Programming a Univer sal Push-Down Automaton

Jm Harris
Department of Mathematics and Computer Science
University of North Carolina at Pembroke
Pembroke, NC 28372

Abstract

This paper involves a discussion of soft-
ware that simulates a universal push-down
automaton and shows how this software is used
in atheory of computation class to teach problem
solving and abstract concepts. The software
described is available for downloading (Win-
dows 95/98) at http://okraboy.uncp.edu.

I ntroduction

In teaching a course in the theory of
computation, we cover four fundamental ab-
stract machines, the finite automaton (FA), the
push-down automaton (PDA), the linearly
bounded automaton (LBA), and the turing ma-
chine {TM}. The PDA is unique in that it is
known that non-deterministic push-down
automata (NPDA) can represent a more general
class of functions than can deterministic push-
down automata (DPDA) (i.e. DPDA’s can
trandate or recognize only a proper subset of
the languages that can be recognized or trans-
lated by NPDA’s). This is not true for FA’s
and TM’s and is not yet known for LBA’s.

Permission to make digital or hard copies of al or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or afee.

’99 ACM Southeast Regional Conference

01999 ACM 1-58113-128-3/99/0004 5.00

In teaching the theory of compu- ta
tion many students seem to have trouble
with the concept of non-determinism. While
many find it easy to tell the difference be-
tween a deterministic and non-deterministic
machine, actually programm-ing a problem
that has only a non-deterministic solution
does not seem to be as easy. By the time
students reach their junior year in college,
most have a procedural mindset. Program-
ming in Prolog helps to break this mindset.
The drawback is the amount of syntax the
students must learn in order to teach this
concept. | have found PDA’s to be a good
way to have students think non-
deterministically without as much overhead.
In order to assist, | created a universal push-
down automaton that is capable of running
PDA programs (much like a universal turing
machine). The universal PDA can operate
in both deterministic and non-deterministic
modes.

Using the Universal PDA

The universal PDA is written in VB5
and consists of four windows; a control
window, a program window, a tape window
and a stack window.

9 10 1 12 13 14

RERREFFEREBREPF

I

Figure 1: The Tape Window

http://crossmark.crossref.org/dialog/?doi=10.1145%2F306363.306398&domain=pdf&date_stamp=1999-04-01

The tape window contains an input
string (entered by clicking the “Input” button
on the control window). The tape cell extends
well beyond the window view and scrolls
automatically when the tape headmoves past
the visible window. The same is true for the
stack window. The tape head starts in cell one
and moves one cell to the right after each in-
struction.

The programs are typed or loaded into
the program window. Each line represents ei-
ther a comment or an instruction. Comments
start with a single quote.

File Edt Font Help

"atirc i 2
| 0,a.l.=z.=z:a
z=|1.a.1l.a.a:a

l.c.2.3.

2,0,2.4a,

2.B.F.=.
Bl IR =]

Figure 2: The Program Window
Aninstruction is of the form:
<start>,<input>,<next>,<pop>,<push>

where <push> is a string of symbols each sepa-
rated by a colon () . For example, the first in-
struction 0, a, 1, z, zza trandates to “if in state
zero with input symbol “a’ and top of stack
“Z", pop the “Z” on the stack, go to state 1 and
push a “z’ then an “a’ back onto the stack..
The stack initially starts with a symbol “z”
marking the bottom of the stack. “B” repre-
sents a blank cell and “F’ represents a fina
state. The symbols “#’ and “&” act as single
character wildcards. The <input>, <pop>, and
<push> can optionally be left blank. As you
can see, there is not much syntax required in
order to be able to write a PDA program .

The Control Window allows the pro-
gram to be executed at varying speeds or a
line at a time. The direction of execution
can be forwards or backwards. Breakpoints
can be placed in the code by clicking the
box next to the line of code. A pointer
shows which line of code is currently exe-
cuting. The universal PDA can be set to op-
erate deterministically or non-
deterministically. Backtracking is used in
non-deterministic mode to search all paths.

[Stack |

Options 1;}__
—Move Head——]

pre o 9 I_

[

—

[

[

—

[

¥ Deterministic Feset 5 IA—

™ Mon-deterministic _M : Iz—

Figure 3: The Control and Stack Windows

The tape head and stack visually show the
backtracking. A sample program is shown
below:

'‘Adding four digit binary numbers. abcd +
wxyz ‘are input as dzcybxaw. The result is
on the stack

0,&,1,2,z.&

‘There is no carry

0,B,F.Z,

0,&,1##.&

1,0,0,0,0

1,0,0,1,1

1,1,0,0,1

11211

‘Thereisacarry

2BF&,&:1

2,& 3##&

3,0,0,0,1
3,1,2,0,0
3,0,2,1,0
31211

The PDA interpreter starts with the first
instruction until it finds a match on the start
state, input symbol, and top of the stack sym-
bol. If it finds a match, it executes that in-
struction. The lines of code that are executed
most often should be placed at the beginning of
the program. This can depend on the input
string, but in many cases, can be determined by
anayzing the structure of the transition dia
gram representing the program. | usually have
students draw a transition diagram showing the
PDA before writing the program, much like
flowcharting.

Some PDA problems

A sample PDA programming assignment is
shown below:

If possible, write a deterministic PDA program
to solve the following problems. If the prob-
lem has no deterministic solution, write a non-
deterministic PDA program to solve the prob-
lem.

1. Accept strings of the form L1={a’c®
i>=1}

2. Accept strings where S = {a,c}and L2 =
{strings that have three times as many a's
asc's}

3. Accept strings where S = {ac} and L3 =
{strings that are odd length palindromes}

4. Evauate a binary infix expression for S =
{0,1,+,*} where + is bitwise “or” and * is
bitwise “and” leaving the final result on the
stack. Use single digits constants in the
expression. (L4) o

5. Accept strings of the form L5 = {db'c® | i=j

or j=k} .

Accept strings of the form L6 = {ab/| i<>j}

Accept matching parenthesis (L7)

No

In the assignment above, students must
recognize the problem to either have a de-
terministic solution or to be inherently non-
deterministic. Most students recognize that
problem #3 is non-deterministic since the
first non-deterministic example covered in
class is palindromes of even length. How-
ever, problem #5 is aso non-deterministic
and the solution is quite simple if you can
force yourself to think non-deterministically.
With just a single stack, you cannot remem-
ber if both i=j and j=k. If you could, then
{db'c' | i>=1} could be recognized by a
PDA and this is the classic example of a
language that violates the pumping lemma
for PDA’s . The solution is ssimple if the
student can get out of their “procedura” rut
and let the machine decide if i=] or j=k. The
problem reduces to two cases of accepting
strings of the form {db' | i>=1}.

Conclusions

Having students program the univer-
s PDA machine not only gives them a
better understanding of non-determinism,
but also allows them to better understand the
limitations of PDA’s in genera and there-
fore better understand many inherent limita-
tions of modern grammar-driven parsers.
The simple syntax of PDA and TM lan-
guages alows even non CS mgors to con-
centrate more on problem solving and logic
under not only the constraints of the prob-
lem, but also the machine constraints. The
universal PDA described in this program
(adlong with a universal TM) can be down-
loaded from http://okraboy.uncp.edu.

References

Harris, James YATS — Yet Another Turing
Machine Simulator, 1997 Proceedings of the
Southeastern Small College Computing
Conference.

Kozen, Dexter C. Automata and Computabil-
ity, Springer-Verlag, 1997

Martin, John C. Introduction to Languages and
Machines, McGraw-Hill , 1996

