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Scheduling for Cloud-Based Computing Systems to Support Soft
Real-Time Applications
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Cloud-based computing infrastructure provides an efficient means to support real-time processing work-
loads, e.g., virtualized base station processing, and collaborative video conferencing. This paper addresses
resource allocation for a computing system with multiple resources supporting heterogeneous soft real-time
applications subject to Quality of Service (QoS) constraints on failures to meet processing deadlines. We
develop a general outer bound on the feasible QoS region for non-clairvoyant resource allocation policies,
and an inner bound for a natural class of policies based on dynamically prioritizing applications’ tasks by
favoring those with the largest (QoS) deficits. This provides an avenue to study the efficiency of two natural
resource allocation policies: (1) priority-based greedy task scheduling for applications with variable work-
loads, and (2) priority-based task selection and optimal scheduling for applications with deterministic work-
loads. The near-optimality of these simple policies emerges when task processing deadlines are relatively
large and/or when the number of compute resources is large. Analysis and simulations show substantial
resource savings for such policies over reservation-based designs.

Additional Key Words and Phrases: Soft real-time applications, cloud-computing, non-clairvoyant resource
allocation, feasibility region, largest deficit first, greedy task scheduling, task selection and optimal schedul-
ing, efficiency ratio

1. INTRODUCTION
The shift towards delivering compute platforms/services via cloud-based infrastruc-
ture is well on its way. An increasing number of the applications/services migrating
to the cloud involve real-time computation with processing deadlines and where fail-
ure to meet the deadlines degrades user’s Quality of Service (QoS). Such infrastruc-
ture allows one to reap the significant benefits of cloud computing, e.g., reduced cost of
sharing computing, hoteling and cooling resources, along with increased reliability and
energy efficiency. In this paper, we focus on Soft Real-Time (SRT) applications which
can tolerate occasional violations of processing deadlines but still need to meet QoS or
Service Level Agreements (SLA).

An example of such a platform is the Cloud-based Radio Access Network (CRAN)
[China Mobile 2011; Bernardos et al. 2014; Du and de Veciana ] being considered
for next generation cellular deployments. Instead of co-locating dedicated compute re-
sources next to base station antennas, they virtualize compute resources for baseband
processing. To do so, the received uplink signals associated with wireless subframes are
sampled and sent from antennas to the cloud for timely decoding and processing such
that downlink signals requiring timely channel measurements, acknowledgements,
etc., can be sent back to antennas for transmission. This process must happen within
several milliseconds as determined by the cellular system standards. In this setting
shared compute resources may occasionally fail to complete subframe processing on
time, but this must happen infrequently, i.e., QoS/SLA requirements must be met. In
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fact, different tasks may have different QoS/SLA requirements. For example, failures
in subframe baseband processing should be very infrequent whereas failures for tasks
associated with channel measurement/estimation might be acceptable once every few
subframes [Gatherer 2015]. Other SRT applications including multi-party collabora-
tive video conferencing, multimedia processing, real-time control systems, augmented
reality platforms, etc., have similar characteristics.

The computing infrastructure, e.g. [Verma et al. ], to support such applications may
involve a large number of heterogeneous servers, e.g., various generations of proces-
sors, which themselves have multiple cores, special purpose hardware, shared memo-
ries/caches, etc. In other words, a complex collection of resources must be orchestrated
to efficiently meet applications’ SRT requirements. In this paper we focus on a single
computing system, e.g., managed server/center, shared by a set of users, corresponding
to SRT applications, that periodically generate workloads. The traditional manage-
ment approach is to allocate dedicated resources to users to meet their QoS require-
ments. However, given the typical uncertainty in users’ workloads and “interference”
across shared resources, doing so typically involves over-provisioning.

Computing systems today are engineered so as to permit prioritization of one user
over another, e.g., production vs. non-production tasks, which in turn translates to pri-
ority in accessing shared compute resources and/or memory. In this paper we consider
resource allocation policies which can dynamically prioritize users in each period. Such
dynamic prioritization of users would typically reduce the required resources vs. static
allocations, and is further flexible to changes in users’ workload characteristics or QoS
requirements.

Given a set of users and a computing system, here are some key questions of interest:

— What QoS requirements are feasible?
— Can we design simple efficient resource allocation policies meeting users’ QoS

requirements and characterize the performance of these policies?
— Compared with dedicated resource allocation, what kinds of reductions in re-

source requirements can one expect from enabling dynamic resource sharing?

In the sequel we will address these basic questions and more, but we first turn to
related work.

Related Work. There is a substantial body of work on scheduling real-time tasks.
Starting with [Liu and Layland 1973], the community has established theoretical
frameworks to study the scheduling of real-time applications where tasks are subject
to hard deadlines, see e.g., [Liu 2000; Davis and Burns 2011a; Carpenter et al. 2004;
Leung 1989]. The results typically assume worst case execution times/workloads and
are too conservative for SRT applications.

Different models have been introduced for the QoS needs of Soft Real-Time (SRT)
applications. The work in [Hamdaoui and Ramanathan 1995; Bernat and Burns 1997;
Ramanathan 1999] proposes the notion of (m, k)-firm deadlines requiring at least m
out of any k consecutive tasks complete by their deadlines. But many services do not
need such tight requirements and the analytical results typically require deterministic
workloads. The authors in [Liu et al. 1987; Hou and Kumar 2013] consider imprecise
computation models where each task consists of a mandatory part, which needs to
complete by the deadline, and an optional part which improves the computational re-
sults. This is a reasonable model for tasks like artificial intelligence computation since
additional optional iterations improve the results. However, many real-time tasks do
not contain optional part and some of these tasks can miss the deadlines up to some
degree. The work in [Liu and Anderson 2009] aims to guarantee bounded maximum
deadline tardiness for all users. However, these frameworks and QoS models are not
suitable for applications like CRAN and video conferencing where it is useless to pro-

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.



Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications A:3

cess a task after its deadline and it is better to simply drop the task if it misses the
deadline.

This paper focuses on an SRT QoS model where a bound on the fraction of tasks
completed on time is the QoS requirement. Such a model was first introduced in [Atlas
and Bestavros 1998] where the authors propose a static allocation approach to meet
such a QoS requirements. We shall use this as an evaluation benchmark. More re-
cently, the authors in [Hou and Kumar 2013; 2012a] adopt this QoS model to study a
wireless access point supporting users that periodically generate packets which need
to be transmitted within that period, and propose simple “optimal” scheduling poli-
cies. However, their results are limited to the setting where only one user can transmit
at a time and where packet transmissions can be viewed as tasks with geometrically
distributed workloads.

In this paper we consider prioritization policies that use the idea underlying longest-
queue-first policies, whose performance has been studied in [Dimakis and Walrand
2006; Joo et al. 2007a; Kang et al. 2013] but in different settings. Moreover, the
scheduling problem we consider is more than just one of ordering users according to a
policy such as largest-deficit-first. We also need to design the task scheduler to allocate
resources to tasks across a computing system’s cores.

Work on stochastic scheduling, e.g., [Bruno et al. 1974; Lawler et al. 1993; Pinedo
2012; Ahmadizar et al. 2010; Blazewicz et al. 1986; Allahverdi and Sotskov 2003] con-
siders how to schedule a set of tasks with random workloads on multiple cores and
aims to find a single schedule to minimize some objective function. Most of this type
of work does not consider task completion deadlines and focuses on minimizing the
expected completion time of the last task or the average expected completion time of
all tasks. Moreover, such work typically assumes exponential workloads in order to get
analytical results.

Additional related work include those studying the mixing of real-time and non real-
time traffic, see e.g., [Shakkottai and Stolyar 2001; Jaramillo and Srikant 2011; Patil
and de Veciana 2007], and those studying user/job management, see e.g., [Amir et al.
2000; Mars et al. 2011; Delimitrou and Kozyrakis 2014].

Our Contributions. In this paper, we consider a computing system consisting of
multiple resources and study the scheduling of SRT users’ random workloads subject to
QoS constraints on timely task completions. To our knowledge, we are the first to give
a theoretical characterization of the feasibility region for this general SRT framework
and to consider performance and near-optimality of simple efficient scheduling policies.
The contributions of this paper are threefold.

First, we propose a general framework for SRT user scheduling on multiple re-
sources, albeit we assume the workloads are New Better than Used in Expectation
(NBUE) type. In this framework, we develop an outer bound for the set of feasible QoS
requirements for all possible non-clairvoyant resource allocation policies.

Second, we study resource allocation policies which prioritize users based on Largest
“Deficit” First (LDF) in each period and schedule tasks accordingly. We develop a gen-
eral inner bound for the feasibility region for this class of policies. This enables us to
study the efficiency of two policies: (1) LDF-based greedy task scheduling for users
with variable workloads, and (2) LDF-based task selection and optimal scheduling for
users with deterministic workloads. These simple policies are near-optimal when the
deadlines are relatively large, and/or the number of resources is large.

Finally, we evaluate the performance of the proposed policies in terms of the re-
quired number of resources to fulfill a given set of users’ QoS requirements. We exhibit
substantial savings versus a traditional reservation-based approach in various sys-
tem settings. We also discuss generalizations of our results when the resources have
different processing speeds.
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Paper Organization. The paper is organized as follows: Section 2 introduces our
system model and Section 3 describes a reservation-based approach and a general
outer bound for the feasibility region. Section 4 discusses two prioritization-based poli-
cies and studies their efficiency ratios. Simulation results are exhibited in Section 5.
Section 6 discusses generalizations and Section 7 concludes the paper. Some of the
proofs are provided in the Appendix.

2. SYSTEM MODEL
We first introduce our user, system and QoS models.

2.1. Soft Real-Time (SRT) User Model
We consider a computing system shared by a set of users N = {1, 2, · · · , n}. The system
operates over discrete periods t = 1, 2, · · · . We denote by δ the length of a period. In
each period each of the n users generates exactly one task. These tasks are available
for processing at the beginning of the period, and need to complete by the end of the
period. Tasks not completed on time are dropped, i.e., cannot be processed in subse-
quent periods. Here we assume a task is the unit of scheduling, i.e., a task cannot be
processed in parallel.

The workload of a task will refer to its resource requirement or service time. If a
task’s workload is large it may not be possible to complete on time. A task’s workload
is modeled by a random variable whose distribution captures variability in its resource
requirement and/or uncertainty in the computing system, e.g., caused by memory con-
tention across the cores. We assume task workloads for a given user are independent
and identically distributed (i.i.d.) across periods and workloads from different users
are independent, possibly with different distributions. Let Wi be a random variable
denoting the workload of a task from user i and let µi = E[Wi]. Next we introduce a
further assumption on task workloads which seems reasonable for SRT users and will
enable theoretical analysis.

Definition 2.1. A non-negative random variable W is said to satisfy New Better
than Used in Expectation (NBUE) if for all t > 0,

E[W − t|W > t] ≤ E[W ]. (1)
In this paper we shall assume all task workloads are NBUE.

The NBUE property characterizes many workload distributions of interest. [Müller
and Stoyan 2002] provides a discussion of NBUE distributions which include, but are
not limited to, exponential, gamma with shape parameter k ≥ 1 and deterministic dis-
tributions. A common class of distributions that are not NBUE is the heavy-tailed one.
However since tasks need to complete within a period1, we are not likely to encounter
tasks with such tails in the settings under consideration.

We shall assume that each user i has a QoS requirement given by a minimal long-
term average number of tasks completed on time per period, denoted by qi where qi ∈
[0, 1]. We let q = (q1, q2, · · · , qn) and assume qi’s are rational2.

Let us consider some examples. An SRT user might correspond to the processing
associated with a set of co-located cellular antennas in the CRAN context or an end
user in video conferencing. Accordingly, the period δ would correspond to a wireless
subframe or the length of a group of video frames, respectively. For SRT users, it is
generally useless to process a task after its deadline. For example, in video conferenc-
ing it is not desirable to display an out-of-date frame. This is why in this model tasks

1In fact, we only require (1) to be true for 0 < t ≤ δ.
2All the results in this paper can be generalized to q’s with irrational values. For simplicity in the proof we
do not consider that level of generality.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.



Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications A:5

not completed on time are dropped. In Section 6, we discuss possible generalizations
where users may generate tasks with different periods and where a task may further
consists of sub-tasks.

2.2. Computing Infrastructure
A computing system can be very complex consisting of diverse, heterogeneous re-
sources. In this paper, for simplicity of explanation we start with a computing system
comprising of m identical resources (cores)—a simple but relevant model. In Section 6
we discuss generalizations where cores have different processing speeds.

Given m identical cores, a task processed on any core requires the same processing
time and each core can process only one task at a time. In each period, the computing
system dynamically schedules tasks according to a given strategy. Given the resource
limit and the randomness of workloads, some tasks complete on time and some may
fail.

Unless otherwise specified we allow task preemption/migration, i.e., interrupting a
task being processed and resuming later on the same/different core. We shall ignore
the overheads of these operations. But in practice these operations involve context
switching, and therefore, policies with minimal preemption and migration are desir-
able.

A resource allocation policy is said to be non-clairvoyant if it does not make use of in-
formation regarding future events, such as tasks’ workload realizations, which are not
generally known until the tasks complete. However, a non-clairvoyant resource alloca-
tion policy may still have knowledge of a user’s task workload distribution, which can
be obtained from the history events or repeated experiments. We shall only consider
non-clairvoyant resource allocation policies.

In our model a “core” represents the minimum unit of compute resource such as
physical computing core, specialized hardware, or hyper-thread as appropriate. The
computing system could be a cloud-based cluster of machines or a centralized server
with a collection of processors/cores. There are many possible non-clairvoyant resource
allocation policies which may involve exploiting knowledge of workload distributions,
exploiting history events, preempting tasks at appropriate times, dynamically priori-
tizing tasks, etc.

2.3. SRT QoS Feasibility
Given a requirement vector q, a computing system and a non-clairvoyant resource
allocation policy, how do we verify if q is feasible? To keep track of the deficit among
users’ QoS requirements and actually completed tasks, for each user i ∈ N and period
t+ 1, we define3

Xi(t+ 1) = [Xi(t) + qi − Yi(t+ 1)]+, (2)

where [x]+ = max[x, 0] and Yi(t+ 1) is an indicator random variable which takes value
1 if user i’s task completes in period t+1. We let X(t) = (X1(t), X2(t), · · · , Xn(t)) denote
the deficit vector. X(t) is a summary of the history of events up to period t.

We shall say that the long-term QoS requirement qi for user i is met if and only
if Xi(t) is “stable”. Formally, in this paper we consider non-clairvoyant resource allo-
cation policies under which the process {X(t)}t≥1 is a Markov chain4. We assume the

3We truncate the deficit at 0 via [x]+ simply for the convenience of defining feasibility. Removing the trun-
cation does not change the results in the paper.
4All the results in this paper can be generalized to a broader range of non-clairvoyant resource allocation
policies under which some variation of X(t) is a Markov chain. For example, if a resource allocation policy
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initial state X(0), the QoS requirements q and the policy make {X(t)}t≥1 an irreducible
Markov chain.

Definition 2.2. We say the QoS requirement vector q is feasible if there exists a
non-clairvoyant resource allocation policy η under which the Markov chain {X(t)}t≥1

is positive recurrent, i.e., this policy fulfills q. We denote by Fη the feasibility region of
policy η, i.e., the set of QoS requirement vectors fulfilled by policy η. The union of Fη
over all allowable policies gives the system feasibility region F .

We shall refer to this model as SRT-Multiple Identical Cores (SRT-MIC) with NBUE
workloads and the aim is to devise non-clairvoyant resource allocation policies that
fulfill q.

In summary, the SRT-MIC model with NBUE workloads is an abstract system model
which captures a family of systems supporting SRT users with random workloads.
To summarize, the SRT-MIC model with NBUE workloads is parameterized by the
number of cores m, number of users n, period length δ, QoS requirements q, and the
NBUE workload distributions.

3. RESERVATION-BASED STATIC SHARING AND OUTER BOUND FOR THE SYSTEM
FEASIBILITY REGION

Clearly simple policies like Earliest Deadline First (EDF) do not apply in our setting.
Indeed in our problem statement all users generate tasks which have the same dead-
line at the start of the scheduling interval. In fact in the sequel (see Section 6) we will
see that even if users generate tasks with different deadlines EDF performs poorly
because it does not take the soft QoS requirements q into account.

In this section we introduce a reservation-based policy and a general outer bound
for the system feasibility region F which applies to any non-clairvoyant resource allo-
cation policy. These serve as benchmarks which enable us to evaluate the performance
of the policies proposed in the sequel.

3.1. Reservation-Based Static Sharing Policies
A straightforward and commonly adopted approach to meet users’ QoS requirements
q is to allocate dedicated resources, i.e., core time, to each user. For user i, with task
workload Wi and the requirement qi, we let wi(qi) represent the minimum core time
reservation needed to ensure the requirement is met. Specifically, wi(qi) is given by

Pr(Wi ≤ wi(qi)) = qi,

and thus, when qi is close to 1, wi(qi) will approach the worst-case workload for user i.
Reservation-based static sharing policies allocate core time wi(qi) to each user i in

each period and the tasks from users are only processed in the corresponding allocated
time. Figure 1 exhibits an example with 2 cores. Note that in this example User 3’s
task first executes on Core 2 and later continues on Core 1. Therefore, a reservation-
based static sharing policy, although seemingly simple, can be aggressive in requiring
task preemption/migration and knowledge of workload distributions to compute wi(qi)
for all users.

Note that since a task cannot be processed in parallel, if wi(qi) exceeds the period
length δ, the requirement for user i cannot be met. In this paper, we assume the task
workloads and requirements q are such that wi(qi) is bounded by δ.

depends on the deficit vectors in the past two periods, then {(X(t),X(t + 1))}t≥1 is a Markov chain. For
simplicity of explanation, we assume {X(t)}t≥1 is a Markov chain.
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Core 1

Core 2

Fig. 1. An example of the reservation-based approach.

For a system with m identical cores, the feasibility region FRB of reservation-based
static sharing is given by

FRB = {q ∈ Rn+ | q � 1,
∑
i∈N

wi(qi) ≤ mδ,

wi(qi) ≤ δ, ∀i ∈ N}, (3)

where q � 1 means qi ≤ 1 for all i ∈ N . Clearly q � 1 comes from the fact that each
user generates only one task in each period.

This approach was perhaps first proposed in [Atlas and Bestavros ] and is also
loosely used in reservation based schemes adopted in modern cloud infrastructure,
see e.g., [Verma et al. ]. Cores are not used efficiently under such a policy. When the
realization of a task workload is smaller than the allocated time, the remaining time
is wasted and cannot be used to process other real-time tasks. Typically , e.g. [Verma
et al. ], the resources are then used to support best effort traffic.

3.2. Outer Bound for the System Feasibility Region F
Ideally we aim to devise a policy that can fulfill all feasible QoS requirement vectors.
More formally, a non-clairvoyant resource allocation policy η is said to be feasibility
optimal if its feasibility region Fη is such that int(Fη) ⊆ F ⊆ cl(Fη), where int(Fη) and
cl(Fη) is the interior and closure of Fη, and thus is for practical purposes equivalent to
the system feasibility region F .

Given the heterogeneity and randomness of tasks’ workloads and the large number
of possible non-clairvoyant resource allocation policies, a feasibility optimal policy is
unknown except for very specific resource and workload models, see e.g., [Hou and
Kumar 2012b]. To solve this and to provide a benchmark to evaluate other resource
allocation policies, we develop a simple outer bound ROB for the system feasibility
region F . Formally, we have the following theorem.

THEOREM 3.1. For the SRT-MIC model with NBUE workloads, the system feasibil-
ity region F is such that

F ⊆ ROB ≡ {q ∈ Rn+ | q � 1,
∑
i∈N

qiµi ≤ mδ}.

Intuitively, if qi tasks of user i are completed each period, the expected time spent
on user i is roughly given by qiµi. To make q feasible, the total time spent on all users∑
i∈N

qiµi cannot exceed the total available core time given by mδ. This informal argu-

ment is perhaps deceptive. Note that in fact the expected time to complete the qi tasks
for user i in each period might be smaller than qiµi since completed tasks might tend
to have smaller workloads. This seems to imply that mδ could be smaller than

∑
i∈N

qiµi

for some feasible q. This is where the NBUE assumption on workloads is critical to the
result.
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Note this simple outer bound applies only to non-clairvoyant resource allocation poli-
cies for a specific SRT-MIC system with NBUE workload distributions. A formal proof
of the theorem is given below.

PROOF. Given a feasible QoS requirement vector q � 1, the goal is to show∑
i∈N

qiµi ≤ mδ.

Suppose q is fulfilled by a non-clairvoyant resource allocation policy η, by definition
{X(t)}t≥1 is positive recurrent and therefore, there exists a stationary distribution. We
consider a typical period where the deficit vector X(t) follows the stationary distribu-
tion and introduce further notation associated with period t + 1. To simplify notation,
we will suppress the period index in this proof.

For each user i, we define Yi to be the indicator random variable that the task from
user i completes in a typical period. By the Ergodic Theorem, E[Yi] also represents the
time-averaged number of task completions per period for user i. If we view Xi(t) as a
queue, the average arrival qi should not exceed the average departure E[Yi]. For each
user subset S ⊆ N , we define US to be a random variable denoting the total core time
spent on users in S in a typical period. Clearly, E[US ] cannot exceed the total available
core time mδ. To show

∑
i∈N

qiµi ≤ mδ, it suffices to show that
∑
i∈N

E[Yi]µi ≤ E[UN ]. To

that end we first develop an equation connecting
∑
i∈N

E[Yi]µi and E[UN ], and then use

the NBUE assumption to show the inequality.
We say a task is unfinished if it starts processing but does not complete in a given

period. Let Ai be the indicator random variable that user i’s task is unfinished in a
typical period. Now if Yi + Ai = 1 it indicates that user i’s task starts processing in
the period though it may not have completed. For each user i, we further define Ei =
Ai(Wi−U{i}). Intuitively, Ei represents the “residual workloads for user i’s unfinished
tasks”. Note that these random variables and their means depend on the policy η.

For each user subset S ⊆ N , the total time spent on users in S can be written as

US =
∑
i∈S

(Yi +Ai)Wi −
∑
i∈S

Ei,

and by taking expectations, we get

E[US ] =
∑
i∈S

E[(Yi +Ai)Wi]−
∑
i∈S

E[Ei]. (4)

Clearly Yi + Ai, which indicates that user i’s task starts processing, is independent
of Wi. Indeed this follows from the requirement that the resource allocation policy
be non-clairvoyant, and the independence among users’ task workloads. In a typical
period under policy η, the event that user i’s task starts may depend on the workloads
of others’ tasks, but not on Wi.

Note that although Yi + Ai is independent of Wi, in general Yi which indicates user
i’s task completes may depend on Wi, i.e., E[YiWi] 6= E[Yi]µi. To better understand
this, consider an extreme example. If Wi > δ, clearly the user i’s task cannot complete
implying that Yi = 0. Thus, E[Yi|Wi > δ] = 0 6= E[Yi]. Similarly, we can argue Ai is not
independent of Wi.

Still given the independence of Yi +Ai and Wi, we have that

E[(Yi +Ai)Wi] = E[Yi +Ai] · E[Wi] = (E[Yi] + E[Ai])µi.
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So (4) becomes

E[US ] =
∑
i∈S

E[Yi]µi +
∑
i∈S

E[Ai]µi −
∑
i∈S

E[Ei]. (5)

This equation holds for all non-clairvoyant resource allocation policies and for all sub-
sets of users S ⊆ N .

Now let S = N . To show
∑
i∈N

E[Yi]µi ≤ E[UN ], by (5) it suffices to show E[Ai]µi ≥ E[Ei]

for all users i ∈ N . We will show this is true under the NBUE workload assumption
in the discrete-time scenario and it is straightforward to generalize the proof to the
continuous-time scenario.

Suppose each period contains δ discrete time units. For all i and for c = 1, 2, · · · , δ,
we let Ai,c denote the indicator random variable that user i’s task is unfinished and

is processed for c time units in a typical period. Clearly, Ai =
δ∑
c=1

Ai,c and E[Ai,c] =

Pr(Ai,c = 1). By the law of total probability, the expected residual workload E[Ei] for
user i can be written as

E[Ei] =

δ∑
c=1

E[Ei|Ai,c = 1] Pr(Ai,c = 1) =

δ∑
c=1

µi,c E[Ai,c], (6)

where µi,c = E[Wi − c|Wi > c]. This is because under the non-clairvoyant design the
event Ai,c = 1 tells nothing about Wi except that Wi > c.

By the NBUE workload assumption we know that µi,c ≤ µi for c > 0 and therefore,
we get the following inequality,

E[Ei] ≤
δ∑
c=1

µi E[Ai,c] = µi E[Ai]. (7)

Note that the equality holds if all users’ task workloads follow geometric distributions
(or exponential distributions in continuous-time scenario), possibly with different pa-
rameters.

To summarize, by (5) and (7) we know that given a feasible requirement vector q, for
all user subsets S ⊆ N , ∑

i∈S
qiµi ≤

∑
i∈S

E[Yi]µi ≤ E[US ] ≤ mδ, (8)

which by letting S = N implies
∑
i∈N

qiµi ≤ mδ, and thus, F ⊆ ROB.

A key part of this argument is the inequality (8), stating that for a feasible q the
“effective” workload

∑
i∈S

qiµi for any user subset S should not exceed the total time

spent on users in S, which is bounded by mδ. This holds under the NBUE workload
assumption but may not be true if users have non-NBUE task workloads. For example,
suppose all users generate tasks with non-NBUE workloads as follows,

Wi =

{
1 with probability 0.5
9 with probability 0.5.

Clearly, the mean workload is µi = 5. Let us consider such a policy. In each period,
the system processes each task for exactly 1 time unit and stops if the task does not
complete because given its workload distribution we know this task will require 8 more
time units to complete. Suppose m and δ is such that mδ = n and therefore, the system
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can process each task for 1 time unit per period. Under such a policy we know qi = 0.5
for all user i and the total time spent per period is UN = n. Therefore,∑

i∈N
qiµi = 2.5n > n = E[UN ] = mδ,

which is not consistent with (8) and Theorem 3.1. Non-NBUE workloads are beyond
the scope of this paper. Yet for real-time computing workloads we expect NBUE to be
a good assumption.

4. LARGEST DEFICIT FIRST (LDF) BASED POLICIES
Our aim is to devise a non-clairvoyant resource allocation policy that is easy to im-
plement and whose feasibility region is near optimal. In this section we consider a
specific class of policies, called prioritization-based resource allocation policies, which
decompose resource allocation into two sub-problems, see Figure 2:

(1) User prioritization: in each period the system dynamically prioritizes users based
on the history of events.

(2) Task scheduler: the system schedules users’ tasks on cores based on their priori-
ties.

There are still many options for each sub-problem. For example, task scheduling might
be done greedily by simply scheduling the task with the highest priority, or using the
priorities to first select a subset of tasks and then process that task subset via optimal
scheduling policies.

User Prioritization

Task Scheduler

Priority Decisions

Feedback 

History 

Events

User-Level QoS

Fig. 2. The framework for prioritization-based resource allocation policies.

In this paper we shall prioritize users based on the Largest Deficit First (LDF) policy
which is defined as follows.

We let d = (d1, d2, · · · , dn) denote a priority decision where dk is the index of the user
with kth highest priority and D denote the set of all possible priority decisions.

Definition 4.1. The Largest Deficit First (LDF) policy is such that, given the
users’ deficit vector X(t), the priority decision d for period t+ 1 is such that

Xd1(t) ≥ Xd2(t) ≥ · · · ≥ Xdn(t),

with ties broken arbitrarily (possibly randomly). In other words, it sorts the deficits
and assigns priorities accordingly.

The LDF user prioritization can be combined with different approaches of task
scheduling. In the sequel we will explore such combinations and characterize their
performance.
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4.1. Inner Bound for Feasibility Region of LDF+X
Given a task scheduling policy X , we let LDF+X refer to the resource allocation policy
that combines LDF user prioritization and task scheduler X . In this subsection, we
provide an inner bound for its feasibility region FLDF+X .

We first introduce some further notation. Given a task scheduler, in each period,
the task completions depend on the selected priority decision. We let pi(d) denote the
expected number of tasks completed in a period for user i under priority decision d and
let p(d) = (p1(d), p2(d), · · · , pn(d)). Note that different task schedulers will correspond
to different sets of vectors P = {p(d)|d ∈ D}. We denote by x � 0 a positive vector x
with xi > 0 for all i ∈ N . For all user subsets S ⊆ N , we let |S| be the number of users
in S and we let D(S) denote the set of all priority decisions that assign the highest |S|
priorities to users in S. The following theorem gives an inner bound on FLDF+X .

THEOREM 4.2. Given a task scheduler X and thus the X dependent expected com-
pletion vectors P = {p(d)|d ∈ D}, an inner bound for the feasibility region of the re-
source allocation policy LDF+X is given by int(RIB) ⊆ FLDF+X , where

RIB ≡ {q ∈ Rn+ | ∃α � 0 such that ∀S ⊆ N,∑
i∈S

αiqi ≤ min
d∈D(S)

∑
i∈S

αipi(d)}.

Intuitively, q is in RIB and is feasible under the LDF+X policy if there is a weight
vector α � 0 such that for any subset of users S, if the users in S are given the
highest priorities, the weighted sum of the requirements

∑
i∈S

αiqi does not exceed the

least weighted sum of the “service rate”
∑
i∈S

αipi(d). Again, different task schedulers X

will have different vectors P and thus different inner bounds RIB. A proof is provided
in Appendix 8.1. Note that Theorem 4.2 applies beyond the SRT-MIC model when
the LDF policy is used but in a general setting where p(d) represent the expected
payoffs under priority decision d and users require long-term time-averaged payoff q
per period. The LDF policy can also be generalized to a class of weighted LDF policies.
This general result is further developed in [Du and de Veciana 2016].

Next we explore specific task schedulers and use Theorem 4.2 to study their perfor-
mance.

4.2. Performance Analysis of LDF+Greedy Scheduling
Given an LDF-based user priority decision in each period, a natural way to allocate
resources is to greedily process tasks from highest to lowest priority. Specifically, to
start by putting the m tasks with the highest priority on the m cores and, once one
of these tasks completes, continue by processing the task with priority m + 1 on the
available core, etc.

We let LDF+Greedy refer to the resource allocation policy that combines LDF and
such a greedy task scheduler. Note this is easy to implement and does not require any
a-priori knowledge of the tasks’ workloads. Also this policy does not use task preemp-
tion or migration.

Next we characterize the performance of LDF+Greedy. To that end, we introduce a
metric called the efficiency ratio, see e.g., [Joo et al. 2007b]. The efficiency ratio of a
non-clairvoyant resource allocation policy η is defined as

γη = sup
γ
{γ|γF ⊆ Fη}.
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Clearly γη characterizes the performance gap between a policy η and the best possible
way of orchestrating the scheduling of multiple tasks across multiple cores. Also γη
equals to 1 if and only if policy η is feasibility optimal.

THEOREM 4.3. For the SRT-MIC model with NBUE workloads, the efficiency ratio
of LDF+Greedy exceeds γ1 where

γ1 = 1−
max
i∈N

µi

δ
.

The intuition underlying this result is as follows. We say a task is unfinished if it
starts processing but does not complete in a period. The time spent on an unfinished
task goes to waste since it does not contribute to a task completion. For LDF+Greedy,
in one period, at most 1 task is unfinished per core and thus the wasted time on each
core is expected to be less than max

i∈N
µi. Given the period is of length δ, the gap between

LDF+Greedy and optimality is bounded by
max
i∈N

µi

δ . Note that again this argument is
deceptively simplified since unfinished tasks might tend to have larger workloads. Also
as for Theorem 3.1, this result does not necessarily hold for non-NBUE workloads. The
formal proof is given below.

PROOF. Given a requirement vector q fulfilled by resource allocation policy η, by (8)
we know for all subsets of users S ⊆ N ,∑

i∈S
qiµi ≤ E[US ],

where E[US ] represents the time-averaged core time spent on users in S per period
under policy η.

During each period, the total time US spent on users in S is bounded by the total
task workload

∑
i∈S

Wi of users in S and the total available core time mδ. We define

TS = min

[∑
i∈S

Wi,mδ

]
and therefore, for all user subsets S, we have that

∑
i∈S

qiµi ≤ E[US ] ≤ E[TS ]. (9)

Thus, for a vector q satisfying (9) the aim to show γLDF+Greedy ≥ γ1 which is equivalent
to showing γ1q ∈ cl(FLDF+Greedy). By Theorem 4.2, it suffices to show that γ1q ∈ RIB. In
LDF+Greedy, the expected vector p(d) described in Section 4.1 represents the expected
numbers of timely completions under greedy task scheduler under priority decision d.
Therefore, γ1q ∈ RIB follows if one can find a vector α � 0 such that for all S ⊆ N ,∑

i∈S
αiγ1qi ≤ min

d∈D(S)

∑
i∈S

αipi(d).

We will show α = (µ1, µ2, · · · , µn) � 0 satisfies the above condition. By (9) it suffices to
show for all S,

γ1 E[TS ] ≤ min
d∈D(S)

∑
i∈S

µipi(d),
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which is equivalent to showing for any given user subset S and priority decision d ∈
D(S) that ∑

i∈S
µipi(d) ≥ γ1 E[TS ] = E[TS ]−

max
i∈N

µi

δ
E[TS ]. (10)

First we rewrite
∑
i∈S

µipi(d) by similar approach used to obtain (5). As in the proof of

Theorem 3.1, for each subset of users S ⊆ N and each user i ∈ N , we let US(d), Ai(d)
and Ei(d) denote the time spent on users in S, the indicator random variable that user
i’s task is unfinished and the residual workload of user i’s unfinished tasks in a period
under the greedy task scheduler with priority decision d, respectively.

By (5), for the given S and d, we have that∑
i∈S

pi(d)µi = E[US(d)] +
∑
i∈S

E[Ei(d)]−
∑
i∈S

E[Ai(d)]µi.

Now (10) follows by showing that

E[US(d)] +
∑
i∈S

E[Ei(d)] ≥ E[TS ] (11)

and ∑
i∈S

E[Ai(d)]µi ≤
max
i∈N

µi

δ
E[TS ], (12)

respectively.
To demonstrate (11), it suffices to show for each workload realization,

uS(d) +
∑
i∈S

ei(d) ≥ tS ,

where uS(d), ei(d), tS are realizations of US(d), Ei(d), TS , respectively.
If uS(d) = mδ, clearly uS(d) +

∑
i∈S

ei(d) ≥ mδ ≥ tS . Otherwise, uS(d) < mδ. Since d ∈

D(S) assigns the highest priorities to users in S, by greedy task scheduler uS(d) < mδ
implies that at the end of the period no task from users in S is waiting to be scheduled,
i.e., all tasks from users in S start processing and therefore, uS(d)+

∑
i∈S

ei(d) ≥
∑
i∈S

wi ≥

tS , where wi represents the realization of workload Wi. Therefore, (11) is verified.
Now it remains to show (12). Clearly we have that∑

i∈S
E[Ai(d)]µi ≤ max

i∈N
µi ·

∑
i∈S

E[Ai(d)].

Thus, to demonstrate (12) it suffices to show that∑
i∈S

E[Ai(d)] ≤ E[TS ]

δ
. (13)

We define AS(d) =
∑
i∈S

Ai(d) to be the number of unfinished tasks in a period from

users in S under greedy task scheduler under priority decision d. Since there are at
most m unfinished tasks, we have AS(d) ≤ m.

Under greedy task scheduling, for d ∈ D(S) we claim AS(d) = k implies TS ≥ kδ
for k = 0, 1, · · · ,m. This is true because AS(d) = k means there are k unfinished tasks
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on k different cores, implying these k cores are busy processing tasks from users in S
throughout the period. Therefore,

∑
i∈S

Wi ≥ kδ and thus TS ≥ kδ.

By this claim, we can get that

E[TS ] =

m∑
k=0

E[TS |AS(d) = k] · Pr(AS(d) = k)

≥
m∑
k=0

kδ · Pr(AS(d) = k)

= δ

m∑
k=0

k · Pr(AS(d) = k)

= δ E[AS(d)]

= δ
∑
i∈S

E[Ai(d)].

This proves (13) which in turn shows (10) and therefore, γ1q ∈ RIB ⊆ cl(FLDF+Greedy).

Theorem 4.3 provides a lower bound on the efficiency ratio of LDF+Greedy, denoted
by γLDF+Greedy. The bound is tight in the sense that for any ε > 0, there exists an SRT-

MIC system with NBUE workloads such that γLDF+Greedy < 1−
max
i∈N

µi

δ +ε. Such a system
is detailed in Appendix 8.2.

It follows that if δ � max
i∈N

µi, then γ1 is close to 1, i.e., LDF+Greedy is close to optimal.

This is true when the task workloads are small relative to the core processing speed.
However, when δ is comparable to max

i∈N
µi, the efficiency ratio lower bound γ1 is

small, although in some scenarios LDF+Greedy may still be efficient. For example,
LDF+Greedy is feasibility optimal if the task workloads of all users follow the same ex-
ponential (or geometric) distribution, or prior work in [Hou and Kumar 2012a]. This is
due to the memoryless property of the exponential (or geometric) distribution. We omit
the proof here. Still in some scenarios where we know more about the task workloads
it is interesting to explore other simple policies that perform better than LDF+Greedy,
especially when δ is comparable to the maximum mean workload. That motivates the
discussion in the next subsection.

4.3. Performance Analysis of LDF+TS/LLREF Scheduling under Deterministic Workloads
In this subsection, we consider systems where users generate tasks with deterministic,
but possibly different, workloads, i.e., Pr(Wi = µi) = 1 for all i ∈ N . For soft real-
time users that can tolerate missing some deadlines, even if they generate tasks with
deterministic workloads, one can still intentionally drop a fraction of tasks in each
period while guaranteeing the users’ long-term QoS requirements. Selecting a subset
of tasks to be processed in each period is like a bin backing problem. And to fulfill
the long-term soft QoS requirements, one need to dynamically change or rotate the
selected task subset.

Note deterministic workloads satisfy the NBUE property. Also note that for deter-
ministic workloads, non-clairvoyant policies have knowledge of workload realizations.
We shall once again prioritize users using LDF prioritization. Intuitively, the greedy
task scheduler wastes time on multiple cores if multiple tasks are unfinished at the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.



Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications A:15

end of a period, so we will devise a task scheduler that orchestrates across cores so as
to “reduce” wasted core time to finish more tasks.

For deterministic workloads, one can assess how many tasks one can complete prior
to initiating processing. Indeed, it is intuitive, and established in [Cho et al. 2006], that
one can complete all tasks in a user subset S in a period by some optimal scheduling
if and only if

∑
i∈S

µi ≤ mδ. We consider one such optimal algorithm: Largest Local

Remaining Execution time First (LLREF) [Cho et al. 2006]. Let us briefly describe
how LLREF5 would work in the SRT-MIC model and then introduce a task scheduler
that combines the idea of task selection and LLREF scheduling.

To that end we introduce some terminology used in [Cho et al. 2006]. Consider a
period starting at time tδ and ending at time (t + 1)δ , at any time τ ∈ [tδ, (t + 1)δ],
the Local Remaining Execution time (LRE) of user i is defined as the remaining time
needed to complete its task. The LRE decrements as the task is processed. Further,
the laxity of user i is defined as the remaining time before the deadline of user i’s task,
i.e., (t + 1)δ − τ , minus the current LRE of user i. Thus, if some user has zero laxity
at some time, one needs to start processing the task immediately to complete it by its
deadline.

Definition 4.4. For the SRT-MIC model with deterministic workloads, the Largest
Local Remaining Execution time First (LLREF) policy is such that, given a se-
lected user subset S for the period, it does the following:

(1) At the beginning of the period, m tasks associated with users in S are chosen to be
processed according to largest LRE first.

(2) When a running task completes, or a non-running task reaches a state where it
has zero laxity, again the m tasks in S with largest local remaining execution time
are selected to be processed.

Note that the LLREF policy uses task preemption and possibly migration. A review
of variants of LLREF aimed at reducing task preemptions is provided in [Davis and
Burns 2011b].

Definition 4.5. The Task Selection/LLREF (TS/LLREF) task scheduler is such
that, given the user priority decision d for a period, it does the following:

(1) Task selection: it greedily selects users based on d until the sum workload exceeds
mδ. More formally, it selects

j(d) = max
{
j|

j∑
i=1

µdi ≤ mδ
}
. (14)

Let J(d) = {d1, d2, · · · , dj(d)} represent the selected user subset.
(2) LLREF for J(d): the system uses LLREF scheduling for tasks in J(d) in this period.

By [Cho et al. ], it follows that all tasks from J(d) will complete.
Paralleling Theorem 4.3, we have the following result for the LDF+TS/LLREF re-

source allocation, i.e., the combination of LDF user prioritization and TS/LLREF task
scheduling.

5LLREF is defined to be applicable in more general settings where users might generate tasks with different
period. We will discuss this in Section 6.
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THEOREM 4.6. For the SRT-MIC model with deterministic workloads, the efficiency
ratio of LDF+TS/LLREF exceeds γ2 where

γ2 = 1−
max
i∈N

µi

mδ
.

Intuitively, under TS/LLREF, the task selection rule guarantees that in any given
period the wasted time mδ−

∑
i∈J(d)

µi is less than max
i∈N

µi. Given the total available core

time mδ, the gap between LDF+TS/LLREF and optimality is again bounded by the
fraction of wasted time, i.e.,

max
i∈N

µi

mδ . A formal proof of this result is similar to that of
Theorem 4.3 and is provided in Appendix 8.3.

The efficiency ratio lower bound γ2 in this theorem is better than γ1 obtained in
Theorem 4.3, specifically the dependence on m is much stronger. For a system with
a large number of cores m, γ2 is close to 1, i.e., LDF+TS/LLREF is close to feasibility
optimal even if δ is comparable to max

i∈N
µi.

Although LDF+TS/LLREF is designed for deterministic workloads, we envisage it
will work well for workloads with small variability by using the expected workload, or
some more sophisticated workload estimation west

i . Specifically, TS makes selections
based on west

i and LLREF computes local remaining execution time and laxity by as-
suming Wi = west

i . Note that this heuristic LDF+TS/LLREF is still non-clairvoyant.
This will be explored in the simulation section.

4.4. Resource Requirements
So far we have analytically characterized the efficiency ratios of two LDF-based re-
source allocation policies. Another metric of interest is the resource requirements in
terms of the number of cores m needed to fulfill a set of users’ QoS requirements. To
that end in this subsection we shall explore the required m given n, δ, the random
workload distributions and the requirement vector q. A policy that requires a smaller
m is better in that it saves compute resources and/or energy.

4.4.1. Resource Requirements for Reservation-Based Static Sharing.
Based on the definition of FRB in 3.1, the required number of cores to fulfill the users’

QoS requirements q under reservation-based static sharing is given by

mRB =
⌈ ∑
i∈N

wi(qi)

δ

⌉
, (15)

where dxe is the ceiling of x.

4.4.2. Lower Bound on Resource Requirements.
For any non-clairvoyant resource allocation policy η, we let mη denote the required

number of cores to fulfill users’ QoS requirements under policy η. By Theorem 3.1, we
knowmη must satisfymηδ ≥

∑
i∈N

qiµi , giving the following lower bound on the required

number of cores:

m ≡
⌈ ∑
i∈N

qiµi

δ

⌉
. (16)

4.4.3. Resource Requirements Estimate for LDF+Greedy.
Ideally one would like a tight upper bound for the required resources mLDF+Greedy for

LDF+Greedy. By Theorem 4.3 we know that LDF+Greedy may expect to waste up to
max
i∈N

µi time on each core in a period because of unfinished tasks. Thus, to complete an
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“effective” workload
∑
i∈N

qiµi, we propose an estimate for mLDF+Greedy as follows,

mest
LDF+Greedy ≡

⌈ ∑
i∈N

qiµi

δ −max
i∈N

µi

⌉
. (17)

If δ � max
i∈N

µi, this estimate is close to the lower bound m.

We can analytically show that indeed mest
LDF+Greedy ≥ mLDF+Greedy when δ and n are

large, see the proposition as follows. We observe that the inequality holds true in the
various simulation settings considered next.

PROPOSITION 4.7. For a SRT-MIC system model with homogeneous users where
all users have i.i.d. NBUE task workloads with mean µ and the same QoS requirement
q, if the period length satisfies 1− µ

δ > q, then for any NBUE workload distribution and
for any ε > 0 satisfying 1− (1 + ε)µδ > q, there exists n′, such that for all n ≥ n′,

m =
⌈ nqµ

δ − (1 + ε)µ

⌉
is a sufficient number of cores to meet the QoS requirement for n users.

By letting ε approach 0, the m in this proposition approaches mest
LDF+Greedy. This is due

to the law of large numbers and we omit the proof.

5. SIMULATIONS
In this section we address through simulation some of the questions that are still open:

(1) What are possible resource savings of adopting LDF+Greedy versus reservation-
based static sharing? Are they close to optimal when δ is large? How do they depend
on the QoS requirements q?

(2) Our theorems on the lower bounds on efficiency ratios imply that LDF+TS/LLREF
is better than LDF+Greedy for small δ and deterministic workloads. Is it true that
LDF+TS/LLREF is more efficient?

(3) For workloads with small variability, can one use LDF+TS/LLREF and get gains
over LDF+Greedy?

Our simulation setup is as follows. We start with an initial deficit vector X(0) =
(0, 0, · · · , 0). In each period, we independently generate a task workload realization for
each user and simulate the specified policy to evaluate if tasks complete. All simula-
tions are run for 3000 periods. A QoS requirement vector q is feasible if for all users i
the fraction of task completions over the 3000 periods exceeds qi.

5.1. Near-Optimality of LDF+Greedy for Large δ
To evaluate the resource savings of LDF+Greedy for large period length δ, we consider
an SRT-MIC system model with n = 200 and δ = 50, serving homogeneous users that
have the same QoS requirement q and generate tasks with Gamma(5, 1) workloads,
i.e., a sum of 5 independent exponential random variables with parameter 1. The prob-
ability density function is shown in the top panel in Figure 3. We choose this NBUE
workload distribution as a representative one.

In the bottom panel in Figure 3, we show the simulated resource savings of
LDF+Greedy versus the reservation-based static sharing, i.e., 1 − mLDF+Greedy

mRB
, and the

computed upper bound on resource savings 1− m
mRB

as the QoS requirement q increases
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from 0 to 1. The lines are not smooth because we take ceilings when computing m and
mRB.

It can be seen that the savings under LDF+Greedy is close to the upper bound in this
setting. The “U” shape of the exhibited results depends on the workload distribution.
Intuitively, in this homogeneous-user scenario, if we ignore the ceilings in (15) (16),
the upper bound on savings becomes,

1− m

mRB
' 1− qµ

w(q)
, (18)

where µ is the common mean workload and w(q) is the common required static al-
location. For high q, w(q) is like a worst-case workload and this is an improvement
from worst case to average which is as high as 60-70% for Gamma(5, 1) distribution.
For medium q ∼ 50%, qµ is around 0.5µ while w(q) is roughly µ, giving a 50% resource
savings. For low q, qµ is much smaller compared to w(q) and the savings can be up to
80-90%.
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Fig. 3. Top: the probability density functions for Gamma(5, 1) and Gamma(100, 0.05). Bottom: the resource
savings for large period.

5.2. LDF+Greedy vs. LDF+TS/LLREF for Deterministic Workloads and Small δ
To compare LDF+Greedy and LDF+TS/LLREF for short periods δ and deterministic
workloads, we consider a system where n = 30 and δ = 9 and where users are ho-
mogeneous and generate tasks with deterministic workloads µ = 5. In the top panel
in Figure 4, we exhibit the upper bound of resource savings and the resource savings
under LDF+Greedy and LDF+TS/LLREF as the requirement q changes from 0 to 1.

As can be seen, LDF+TS/LLREF can achieve the upper bound on savings while
LDF+Greedy does not perform as well. For high q, the savings for LDF+Greedy is even
negative implying that LDF+Greedy is worse than the reservation-based approach.
This is because we chose µ and δ such that LDF+Greedy wastes a significant amount
of time on unfinished tasks. Observe that the savings are monotonically decreasing
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in q, which is different from the “U” shape exhibited in Figure 3. Intuitively, this is
because for deterministic workloads, by (18) we know w(q) equals to µ and thus we get

1− m

mRB
' 1− q.
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Fig. 4. Top: the resource savings under deterministic workloads. Bottom: the resource savings under ran-
dom workloads with small variability.

5.3. LDF+TS/LLREF for Workloads with Small Variability
For workloads with small variability, we envisage that the heuristic LDF+TS/LLREF
described in Section 4.3 is a good non-clairvoyant policy. Consider a SRT-MIC system
with homogeneous users where n = 30 and δ = 9 and where the task workload dis-
tributions are Gamma(100, 0.05) exhibited on the top panel in Figure 3. Note that the
distribution Gamma(100, 0.05) has the same mean µ = 5 but a small variance. In this
setting, we shall estimate the workload to be west = 1.1µ and use our proposed heuris-
tic LDF+TS/LLREF in Section 4.3. We conduct the same analysis for resource savings
and exhibit the results in the bottom panel in Figure 4.

As can be seen, the heuristic LDF+TS/LLREF indeed performs better than
LDF+Greedy. However, the performance of the heuristic LDF+TS/LLREF degrades for
high q. This is due to the fact that some selected tasks fail to complete since their work-
loads are larger than west. One approach to solve this is to increase west as q becomes
bigger.

Although we only considered homogeneous users, the above observations were found
to be robust for heterogeneous users.

6. POSSIBLE GENERALIZATIONS
In this section we discuss the following generalizations of the SRT-MIC NBUE-
workload model and associated results:
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Table I. Results for different generalizations.

Model Reservation-Based FRB Outer Bound ROB

γ1 (NBUE workloads) γ2

preemptive non- (deterministic
preemptive workloads)

SRT-
MIC

{q ∈ Rn+ | q � 1,∑
i∈N

wi(qi) ≤ mδ,

wi(qi) ≤ δ,∀i ∈ N}

{q ∈ Rn+ | q � 1,∑
i∈N

qiµi ≤ mδ} 1−
max
i∈N

µi

δ
1−

max
i∈N

µi

mδ

{q ∈ Rn+ | q � 1,

Bn(q) ≤ Sm · δ,
Bk(q) ≤ Sk · δ, 1 ≤ k ≤ m}

{q ∈ Rn+ | q � 1,∑
i∈N

qiµi ≤ Sm · δ} 1−
max
i∈N

µi

s·δ
1−

max
i∈N

µi

min
c∈C

sc·δ 1−
max
i∈N

µi

Sm·δ

Different
speeds
sc

{q ∈ Rn+ | q � 1,∑
i∈N

wi(qi)

δi
≤ m,

wi(qi) ≤ δi, ∀i ∈ N}

{q ∈ Rn+ | q � 1,∑
i∈N

qiµi

δi
≤ m} N/A 1−

max
i∈N

µi
δi

m

Different
periods
δi

{q ∈ Rn+ | q � 1,∑
i∈N

wi(qi) ≤ mδ,

wi(qi) ≤ δ,∀i ∈ N}

{q ∈ Rn+ | q � 1,∑
i∈N

qiµi ≤ mδ} 1−
max
i∈N

µi

δ
1−

max
i∈N

µi

mδ

Chains of
subtasks
k(i)

(1) Cores with different processing speeds.
(2) Users generating tasks at different periods.
(3) Tasks which further consist of sub-tasks that need to be processed in order.

We discuss these three generalizations in the following three subsections, respectively.
For ease of reference, Table I provides a summary of various generalizations—the

necessary notation is introduced in the sequel.

6.1. Cores with Different Processing Speeds
We first consider generalizations where the cores may have different processing
speeds. Let C = {1, 2, · · · ,m} denote the set of cores. Suppose all cores are of the
same type and each core c ∈ C has processing speed sc, i.e., cores are “uniform”, see
the taxonomy in, e.g., [Davis and Burns 2011a]. In other words, if a task runs on a core
with speed s for t time units, then s × t units of work are performed. In this context,
the workload of a task refers to the required units of work to fully complete the task.
Therefore, a task with workload w processed on core c has a processing time w

sc
. Let

s =

∑
c∈C

sc

m be the average processing speed. Clearly, in the SRT-MIC model we have
previously considered, sc = 1 for each c ∈ C.

We assume n ≥ m since otherwise one only needs the n fastest cores. Next we discuss
generalizations of our results.

6.1.1. Reservation-Based Static Sharing Policies. In reservation-based static sharing,
given the computed wi(qi) for all users i ∈ N , the question is whether it is feasible
to find a static allocation guaranteeing that wi(qi) units of work can be performed for
each user i in each period.

To answer this question, we first introduce some notation. Given a set Z of non-
negative numbers and a positive integer k which satisfies 1 ≤ k ≤ |Z|, we let a(Z, k)
be the sum of the largest k numbers in Z. We let Sk = a({sc|c ∈ C}, k). Given a QoS
requirement vector q, for 1 ≤ k ≤ n, we let Bk(q) = a({wi(qi)|i ∈ N}, k) be the sum of
the k largest core time reservations. By [Funk et al. 2001; Funk and Meka 2009], we
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know that a static allocation is feasible if and only if the following conditions hold:

Bn(q) ≤ Sm · δ, (19)
Bk(q) ≤ Sk · δ for 1 ≤ k ≤ m. (20)

Intuitively, (19) implies that the sum of required reservations does not exceed the total
units of work that can be performed in a period. And (20) implies that the k largest
reservation requirements can be satisfied by the k fastest cores.

Such a static allocation can be obtained according to prior work, see e.g., [Funk
et al. 2001; Funk and Meka 2009]. Therefore, the feasibility region of reservation-
based static sharing FRB is given by

FRB = {q ∈ Rn+ | q � 1, Bn(q) ≤ Sm · δ,
Bk(q) ≤ Sk · δ for 1 ≤ k ≤ m}.

This is consistent with our analysis when sc = 1 for all c ∈ C, see Eq (3).

6.1.2. Outer Bound ROB for the System Feasibility Region. For a system with different core
processing speeds, the outer bound ROB in Theorem 3.1 needs to be modified to

ROB ≡ {q ∈ Rn+ | q � 1,
∑
i∈N

qiµi ≤ Sm · δ},

i.e., the “effective” workload
∑
i∈N

qiµi cannot exceed the maximum units of work Sm · δ

that can be performed in a period.
A proof of this result requires a slight modification of that of Theorem 3.1: we replace

mδ by Sm · δ; we redefine US to be the total units of work performed for users in S in
a typical period; and we redefine Ai,c to be the indicator random variable that user
i’s task is unfinished and c units of work are performed for user i’s task in a typical
period.

6.1.3. LDF+Greedy Scheduling. For LDF+Greedy, if all cores have the same speed, there
is no benefit of moving a running task from one core to another. However, if cores have
different speeds, one may want to migrate tasks to faster cores if they become avail-
able. Therefore, depending on whether task preemption/migration is allowed, there
are two types of greedy task schedulers: preemptive and non-preemptive greedy task
scheduler.

Preemptive Greedy Task Scheduler: In the preemptive case, the task scheduler
greedily and preemptively schedules tasks with the highest priority on the fastest
cores. Specifically, at all times the task scheduler guarantees that the available6 task
with the highest priority is placed on the fastest core, the available task with the
second highest priority is on the second fastest core, etc. In this setting, similarly to
Theorem 4.3 we get the following corollary.

COROLLARY 6.1. For the generalization of SRT-MIC model to cores with different
processing speeds, the efficiency ratio of the preemptive LDF+Greedy exceeds γ1 where

γ1 = 1−
max
i∈N

µi

s · δ
.

Note that in the denominator we have an average processing speed s, which equals
to 1 in the SRT-MIC model we considered previously. Intuitively, this is because under
the preemptive greedy task scheduler the unfinished tasks are always on the fastest

6A task is available if it is not completed yet.
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cores. And the average processing speed of the k fastest cores is at least s for 1 ≤ k ≤ m.
Refer to Appendix 8.4 for the proof.

Non-Preemptive Greedy Task Scheduler: The non-preemptive greedy task
scheduler starts by putting the task with the highest priority on the fastest core, the
task with the second highest priority on the second fastest core, etc. Once one of these
tasks completes, it continues by processing the task with prioritym+1 on the available
core, etc. In this setting, we get the following corollary.

COROLLARY 6.2. For the generalization of SRT-MIC model with different process-
ing speeds, the efficiency ratio of the non-preemptive LDF+Greedy exceeds γ1 where

γ1 = 1−
max
i∈N

µi

min
c∈C

sc · δ
.

See Appendix 8.5 for the proof.
Note that γ1 under the preemptive LDF+Greedy is larger than that under the non-

preemptive LDF+Greedy. This captures the benefit of task preemption/migration al-
though these operations involve overheads in practice.

6.1.4. LDF+TS/LLREF Scheduling. For deterministic workloads, we shall generalize our
proposed LDF+TS/LLREF scheduling. We first introduce a further assumption.

ASSUMPTION 1. We suppose the n users’ deterministic workloads are such that for
all 1 ≤ k ≤ m,

Mk ≤ Sk · δ,
where Mk = a({µi|i ∈ N}, k) represents the sum of the k largest workloads.

Intuitively, this guarantees that for all 1 ≤ k ≤ m, the k tasks with largest workloads
can complete on the k fastest processors in a period.

Under Assumption 1, and by [Funk et al. 2001; Funk and Meka 2009], we can com-
plete all tasks in a user subset S in a period by some optimal scheduling if and only
if
∑
i∈S

µi ≤ Sm · δ. Such optimal scheduling algorithms include U-LLREF [Funk and

Meka 2009], a variant of LLREF for cores with different speeds, and Proportionate
Fair (Pfair) [Baruah et al. 1996].

Similar to the TS/LLREF task scheduler in Definition 4.5, we propose TS/U-LLREF
or TS/Pfair where the task selection rule (14) naturally becomes

j(d) = max
{
j|

j∑
i=1

µdi ≤ Sm · δ
}
, (21)

and the selected subset of users are scheduled via U-LLREF or Pfair algorithms.
Under Assumption 1, and similarly to Theorem 4.6, we can show that the efficiency

ratio of LDF+TS/U-LLREF or LDF+TS/Pfair exceeds γ2 where

γ2 = 1−
max
i∈N

µi

Sm · δ
.

The proof of this result follows that of Theorem 4.6 by simply replacing mδ with Sm · δ.

6.2. Users Generating Tasks at Different Periods
In this subsection, we consider possible generalizations of the SRT-MIC NBUE-
workload model where users generate tasks at different periods, and discuss results
that cannot be generalized and/or associated difficulties.
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Specifically, suppose starting from time 0 each user i generates a task at the begin-
ning of each period of length δi. We assume there exists a minimum common multiple
∆ of δi for all i. We shall refer to ∆ as a super period.

Again, each user requires the long-term time-averaged number of tasks completed
on time per period qi ∈ [0, 1]. To be consistent with the SRT-MIC model, we de-
fine the feasibility in terms of the positive recurrence of a Markov chain. Given
q = (q1, q2, · · · , qn), we keep track of the deficits of users across super periods. For
each user i ∈ N and super period t+ 1, we shall define deficit updates as follows,

Xi(t+ 1) = [Xi(t) + qi ·
∆

δi
− Yi(t+ 1)]+, (22)

where Yi(t + 1) is a random variable representing the number of tasks completed on
time for user i in super period t + 1. Let X(t) = (X1(t), X2(t), · · · , Xn(t)). We only
consider non-clairvoyant resource allocation policies such that the process {X(t)}t≥1 is
a Markov chain. A QoS requirement vector q is feasible if the Markov chain {X(t)}t≥1

is positive recurrent under some non-clairvoyant resource allocation policy.

6.2.1. Reservation-Based Static Sharing Policies. We first generalize the performance
characterization of reservation-based static sharing policies. Similarly to the setting
in 3.1, we can compute the required core time reservation per period wi(qi) for all
users i. Now wi(qi)

δi
represents the required core utilization for user i if we want to al-

locate wi(qi) core time to user i per period. Clearly, if
∑
i∈N

wi(qi)
δi

> m we cannot meet

the core time reservations wi(qi) for all users. Indeed, by prior work, see e.g., [Cho
et al. 2006; Davis and Burns 2011a], we can characterize the feasibility region FRB of
reservation-based static sharing policies as follows,

FRB = {q ∈ Rn+ | q � 1,
∑
i∈N

wi(qi)

δi
≤ m,

wi(qi) ≤ δi,∀i ∈ N}.
Note that this is consistent with our analysis when all users have the same period, see
Eq (3).

Given that
∑
i∈N

wi(qi)
δi
≤ m and wi(qi) ≤ δi for all i ∈ N , since users have different

periods, the remaining problem is how to allocate wi(qi) to each user i in each period.
One solution is to use the LLREF scheduling policy. Refer to Appendix 8.8 for more
details.

6.2.2. Outer Bound ROB for the System Feasibility Region. When users generate tasks with
different periods, the outer bound ROB for the system feasibility region can be general-
ized as follows,

ROB = {q ∈ Rn+ | q � 1,
∑
i∈N

qiµi
δi
≤ m}.

Intuitively,
∑
i∈N

qiµi
δi

represents the sum of core utilizations to fulfill QoS requirement

q, which cannot exceed the maximum degree of parallelism m. The proof is similar to
that of Theorem 3.1—refer to Appendix 8.6 for details.

6.2.3. LDF-Based Policies Over Super Periods. A heuristic way to generalize our proposed
LDF-based resource allocation policies to different-period scenarios is to adopt the LDF
policy to pick a priority decision for each super period. Specifically, at the beginning of
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super period t+ 1, the system orders the deficit vector X(t) and assigns priorities from
largest to smallest. These priorities are interpreted by the task scheduler to schedule
tasks in this super period.

LDF+Greedy: When users generate tasks with different periods, the greedy task
scheduler can be preemptive or non-preemptive depending on whether preemp-
tion/migration is allowed. In the preemptive version, at all times the task scheduler
processes the m available tasks with the highest priority on the m cores. In the non-
preemptive version, the task scheduler starts with m tasks with the highest priority.
When a running task completes or reaches its deadline7, the available non-running
task with the highest priority is selected to be processed on the available core.

Unfortunately, for this generalized LDF+Greedy policy we cannot get a similar per-
formance characterization as Theorem 4.3. Intuitively, this is because the greedy task
scheduler can potentially waste a lot of time on unfinished tasks in different-period
scenarios. For example, under the preemptive greedy task scheduler, we may start
processing a task right before its deadline and fail to complete it, or we may process a
task only for a short time before we have to switch to process another task with higher
priority leaving the original task unfinished. These scenarios degrade the performance
of the LDF+Greedy policy.

LDF+TS/LLREF under Deterministic Workloads: If the users generate tasks
with different periods but with deterministic workloads, we can generalize the
LDF+TS/LLREF policy and also Theorem 4.6. Naturally we assume µi ≤ δi for all
i ∈ N . Otherwise, the tasks from user i cannot complete on time.

Under LDF+TS/LLREF, in each super period, a priority decision d is selected ac-
cording to the LDF policy. Similarly to (14), the system selects the user subset J(d) =
{d1, d2, · · · , dj(d)} where j(d) is computed as follows,

j(d) = max
{
j|

j∑
i=1

µdi
δdi
≤ m

}
. (23)

We shall consider the case where the system adopts the LLREF policy to process and
complete all tasks from J(d) in this super period.

To characterize the efficiency ratio, we proved the following corollary which is similar
to Theorem 4.6.

COROLLARY 6.3. For the SRT-MIC system model with different periods and deter-
ministic workloads, the efficiency ratio of LDF+TS/LLREF that operates over super
periods exceeds γ2, where

γ2 = 1−
max
i∈N

µi
δi

m
.

Intuitively, under the task selection rule (23), for the selected user subset J(d) we
know that m −

∑
i∈J(d)

µi
δi

is less than max
i∈N

µi
δi

, and therefore, the performance gap is

bounded by
max
i∈N

µi
δi

m . The formal proof is straightforward generalization of the proof of
Theorem 4.6 and we shall omit it.

Again, this result is consistent with our analysis when all users have the same pe-
riod, see Theorem 4.6.

7This implies that another task from the same user is released. That new task is also considered to be a
non-running task.
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6.2.4. Fine-Grained LDF-Based System Designs. A problem for the LDF-based resource
allocation policies over super periods is that the task completions of users vary a lot
from super period to super period. For example, a user with high priority in one super
period may complete a large number of tasks in this super period and then be assigned
a low priority in the next super period, completing only a small number of tasks. Such
bursty completions would likely be undesirable for users especially when the super
period ∆ is large.

To mitigate this problem, we could consider a fine-grained LDF policy to change
the priority decisions more frequently. We divide the timeline into intervals associated
with times where tasks become available for processing and deadlines. At the begin-
ning of each interval, we compute the deficit between the QoS requirement and the
actual number of completed tasks up to that time for each user i, sort the deficits from
largest to smallest and assign priorities accordingly.

Given the priority decision in each interval, we can adopt a greedy task scheduler. If
task preemption/migration is allowed, naturally we start by putting the m tasks with
highest priority on the m cores, and once one of these tasks completes, we continue by
putting the task with priority m+ 1 on the available core, etc. If preemption/migration
is not allowed, at the beginning of this interval, we continue processing the tasks run-
ning at the end of the previous interval, and once one of these tasks completes or
reaches the deadline, we put the non-running task with the highest priority on the
available core, etc.

It would be of interest to characterize the performance of such resource allocation
policies and to generalize LDF+TS/LLREF in future work.

6.3. Tasks Consisting of Sub-Tasks
We continue our discussion of possible generalizations of our SRT-MIC NBUE-
workload model to the case where each task consists of several sub-tasks that need
to be processed in order and all of which need to be completed by the end of the corre-
sponding period. We assume all sub-tasks can be processed on all cores.

Specifically, suppose in each period each user i ∈ N generates a task consisting of
k(i) sub-tasks, which have to be processed in order and cannot be processed in parallel.
But sub-tasks of different tasks can be processed simultaneously. A task in a period is
said to be completed on time if and only if all its sub-tasks complete by the end of the
period. Each user i requires time-averaged task completions per period qi. For a given
user, we assume the sub-task workloads with the same sub-task index are i.i.d. across
periods and the sub-task workloads with different indices are independent. For each
user i ∈ N and each sub-task index k = 1, 2, · · · , k(i), we denote by W (k)

i the workload
of the kth sub-task from user i and let µ(k)

i = E[W
(k)
i ] be the mean sub-task workload.

Clearly Wi =
k(i)∑
k=1

W
(k)
i and µi =

k(i)∑
k=1

µ
(k)
i . We further assume each sub-task has an

NBUE workload distribution. By [Shaked and Shanthikumar 2007] we know user i’s
task workload Wi also has an NBUE distribution.

This generalized task model captures tasks that are completed in phases. For ex-
ample, in the CRAN context each antenna generates a task associated with each
subframe. A task may further consist of sub-tasks like encoding/decoding, modula-
tion/demodulation, FFT/IFFT.

Suppose the system can observe the sub-task completions, these observations enable
a broader range of non-clairvoyant resource allocation policies, which could potentially
achieve better performance, i.e., a larger system feasibility region F . For example, now
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we can consider a resource allocation policy that stops processing a task if its first
sub-task takes too long.

Clearly our original SRT-MIC system model is a special case of this generalized
model where k(i) = 1 for all users i. It turns out that our proposed approaches and
performance characterization still hold under this generalized task model although
some of the proofs need modification. Next we shall discuss this in more detail.

6.3.1. Reservation-Based Static Sharing Designs. Given the sub-task workload distribu-
tions and the assumption of workload independence, we can get the workload distribu-
tion of Wi and thus wi(qi) for all users i ∈ N . Therefore, the discussion of reservation-
based static sharing policies in Section 3.1 still holds.

6.3.2. Outer Bound for the System Feasibility Region F. The definition of the outer bound
region ROB and Theorem 3.1 still holds, but the proof for Theorem 3.1 requires some
modification. See Appendix 8.7 for the details.

6.3.3. LDF-Based System Designs. We can still use our proposed LDF-based resource
allocation policies, i.e., LDF+Greedy and LDF+TS/LLREF, to process tasks consisting
of sub-tasks. When applying these approaches, we consider each task as a whole task
and do not use the sub-task information. This is reasonable because partially complet-
ing some sub-tasks does not help to meet the QoS requirements q. Our performance
characterization results Theorem 4.3, Theorem 4.6, etc., still hold.

As a summary, tasks consisting of sequences of sub-tasks with independent NBUE
workloads do not change the results in this paper.

In this section we have introduced three possible generalizations in parallel. Given
these results, the combinations of multiple generalizations, e.g., scenarios where the
processors have different processing speeds and users generate tasks with different
periods, are straightforward and we omit the discussion here.

7. CONCLUSION
We have considered a computing system with multiple resources supporting soft real-
time applications and established analytically and through simulation that simple
resource allocation policies like LDF+Greedy are near-optimal and achieve substan-
tial resource savings, except when the real-time constraints are tight, i.e., the period
length is similar to the service time for a user’s task. In this case, LDF+Greedy may not
work well and it is worth exploring other policies. For workloads with small variability,
we have proposed the LDF+TS/LLREF policy which indeed outperforms LDF+Greedy.
For future work, a more detailed exploration of systems consisting of possibly different
types of resources is of interest.
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8. APPENDIX
8.1. Proof of Theorem 4.2
We first introduce some additional notation. Given two vectors a = (a1, a2, · · · , an) and
b = (b1, b2, · · · , bn), we denote by a ◦ b = (a1b1, a2b2, · · · , anbn) the entrywise product.

Given q ∈ int(RIB), we need only show q can be fulfilled by the LDF+X policy.
By definition of interior there exists an ε > 0 such that q′ = q+ε1 ∈ RIB. By definition

of RIB, there exists a vector α � 0 such that for all S ⊆ N ,

∑
i∈S

αiq
′
i ≤ min

d∈D(S)

∑
i∈S

αipi(d). (24)

Consider the following candidate Lyapunov function:

L(X(t)) =

n∑
i=1

αiXi(t)
2.

Note that the process {X(t)}t≥1 is now driven by LDF, and let Y(t) =
(Y1(t), Y2(t), · · · , Yn(t)) be the vector of indicator variables for users’ task completions
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under LDF. At period t+ 1, we have that

E [L(X(t+ 1))− L(X(t))|X(t) = x]

= E

[
n∑
i=1

αi(Xi(t+ 1)2 −Xi(t)
2)|X(t) = x

]

≤ E

[
n∑
i=1

αi((Xi(t) + qi − Yi(t+ 1))2 −Xi(t)
2)|X(t) = x

]

= E

[
n∑
i=1

αi(qi − Yi(t+ 1))2 + 2〈α ◦X(t),q−Y(t+ 1)〉|X(t) = x

]

≤ E

[
n∑
i=1

αi(q
2
i + Yi(t+ 1)2) + 2〈α ◦X(t),q−Y(t+ 1)〉|X(t) = x

]

= E

[
n∑
i=1

αi(q
2
i + Yi(t+ 1)2) + 2〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x

]
− 2ε〈x,α〉 (25)

For simplicity, let d denote the priority decision selected by LDF at period t + 1. We
have

E [〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x] = 〈α ◦ x,q′ − p(d)〉.

By reordering users according to priorities, we get

〈α ◦ x,q′ − p(d)〉

=

n∑
i=1

xdi [αdiq
′
di − αdipdi(d)]

=

n−1∑
i=1

[xdi − xdi+1
][

i∑
j=1

αdjq
′
dj −

i∑
j=1

αdjpdj (d)] + xdn [

n∑
j=1

αdjq
′
dj −

n∑
j=1

αdjpdj (d)].

By the LDF policy we know xdi ≥ xdi+1
. By (24) we have

i∑
j=1

αdjq
′
dj
≤

i∑
j=1

αdjpdj (d)

for 1 ≤ i ≤ n. Therefore,

E [〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x] ≤ 0.

Suppose b is an upper bound for all αi, qi and possible Yi(t+ 1), by (25)

E[L(X(t+ 1))− L(X(t))|X(t) = x] ≤2nb3 − 2ε〈x,α〉 ≤ −1

for x satisfying 〈x,α〉 ≥ nb3

ε + 1
2ε .

It is not hard to show8 there are finite states x satisfying 〈x,α〉 < nb3

ε + 1
2ε . Therefore,

by Foster’s Theorem {X(t)}t≥1 is positive recurrent and q is fulfilled by the LDF policy.

8This is true because given our assumption that requirement q are rational valued, the state space of process
{X(t)}t≥1 is in a lattice [Conway and Sloane 2013].
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8.2. Lower Bound in Theorem 4.3 is Tight

Given ε > 0, consider a SRT-MIC system model that has m = d
1
ε+1

2 e identical cores
serving 2m users generating tasks with deterministic workload w in each period of
length δ = 2w − w

m . Suppose all users have the same QoS requirement q.
In this setting, since w ≤ δ ≤ 2w, by using LDF+Greedy one can complete m tasks

per period. However, by using LDF+TS/LLREF policy we can complete dmδw e = 2m− 1
tasks per period, which is a lower bound on the number of completed tasks per period
under a feasibility optimal policy.

Given that all users have the same QoS requirement, the efficiency ratio of
LDF+Greedy equals to ratio of the number of tasks completed per period under
LDF+Greedy to that under a feasibility optimal policy, and thus

γLDF+Greedy ≤
m

2m− 1
.

Since m = d
1
ε+1

2 e ≥
1
ε+1

2 , we know ε ≥ 1
2m−1 . Further since δ = 2w − w

m , we get that

1− w

δ
+ ε ≥ 1− 1

2− 1
m

+
1

2m− 1
=

m

2m− 1
.

Thus, in this setting, we have that

γLDF+Greedy ≤ 1− w

δ
+ ε = 1−

max
i∈N

µi

δ
+ ε.

8.3. Proof of Theorem 4.6
Suppose we are given a QoS requirement vector q. Under deterministic workloads,
to fulfill q the average core processing time

∑
i∈N

qiµi per period should not exceed mδ.

Therefore, a feasible requirement vector q implies∑
i∈N

qiµi ≤ mδ,

and clearly q � 1.
The goal is to show γ2q ∈ cl(FLDF+TS/LLREF). Recall that in this setting the vector

p(d) represents the expected numbers of task completions per period for TS/LLREF
task scheduling under priority decision d. Given deterministic workloads and any de-
cision d, under LDF+TS/LLREF, pi(d) equals to 1 if user i’s task is selected and thus
completes, and equals to 0 otherwise. By Theorem 4.2 it suffices to show γ2q ∈ RIB and
by letting α = (µ1, µ2, · · · , µn), it suffices to show for any given user subset S ⊆ N and
priority decision d ∈ D(S), ∑

i∈S
µipi(d) ≥ γ2

∑
i∈S

µiqi. (26)

We show this in the following two cases.
If
∑
i∈S

µi ≤ mδ, the task selection rule (14) will assure that all users in S are selected

and thus, pi(d) = 1 for all i ∈ S. Since q � 1 and γ2 ≤ 1, we have
∑
i∈S

µipi(d) =
∑
i∈S

µi ≥

γ2

∑
i∈S

µiqi.
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Otherwise,
∑
i∈S

µi > mδ and then not all users in S are selected. The task selection

rule (14) will ensure
j(d)∑
i=1

µdi ≤ mδ <
j(d)+1∑
i=1

µdi

and therefore,

∑
i∈S

µipi(d) =

j(d)∑
i=1

µdi > mδ −max
i∈N

µi = mδ(1−
max
i∈N

µi

mδ
) = γ2mδ ≥ γ2

∑
i∈N

µiqi ≥ γ2

∑
i∈S

µiqi.

This proves (26) and therefore,

γ2q ∈ RIB ⊆ cl(FLDF+TS/LLREF).

8.4. Proof of Corollary 6.1
The proof is similar to that of Theorem 4.3. To avoid duplication here we only discuss
the differences in the associated arguments. First, mδ should be replaced by Sm · δ.
Second, instead of showing (12), one needs to show∑

i∈S
E[Ai(d)]µi ≤

max
i∈N

µi

s · δ
E[TS ], (27)

for which it suffices to show that∑
i∈S

E[Ai(d)] ≤ E[TS ]

s · δ
. (28)

We still define AS(d) =
∑
i∈S

Ai(d). Under preemptive greedy task scheduling, if

AS(d) = k for k = 0, 1, · · · ,m, then there are k unfinished tasks on the k fastest cores,
implying that the k fastest cores are busy processing tasks from users in S throughout
the period. Therefore,

∑
i∈S

Wi ≥ Skδ and thus TS ≥ Sk · δ. Clearly by the definition of Sk

we know

S1 ≥
S2

2
≥ · · · Sm

m
= s.

Therefore, TS ≥ Sk · δ ≥ ksδ.
Thus it follows that

E[TS ] =
m∑
k=0

E[TS |AS(d) = k] · Pr(AS(d) = k) ≥
m∑
k=0

ksδ · Pr(AS(d) = k) = sδ
∑
i∈S

E[Ai(d)].

This proves (28) and concludes the proof.

8.5. Proof of Corollary 6.2
The proof is similar as that of Corollary 6.1. But this time, instead of showing (27), we
shall show ∑

i∈S
E[Ai(d)]µi ≤

max
i∈N

µi

min
c∈C

sc · δ
E[TS ], (29)
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for which it suffices to show that∑
i∈S

E[Ai(d)] ≤ E[TS ]

min
c∈C

sc · δ
. (30)

This is true because, if AS(d) = k for k = 0, 1, · · · ,m, then there are k unfinished
tasks, implying that there are k cores busy processing tasks from users in S throughout
the period. Thus, TS ≥ k ·min

c∈C
sc · δ.

Thus it follows that

E[TS ] =

m∑
k=0

E[TS |AS(d) = k] · Pr(AS(d) = k) ≥
m∑
k=0

k ·min
c∈C

sc · δ · Pr(AS(d) = k)

= min
c∈C

sc · δ ·
∑
i∈S

E[Ai(d)],

which proves (30).

8.6. Proof of ROB when users generate tasks with different periods
The proof of this generalization is similar to that of Theorem 3.1. The main differences
lie in the definitions of the random variables Yi, Ai, Ei and US . In this setting, for
each user i we define Yi to be the random variable that represents the number of
tasks completed on time over a typical super period ∆. For a feasible q, by the Ergodic
Theorem, we know qi · ∆

δi
≤ E[Yi] for all i ∈ N . We further define Ai to be the number

of user i’s unfinished tasks over a typical super period and define Ei to be the total
residual workloads of user i’s unfinished tasks over a typical super period. For each
subset of users S ⊆ N , we define US to be a random variable denoting the total core
time spent on users in S in a typical super period. We can still get equation (5) and by
E[Ei] ≤ E[Ai]µi we can get that∑

i∈N
qi ·

∆

δi
· µi ≤

∑
i∈N

E[Yi]µi ≤ E[UN ] ≤ m ·∆.

Therefore, ∑
i∈N

qiµi
δi
≤ m.

8.7. Proof of ROB under generalized sub-task model
In systems where each task consists of a sequence of sub-tasks, the definition of the
outer bound region ROB and Theorem 3.1 still holds, but the proof for Theorem 3.1
requires some modification, specifically (6) in the proof no longer holds.

Recall that in the proof of Theorem 3.1 we want to show E[Ei] ≤ µi E[Ai] for all users
i, where E[Ei] is the mean residual workload of user i’s unfinished tasks and E[Ai] is
the mean number of user i’s unfinished tasks. Our approach is to define Ai,c to be the
indicator random variable that user i’s task is unfinished and is processed for c time
units in a typical period. By total probability we have that

E[Ei] =

δ∑
c=1

E[Ei|Ai,c = 1] Pr(Ai,c = 1).

Under the original SRT-MIC system model where k(i) = 1, by NBUE property
E[Ei|Ai,c = 1] = E[Wi − c|Wi > c] ≤ µi and that enables us to show E[Ei] ≤ µi E[Ai].
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However, under this generalized task model, E[Ei|Ai,c = 1] may no longer equal
to µi,c = E[Wi − c|Wi > c]. This is because in some resource allocation policies, the
event Ai,c = 1 could give more information than Wi > c. For example, suppose user i
generates tasks with two sub-tasks, i.e., k(i) = 2. Consider a policy that always finishes
user i’s sub-task 1 and then stops. Suppose the period length δ is large enough to
complete user i’s sub-task 1. In this scenario we know for all c, E[Ei|Ai,c = 1] = E[W

(2)
i ]

which may not equal to µi,c.
Next we shall show E[Ei] ≤ µi E[Ai] is still true under the generalized task model for

a user i with k(i) = 2. The proof can be easily extended to general k(i). We define I(1)
i

to be the indicator random variable that sub-task 1 from user i completes in a typical
period. By total probability we have that

E[Ei|Ai,c = 1] (31)

= E[Ei|Ai,c = 1, I
(1)
i = 1] Pr(I

(1)
i = 1|Ai,c = 1)

+ E[Ei|Ai,c = 1, I
(1)
i = 0] Pr(I

(1)
i = 0|Ai,c = 1).

Given that I(1)
i = 1, the residual workload Ei is only the remaining workload of

sub-task 2 and by the NBUE property of sub-task 2, we know

E[Ei|Ai,c = 1, I
(1)
i = 1] ≤ µ(2)

i ≤ µi.

Similarly, if I(1)
i = 0, then Ei is the sum of the remaining workload of sub-task 1, and

the whole workload of sub-task 2 which is independent of the event Ai,c = 1. Therefore,
by the NBUE property of sub-task 1, we have that

E[Ei|Ai,c = 1, I
(1)
i = 0] ≤ µ(1)

i + E[W
(2)
i |Ai,c = 1, I

(1)
i = 0] = µ

(1)
i + µ

(2)
i = µi.

Now by (31) we get that

E[Ei|Ai,c = 1] ≤ µi Pr(I
(1)
i = 1|Ai,c = 1) + µi Pr(I

(1)
i = 0|Ai,c = 1) ≤ µi.

Therefore,

E[Ei|Ai,c = 1] ≤
δ∑
c=1

µi Pr(Ai,c = 1) = µi E[Ai].

The other part of the proof of Theorem 3.1 remains unchanged, and thus, our discus-
sion of ROB still holds.

8.8. Achieving FRB via LLREF scheduling

Given that
∑
i∈N

wi(qi)
δi

≤ m and wi(qi) ≤ δi for all i ∈ N , since users have different

periods, the challenge is how to allocate wi(qi) to each user i in each period. We convert
this to the following equivalent hard real-time scheduling problem. Consider a system
where each user i ∈ N periodically generates tasks with period δi and deterministic
task workload wi(qi). The tasks are available for processing at the beginning of periods
and need to be completed by the end of the corresponding periods. The objective is to
schedule these tasks on m identical cores to guarantee that all tasks complete on time
without exception. One solution is to use the LLREF scheduling policy which always
gives a feasible schedule if it is possible. In Section 4.3 we have introduced LLREF
policy when users have the same periods. Next we introduce how to apply LLREF to
solve this hard real-time scheduling problem where users generate tasks with different
periods.
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LLREF divides the timeline into intervals by task releases/deadlines. In each inter-
val of length τ , the local workload of each user i ∈ N is defined as τ

δi
wi(qi). Therefore,

to complete all tasks on time it suffices to complete the local workloads of all users in
each interval. To achieve that, in each interval we adopt the LLREF policy introduced
in Definition 4.4 to process local workloads for all users. This LLREF policy solves the
hard real-time scheduling problem.

By adopting this policy we can get a static time allocation such that each user i ∈ N
gets core time reservation wi(qi) in each period, which further guarantees that each
user i meets the QoS requirement qi.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.


