrows in T

boxes correspond to jumps or halt (as in Figure 4).

In this example, when control passes to ℓ, which was

compiled from f , we need to be able to call back into the

high-level code in g. In the block pointed to by ℓ, according

to the calling convention, the argument g is passed on the

top of the stack. This means that to call back to it, we load

it off the stack into register r1 with instruction sld r1, 0,

and then call it, as shown in the control-flow diagram in

the transfer from box ℓ to box g .

But in this example, and indeed in any JIT for higher-

order languages, we may not only need to call from compiled

assembly to the interpreted language, but also be able to

pass compiled code back as arguments to the interpreted

language. In this example, the ℓh component, which was

compiled from h, is passed as an argument to g. The function

g then calls ℓh with 1, causing control to transfer back to ℓh
as we can see in the transfer to the innermost block in the

control-flow diagram.

The value translation (shown in Figure 10) introduces

extra blocks where needed, colored as ℓhret and ℓret in

our diagram. These are needed because T components jump

to continuation blocks, whereas for control to pass back to F

they must halt, which these shim-blocks achieve.

503

Even though small, this example demonstrates how mixed-

language programs with higher-order callbacks arise natu-

rally in the context of JIT compilation. In the next section,

we’ll see how we can use our logical relation to prove these

types of programs equivalent, a necessary step for any proof

of correctness for a JIT compiler.

g = λ(h : (int)→ int).h 1

h = λ(x : int).x ∗ 2

f = λ(g : ((int)→ int)→ int).g h

e = f g

↓ JIT Compile ↓

τ = ((int)→ int)→ int

g = λ(h : (int)→ int).h 1

e = (intFT (mv r1, ℓ; halt (τ)→ intT , • {r1},H)) g

H(ℓ) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ; τT :: ζ}ra.

sld r1, 0; salloc 1; mv r2, ℓh; sst 0, r2;

sst 1, ra; mv ra, ℓgret[ζ, ǫ];

call r1 {∀[].{r1 : intT ; ζ}ǫ :: ζ, 0}

H(ℓh) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ; intT :: ζ}ra.

sld r1, 0; sfree 1; mul r1, r1, 2; ret ra {r1}

H(ℓgret) = code[ζ, ǫ]{r1 : int; ∀[].{r1 : intT ; ζ}ǫ :: ζ}0.

sld ra, 0; sfree 1; ret ra {r1}

Figure 11. FT Example: JIT

5. Logical Relation for FT

In order to reason about program equivalence in FT, we de-

sign a step-indexed Kripke logical relation for our language.

Our logical relation builds on that of Dreyer et al. [10] and

Ahmed et al. [4], where the Kripke worlds contain islands

with state-transition systems that we use to accommodate

mutations to the heap, registers, and stack. From those mod-

els, we inherit the ability to reason about equivalences de-

pendent on hidden mutable state, though we won’t go into

detail about that aspect in this paper. In this section, we fo-

cus on the novel aspects of our logical relation, showing how

we adapted the earlier models to the setting of FT. In partic-

ular, the addition of return markers required non-trivial ex-

tensions to the model.

In our logical relation, for which we show the closed

relations in Figure 13, we have three value relations: VJτ Kρ,

WJτ Kρ, and HVJψKρ. These correspond to the three types

of values that exist in FT: high-level values, low-level word-

sized values, and low-level heap values, respectively. As

usual in these relations, ρ is a relational substitution for type

variables. Further, with the exception of contexts in the K
relation all of our relations are built out of well-typed terms,

though we elide that requirement in these figures.

In a Kripke logical relation, relatedness of values depends

on the state of a world W . Some values are related irrespec-

tive of world state; for example, an integer n is related to

F

Tℓ

Fg

T

ℓh

ℓhret

call

ra 7→ℓhret
1::ℓgret ::ℓh ::ℓret ::•

ret

r1 7→2
ℓgret ::ℓh ::ℓret ::• halt

r1 7→2
ℓgret ::ℓh ::ℓret ::•

[ℓh]
1

2

ℓgret

ℓret

call

ra 7→ℓlret
[g] ::•

call

ra 7→ℓgret
ℓh ::ℓret ::•

ret

r1 7→2
ℓret ::•

ret

r1 7→2
•

halt

r1 7→2
•

g

2

Figure 12. FT Control Flow: JIT (Fig. 11)

itself in any world W , written (W,n,n) ∈ WJintKρ. How-

ever, the structure of the world captures key semantic prop-

erties about the stack, heap, and registers in a sequence of

islands that describe the current state of memories. Each is-

land expresses invariants on certain parts of memory by en-

coding a state-transition system and a memory relation that

establishes which pairs of memories are related in each state.

Since our logical relation is step-indexed our worlds have

an index k, which conveys that the relation captures semantic

equivalence of terms for up to k steps but no information is

known beyond that. This allows us to avoid circularity when

dealing with recursive types as we can induct on the step

index rather than the structure of the expanding type.

W ′ ⊒ W when W ′ is a future world of W ; to reach it, we

may have consumed steps (lowering k), allocated additional

memory in new islands, or made transitions in islands.

A novel aspect of our logical relation is how it formal-

izes equivalence of code blocks at code-pointer type (Fig-

ure 15). Our code-pointer logical relation is like a function

logical relation in that, given related inputs, it should pro-

duce related outputs. Inputs, in this case, are registers and

the stack for which, in a future world W ′ with closing type

substitution ρ∗, we require that curr-R(W ′) ⋐ RJχKρ′ and

curr-S(W ′) ⋐ SJσKρ′. This means that the current register

files and stacks in world W ′ are related at register file typing

504

Statement Meaning

(W, v1, v2) ∈ VJτ Kρ v1 and v2 are related F values at type τ in world W under type substitution ρ

(W,w1,w2) ∈ WJτ Kρ w1 and w2 are related T word values at type τ in world W under type substitution ρ

(W,h1,h2) ∈ HVJψKρ h1 and h2 are related T heap values at type ψ in world W under type substitution ρ

(W, e1, e2) ∈ O e1 and e2 run with memories related at W , either both terminate or are both running after W.k steps

(W,E1, E2) ∈ KJq ⊢ τ ;σKρ E1 and E2 are related continuations, so given appropriately related values at type τ , they are in O

(W, e1, e2) ∈ EJq ⊢ τ ;σKρ e1 and e2 are related expressions, so given appropriate related continuations, they are in O

Figure 13. FT Logical Relation: Closed Values and Terms

EJq ⊢ τ ;σKρ = { (W, e1, e2) | ∀E1, E2. (W,E1, E2) ∈ KJq ⊢ τ ;σKρ =⇒ (W,E1[e1], E2[e2]) ∈ O }

KJout ⊢ τ ;σKρ = { (W,E1, E2) | ∀W
′, v1, v2.W

′ ⊒pub W ∧ (W ′, v1, v2) ∈ VJτ Kρ ∧ curr-S(W ′) ⋐ SJσKρ

=⇒ (W ′, E1[v1], E2[v1]) ∈ O }

KJend{τ ;σ} ⊢ τ ;σKρ = { (W,E1, E2) | ∀W
′, r1, r2.W

′ ⊒pub W ∧

(⊲W ′,W ′.R1(r1),W
′.R2(r2)) ∈ WJτ Kρ ∧ curr-S(W ′) ⋐ SJσKρ

=⇒ (W ′, E1[(halt ρ1(τ), ρ1(σ) {r1}, ·)], E2[(halt ρ2(τ), ρ2(σ) {r2}, ·)]) ∈ O }

KJq ⊢ τ ;σKρ = { (W,E1, E2) | (q = r ∨ q = i) ∧ ∀W ′,q′, r1, r2.W
′ ⊒pub W ∧

(∃r.q′ = r ∧ ret-addr1(W,ρ1(q)) = W ′.R1(r) ∧ ret-addr2(W,ρ2(q)) = W ′.R2(r) ∧

ret-reg1(W
′, r) = r1 ∧ ret-reg2(W

′, r) = r2) ∧

(⊲W ′,W ′.R1(r1),W
′.R2(r2)) ∈ WJτ Kρ ∧ curr-S(W ′) ⋐ SJσKρ

=⇒ (W ′, E1[(ret ρ1(q
′) {r1}, ·)], E2[(ret ρ2(q

′) {r2}, ·)]) ∈ O }

ret-addrj(W, r) = W.Rj(r) ret-addrj(W, i) = W.Sj(i) ret-regj(W, r) = r′ if W.χj(r) = box ∀[].{r′ : τ ;σ′}q

Ψ;∆;Γ;χ;σ;q ⊢ e1 ≈ e2 : τ ;σ
′ def

= ∀W,γ, ρ. W ∈ HJΨK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓKρ ∧ curr-R(W) ⋐ RJχKρ ∧

curr-S(W) ⋐ SJσKρ =⇒ (W,ρ1(γ1(e1)), ρ2(γ2((e2))) ∈ EJq ⊢ τ ;σ′Kρ

Figure 14. FT Logical Relation: Component and Continuation Relations and Equivalence of Open Terms

HVJ∀[∆].{χ;σ}qKρ =

{(W, code[∆]{ρ1(χ); ρ1(σ)}
ρ1(q).I1,

code[∆]{ρ2(χ); ρ2(σ)}
ρ2(q).I2) |

∀W ′ ⊒ W. ∀ρ∗ ∈ DJ∆K. ∀τ ,σ′.

let ρ′ = ρ ∪ ρ∗ in τ ;σ′ =ρ′ ret-type(q,χ,σ) ∧

curr-R(W ′) ⋐ RJχKρ′ ∧ curr-S(W ′) ⋐ SJσKρ′

=⇒ (W ′, (ρ∗1(I1), ·), (ρ
∗

2(I2), ·)) ∈ EJq ⊢ τ ;σ′Kρ′ }

τ ;σ′ =ρ ret-type(q,χ,σ)
def
=

ρi(τ); ρi(σ
′) = ret-type(ρi(q), ρi(χ), ρi(σ)), for i ∈ 1, 2

Figure 15. FT Logical Relation: Code Block

χ and stack typing σ respectively. Related register files map

registers to related values and related stacks are made up of

related values. Stacks are related at the stack type ζ if they

are related by relational substitution ρ′.

Once we have related inputs, the logical relation should

specify that applying the arguments produces related output

expressions. Since the arguments are present in the regis-

ters and on the stack, we simply state that the instruction

sequences I1 and I2, with empty heap fragments, are related

components in the E relation under those conditions. In this,

we rely critically on the return marker q to determine the

return type τ and resulting stack σ′.

The logical relation E for components has three formal

parameters: q, τ , and σ. The return marker q says where

the expression is returning to as described in §3. The return

type τ is the type of value that is passed to the return con-

tinuation in q, which is necessary in order to reason about

equivalences, because if expressions don’t even produce the

same type of value they can’t possibly be equivalent. This

type comes from the ret-type metafunction whose definition

is in Figure 2. The output stack typeσ is also, in a sense, part

of the return value and it is similarly derived from the return

marker by the metafunctions.

The component relation EJq ⊢ τ ;σKρ and relation for

evaluation contexts KJq ⊢ τ ;σKρ are tightly connected, as

is standard for logical relations based on biorthogonality. In

typical biorthogonal presentations, the definitions would be:

KJτK = {(W,E1, E2) | ∀W
′.W ′ ⊒ W ∧ (W ′, v1, v2) ∈ VJτK

=⇒ (W ′, E1[v1], E2[v2]) ∈ O}

EJτK = {(W, e1, e2) | ∀E1E2.(W,E1, E2) ∈ KJτK

=⇒ (W,E1[e1], E2[e2]) ∈ O}

505

The above states that continuations E1 and E2 accepting

type τ related at world W must be such that, given any fu-

ture world W ′ and τ values, plugging in the values results in

related observations. In turn, expressions e1 and e2 of type

τ related at world W must be such that, given related con-

tinuations E1 and E2, E1[e1] and E2[e2] are observationally

equivalent. Note how the reduction of e1 and e2 to values is

central, since the definition of E1 and E2 tells you only that

given related values they produce related observations. This

reduction is normally captured in “monadic bind” lemmas.

Our definitions, in Figure 14, are more involved but fol-

low a similar pattern. Our relation E only differs from the

standard one in that the type of a component involves a re-

turn marker q and output stack type σ.

The continuation relation K has three cases for different

return marker q. The case for out, which corresponds to

our functional terms, is nearly identical to the idealized case

shown above. It differs only in requiring curr-S(W ′) ⋐
SJσKρ, which means that at the point we plug in the values

v1 and v2 the stacks must be related at type σ.

The K relation for end{τ ;σ} is similar, but since this

is T code, return values are stored in registers ri and the

“value” being plugged in is the halt instruction.

The third case, when the return marker is a register r

or a stack position i, is more involved, though the overall

meaning is still the same as the other cases: in the future,

we will have a value to pass and will plug it into the hole to

get related observations. First, we note that though at points

during computation the return marker can be a stack index

i, when we actually return to the continuation the return

marker must be stored in a register q′. We require, however,

that the code block being pointed to by q be the same as that

pointed to by q′. Next, we find the registers r1, r2 where the

return values will be passed, and ensure that these contain

related values. Finally, we check that the stacks are related

at the right type with curr-S(W ′) ⋐ SJσKρ, before saying

that plugging in the returns must yield related observations.

Having described how closed terms are related, we lift

this to open terms with ≈, shown at the bottom of Figure 14.

We choose appropriate closing type and term substitutions,

where GJΓKρ is a relational substitution mapping F variables

to related F values, and then state the equivalence after

closing with these substitutions.

We have proven that the logical relation is sound and

complete with respect to FT contextual equivalence (see

technical appendix [21]).

Theorem 5.1 (Fundamental Property)

If Ψ;∆;Γ;χ;σ;q ⊢ e : τ ;σ′ then

Ψ;∆;Γ;χ;σ;q ⊢ e ≈ e : τ ;σ′.

As usual, we prove compatibility lemmas corresponding

to typing rules, after which the fundamental property follows

as a corollary. While none of the compatibility lemmas for T

instructions are trivial, the one for call is the most involved.

f1 = λ(x : int).(int)→ intFT(protect ·, ζ; mv r1, ℓ;

halt (int)→ intT , ζ {r1},

H1) x

H1(ℓ) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ; intT :: ζ}ra.

sld r1, 0; add r1, r1, 1; add r1, r1, 1;

sfree 1; ret ra {r1}

f2 = λ(x : int).(int)→ intFT (protect ·, ζ; mv r1, ℓ;

halt intT , ζ {r1},H2) x

H2(ℓ) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ; intT :: ζ}ra.

sld r1, 0; add r1, r1, 1; sst 0, r1; jmp ℓ′[ζ][ǫ]

H2(ℓ
′) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ; intT :: ζ}ra.

sld r1, 0; add r1, r1, 1; sfree 1; ret ra {r1}

Figure 16. FT Example: Different Number of Basic Blocks

In particular, call must ensure that the code that it is jump-

ing to eventually returns, even while the target component

could make nested calls. This relies on the target component

return marker ensuring that control will eventually pass to

the original return continuation.

Theorem 5.2 (LR Sound & Complete wrt Ctx Equiv)

Ψ;∆;Γ;χ;σ;q ⊢ e1 ≈ e2 : τ ;σ
′ if and only if

Ψ;∆;Γ;χ;σ;q ⊢ e1 ≈ctx e2 : τ ;σ
′.

5.1 Example Equivalences

In Figure 16, we show two programs that differ in the num-

ber of basic blocks that they use to carry out the same com-

putation: adding two to a number and returning it. This ex-

ample demonstrates our ability to reason over differences in

internal jumps, which critically depends on the return mark-

ers explained in §3. We are able to show these two examples

equivalent at type (int)→ int using the logical relation. The

elided proofs are included in the technical appendix [21].

In Figure 17, we show another small example. We present

two implementations of the factorial function. The factF is

a standard recursive functional implementation using iso-

recursive types. We apply the function template F to a folded

version of itself and the argument x. In the body, we check

if the x is 0, in which case we return 1, and otherwise we

unfold the first argument, call in with x − 1, and multiply

the result by x. This clearly produces the result for x ≥ 0,

and also clearly diverges for negative arguments.

The imperative factorial factT uses registers to compute

the result. It has two basic blocks, ℓfact and ℓloop. The first,

which is translated to F and called with argument x, loads

the argument n (translated from n) into register r3, stores

1 in the result register r7, and then checks if r3 is 0. If so,

we clear the argument off the stack and return. Otherwise,

we jump to ℓloop. This multiplies the result by r3, subtracts

one from r3, and makes the same check if r3 is zero. If so,

506

factF = λ(x : int).(F (foldµα.(α)→int F)) x

F = λ(f : µα.(α)→ int).λ(x : int).

if0 x 1 (((unfold f) f) (x − 1)) ∗ x

factT = λ(x : int).(int)→ intFT (

protect ·, ζ; mv r1, ℓ;

halt intT , ζ {r1},

H2) x

H(ℓfact) = code[ζ, ǫ]{ra : ∀[].{r1 : intT ; ζ}ǫ;

intT :: ζ}ra.

sld r3, 0; mv r7, 1; bnz r3, ℓloop[ζ][ǫ];

sfree 1; ret ra {r7}

H(ℓloop) = code[ζ, ǫ]{r3 : int, r7 : int,

ra : ∀[].{r1 : intT ; ζ}ǫ;

intT :: ζ}ra.

mul r7, r7, r3; sub r3, r3, 1;

bnz r3, ℓloop[ζ][ǫ]; sfree 1; ret ra {r7}

Figure 17. FT Example: Factorial Two Different Ways

we do the same cleanup and return, and otherwise we jump

to the beginning of ℓloop again.

While these two programs produce the same result, they

do it in very different ways. First, factF uses recursive types,

whereas factT does not. More importantly, factF uses a

functional stack-based evaluation, whereas factT mutates

registers and performs direct jumps. However, the proof of

equivalence only differs from the proof for the example in

Figure 16 in that we have to consider two cases — one

in which they both diverge (for negative input n), and one

in which they both terminate with related values (for non-

negative input n).

6. Discussion and Future Work

FunTAL for Developers We have presented a multi-lang-

uage FT that safely embeds assembly in a functional lan-

guage. Moreover, our logical relation can be used to estab-

lish correctness of embedded assembly components. Devel-

opers of high-assurance software can write a high-level com-

ponent e to serve as a specification for the TAL implementa-

tion e and use our logical relation to prove them equivalent.

FT also enables powerful compositional reasoning about

high-level components, even in the presence of embedded

assembly code. In fact, we conjecture that if the programmer

does not use stack-modifying lambdas and if the embed-

ded TAL contains no statically defined mutable tuples, then

FT ensures referential transparency for high-level terms.

Intuitively, in the absence of these side-channels (stack-

manipulation and mutable cells), there is no way for two

embedded TAL components to communicate with one an-

other. Thus, even if a high-level term e contains embedded

assembly, evaluating e has no observable effects. If the pro-

grammer does use stack-modifying lambdas or statically de-

fined mutable tuples, reasoning about high-level components

remains similar to reasoning about components in ML.

JIT Formalization We plan to investigate modeling a JIT

compiler using multi-language programs. The high-level

source language would be untyped and the low-level lan-

guage would be typed assembly (since type information is

precisely what a JIT runtime discovers about portions of

high-level code, triggering compilation). We would consider

the space of JIT optimization to be the set of possible re-

placements of untyped components with sound low-level

versions, with appropriate guards included to handle viola-

tion of typing assumptions. Note, of course, that the low-

level versions may still have calls back into high-level un-

typed code. What the JIT is then doing at runtime is moving

between those configurations, usually by learning enough

type information to make the guards likely to pass.

We can prove a JIT compiler correct based on the trans-

formations that it would do. Formally, for all moves between

configurations that the JIT may perform, we must show:

∀E, eS. eS
E
 eT =⇒ E[eS] ≈ E[FT eT]

where
E
 represents context-aware JIT-compilation that al-

lows the compiler to use information in the context E, which

could include values in scope, in order to decide how to

transform a component eS into eT. The definition of the JIT

is thus
E
 , and we would prove equivalence of the resulting

multi-language programs using a logical relation similar to

the one shown in this paper.

Compositional Compiler Correctness As mentioned in §1,

Perconti and Ahmed [22] proved correctness of a functional-

language compiler that performs closure conversion and

heap allocation. We can easily adapt our multi-language

to verify correctness of a code-generation pass from their

allocation target A to T, changing FT to AT. The seman-

tics of T and T-relevant proofs in the logical relation can

be reused without change. Correctness of code generation

would then be expressed as contextual equivalence (≈ctx) in

AT: if eA : τA compiles to eT then eA ≈ctx τAFT eT.

Continuation-Passing F and Rust Instead of trying to

bridge the gap between the direct-style F and the continuation-

aware T, we could have made F a continuation-passing-style

language, effectively lowering its level of abstraction to sim-

plify interoperability with assembly. But the resulting multi-

language would be more difficult for source programmers

to use, as it would require them to reason about CPS’d pro-

grams. This is essentially the approach taken by the Rust-

Belt project [9]—i.e., working with a Rust in continuation-

passing style with embedded unsafe C.2 The project seeks to

establish soundness of Rust and its standard library, where

the latter essentially contains unsafe embedded C. In contrast

to T, RustBelt does not take a multi-language approach or

aim to handle inline assembly. Rather, it uses a sophisticated

2 Personal communication with Derek Dreyer and Ralf Jung.

507

program logic for mutable state to reason about unsafe C

code. It would be interesting to investigate a multi-language

system with direct-style Rust interoperating with unsafe C

and assembly along the lines of our work.

Choices in Multi-Language Design There are many po-

tential choices when designing a multi-language system. For

instance, we chose to expose low-level abstractions to high-

level code by adding stack-modifying lambdas to FT en-

abling more interactions between F and T code by inval-

idating equivalences that might otherwise have been used

to justify correctness of compiler optimizations. We could

also add foreign pointers to FT, which would allow refer-

ences to mutable T tuples to flow into F as opaque values of

lump type (as in Matthews-Findler [16]), allowing them to

be passed but only used in T. Foreign pointers would have

the form L〈τ〉FT ℓ (where ℓ : ref 〈τ 〉T). While we can cur-

rently provide limited mutation to F via T libraries, foreign

pointers would make that more flexible albeit at the cost of

complicating the multi-language.

7. Related Work

There has been a great deal of work on multi-language sys-

tems, typed assembly languages, logics for modular verifica-

tion of assembly code, and logical relations in general. We

focus our discussion on the most closely related work.

Our work builds on results about typed assembly [17]

and in particular STAL, its stack-based variant [18]. In §3

we explain in detail the differences between our TAL and

STAL. Note here though, that these differences stem from

our goal to use type structure to define the notion of a TAL

component. We share this goal with a number of previous

type-system design and verification efforts for flavors of

assembly-like languages. Glew and Morrisett [12] tackle the

problem of safe linking for TAL program fragments and pro-

vide an extension of TAL’s type system that guarantees that

linking preserves type safety. Benton [7] introduces a typed

Floyd-Hoare logic for a stack-based low-level language that

treats program fragments and their linking in a modular fash-

ion. Outside the distinct technical details of what a compo-

nent is in our TAL, our work differs from these results in that

our notion of a TAL component matches that of a function

in a high-level functional language.

Our multi-language semantics builds of work by Matthews

and Findler [16] who give multiple interoperability seman-

tics between a dynamically and statically typed language.

We also build on multi-languages used for compiler correct-

ness [2, 20, 22] which embed the source (higher-level) and

target (lower-level) languages of a compiler, though none

of that work considers interoperability with a language as

low-level as assembly.

A related strand of research explores type safety and for-

eign function interfaces (FFI). Furr and Foster [11] describe

sound type inference for the OCaml/C and JNI FFIs. Tan

et al. [24] use a mixture of dynamic and static checks to con-

struct a type-safe variant of JNI. Larmuseau and Clarke [15]

aim for fully abstract and type-safe interoperability between

ML and a low-level language. However, their model low-

level language is Scheme with reflection. Tan [23] describes

a core model for JNI that mixes Java bytecode and assem-

bly. As an application, they design a sound type system for

their multi-language. Our work is distinct as it captures how

assembly interacts safely with a functional language.

Appel et al. showed how to prove soundness of TALs [5]

using (unary) step-indexed models [3, 6]. Our logical re-

lation most closely resembles the multi-language relation

of Perconti and Ahmed [22] though theirs, without assem-

bly, is simpler. Most prior logical relations pertaining to as-

sembly or SECD machines are cross-language relations that

specify equivalence of high-level (source) code and low-

level (target) code and are used to prove compiler correct-

ness [8, 13, 19]. Hur and Dreyer use a cross-language Kripke

logical relation between ML and assembly to verify a one-

pass compiler [13]. Neis et al. set up a parametric inter-

language simulation (PILS) relating a functional source S

and a continuation-passing-style intermediate language I ,

and one relating I to a target assembly T [19]. None of

these can reason about equivalence of (multi-block) assem-

bly components as we do. Jaber and Tabareau [14] present a

logical relation indexed by source-language types but inhab-

ited by SECD terms, capturing high-level structure. Besides

being able to reason about mixed programs, our FT logical

relation—indexed by multi-language types—is more expres-

sive: it can be used to prove equivalence of assembly com-

ponents of type τ when τ = τT for some τ (analogous to

Jaber-Tabareau) as well as when τ is not of translation type.

All of these logical relations make use of biorthogonality, a

natural choice for continuation-based languages.

Finally, Wang et al. [25] describe a multi-language sys-

tem in which components written in a C-like language can

link with a simple untyped assembly, where the latter must

be proven to adhere to a specification in higher-order logic.

In their system, equivalences must be specified using ax-

iomatic higher-order logic specifications. This differs signif-

icantly from FunTAL where equivalences arise out of ex-

tensional operational behavior with no external specifica-

tion needed. Further, all of their assembly must be proven

to follow an XCAP program specification, making it a much

heavier approach than our typed assembly language. Our ap-

proach is complementary, in that while their higher-order

logic allows finer grained specifications, it incurs additional

cost on the programmers, and indeed renders it potentially

non-viable for ML and x86 programmers that we believe

would still be able to use FunTAL.

Acknowledgments

This research was supported in part by the National Science

Foundation (grants CCF-1422133, CCF-1453796, CCF-

1618732, CCF-1421770, and CNS-1524052) and a Google

Faculty Research Award.

508

References

[1] A. Ahmed. Verified Compilers for a Multi-Language World.

In T. Ball, R. Bodik, S. Krishnamurthi, B. S. Lerner, and

G. Morrisett, editors, 1st Summit on Advances in Program-

ming Languages (SNAPL 2015), volume 32 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), pages 15–31,

2015.

[2] A. Ahmed and M. Blume. An equivalence-preserving

CPS translation via multi-language semantics. In Inter-

national Conference on Functional Programming (ICFP),

Tokyo, Japan, pages 431–444, Sept. 2011.

[3] A. Ahmed, A. W. Appel, and R. Virga. An indexed

model of impredicative polymorphism and mutable ref-

erences. Available at http://www.cs.princeton.edu/

∼appel/papers/impred.pdf, Jan. 2003.

[4] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent rep-

resentation independence. In ACM Symposium on Principles

of Programming Languages (POPL), Savannah, Georgia, Jan.

2009.

[5] A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan,

and D. C. Wang. Semantic foundations for typed assembly

languages. ACM Transactions on Programming Languages

and Systems, 32(3):1–67, Mar. 2010.

[6] A. J. Ahmed. Semantics of Types for Mutable State. PhD

thesis, Princeton University, Nov. 2004.

[7] N. Benton. A typed, compositional logic for a stack-based ab-

stract machine. In Proceedings of the Third Asian Symposium

on Programming Languages and Systems (APLAS), Tsukuba,

Japan, pages 364–380, 2005.

[8] N. Benton and C.-K. Hur. Biorthogonality, step-indexing

and compiler correctness. In International Conference on

Functional Programming (ICFP), Edinburgh, Scotland, Sept.

2009.

[9] D. Dreyer. RustBelt: Logical foundations for the future of

safe systems programming. http://plv.mpi-sws.org/

rustbelt/, 2016. Accessed: 2016-11-15.

[10] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-

order state and control effects on local relational reason-

ing. Journal of Functional Programming, 22(4&5):477–528,

2012.

[11] M. Furr and J. S. Foster. Checking type safety of foreign func-

tion calls. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Chicago, Illi-

nois, pages 62–72, June 2005.

[12] N. Glew and G. Morrisett. Type-safe linking and modular

assembly language. In ACM Symposium on Principles of

Programming Languages (POPL), San Antonio, Texas, pages

250–261, 1999.

[13] C.-K. Hur and D. Dreyer. A Kripke logical relation between

ML and assembly. In ACM Symposium on Principles of

Programming Languages (POPL), Austin, Texas, Jan. 2011.

[14] G. Jaber and N. Tabareau. The journey of biorthogonal log-

ical relations to the realm of assembly code. Workshop

on Low-Level Languages (LOLA), http://web.emn.fr/

x-info/ntabareau/fichiers/lola2011.pdf, 2011. Ac-
cessed: 2016-11-15.

[15] A. Larmuseau and D. Clarke. Formalizing a secure foreign

function interface. In Proceedings of the 13th International

Conference on Software Engineering and Formal Methods

(SEFM) , York, UK, pages 215–230, 2015.

[16] J. Matthews and R. B. Findler. Operational semantics for

multi-language programs. In ACM Symposium on Principles

of Programming Languages (POPL), Nice, France, pages 3–

10, Jan. 2007.

[17] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-

tem F to typed assembly language. In ACM Symposium on

Principles of Programming Languages (POPL), San Diego,

California, pages 85–97, Jan. 1998.

[18] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based

typed assembly language. Journal of Functional Program-

ming, 12(1):43–88, 2002.

[19] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer,

and V. Vafeiadis. Pilsner: A compositionally verified com-

piler for a higher-order imperative language. In International

Conference on Functional Programming (ICFP), Vancouver,

British Columbia, Canada, Aug. 2015.

[20] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract com-

pilation via universal embedding. In International Confer-

ence on Functional Programming (ICFP), Nara, Japan, Sept.

2016.

[21] D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed.

FunTAL: Reasonably mixing a functional language

with assembly (technical appendix). Available at

http://www.ccs.neu.edu/home/amal/papers/

funtal-tr.pdf, Mar. 2017.

[22] J. T. Perconti and A. Ahmed. Verifying an open compiler

using multi-language semantics. In European Symposium on

Programming (ESOP), Apr. 2014.

[23] G. Tan. JNI Light: An operational model for the core JNI.

In Proceedings of the 8th Asian Conference on Programming

Languages and Systems (APLAS), Shanghai, China, pages

114–130, 2010.

[24] G. Tan, A. W. Appel, S. Chakradhar, R. Srivaths, A. Raghu-

nathan, and D. Wang. Safe java native interface. In Proceed-

ings of the 2006 IEEE International Symposium on Secure

Software Engineering, pages 97–106, 2006.

[25] P. Wang, S. Cuellar, and A. Chlipala. Compiler verification

meets cross-language linking via data abstraction. In ACM

Symposium on Object Oriented Programming: Systems, Lan-

guages, and Applications (OOPSLA), Oct. 2014.

509

