
Compact Resettable Counters through Causal Stability

Georges Younes∗
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

Paulo Sérgio Almeida†
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

Carlos Baquero‡
HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

ABSTRACT
Conflict-free Data Types (CRDTs) were designed to automatically
resolve conflicts in eventually consistent systems. Different CRDTs
were designed in both operation-based and state-based flavors such
as Counters, Sets, Registers, Maps, etc. In a previous paper [2],
Baquero et al. presented the problem with embedded CRDT counters
and a solution, covering state-based counters that can be embedded
in maps, but needing an ad-hoc extension to the standard counter
API. Here, we present a resettable operation-based counter design,
with the standard simple API and small state, through a causal-
stability-based state compaction.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms;

KEYWORDS
CRDTs; Eventual Consistency; Distributed Counting
ACM Reference format:
Georges Younes, Paulo Sérgio Almeida, and Carlos Baquero. 2017. Compact
Resettable Counters through Causal Stability. In Proceedings of PaPoC’17,
Belgrade, Serbia, April 23, 2017, 3 pages.
DOI: http://dx.doi.org/10.1145/3064889.3064892

1 INTRODUCTION
The need for high-responsiveness and high-availability in geo-
replicated systems pushed researchers and developers to further ex-
plore relaxed consistencymodels such as eventual consistency [1, 6].
As a result of that, many frameworks have been introduced such as
Conflict-free Replicated Data Types (CRDTs) [5]. Many of those data
types where implemented such as counters, sets, registers, flags, etc.
∗Project "Coral - Sustainable Ocean Exploitation: Tools and Sensors/NORTE-01-0145-
FEDER-000036" is financed by the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).
†The research leading to these results has received funding from the European Union’s
Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, project LightKone.
‡Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with
Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’17, Belgrade, Serbia
© 2017 ACM. 978-1-4503-4933-8/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3064889.3064892

To satisfy user requirements, developers must be able to compose
complex data types together. A common strategy [4] is to define a
replicated map data structure that maps keys to CRDT instances
and others maps as well. For that, maps need to support adding and
removing entries, and allow data type-dependent updates on the
embedded CRDT instances.

In [2], Baquero et al. explained how previous counter CRDT
designs do not allow them to be used as embedded counters inside
maps. The main reason is that, contrary to container-like CRDTs
like sets, where each element kept is individually tagged with a
causal identifier, for counters we cannot afford to individually track
each of the possibly millions of increments; therefore, these designs
do not allow a reset operation that applies to a given subset of
increments. Also, in the same paper, they presented a new state-
based embedded counter design as a solution. However, the design
has by default an undesired reset-wins semantics, and requires a
special fresh operation to protect increments from concurrent resets.

Our aim in this paper, is to revisit the problem and propose an
operation-based design of a resettable counter while keeping the
standard API; i.e., with no need for special operations, such as fresh
above. In Section 2 we introduce the standard pure op-based counter
and the issues which prevent it from being resettable. In Section 3,
we show a specification of a trivial resettable counter design and
point to the meta-data trade-off of such design. In Section 4, we
explain how causal stability, that is already a part of the pure op-
based framework [3], can be used to remove unnecessary meta-data
leading to a more compact design. We conclude, in section 5, with
some final remarks.

2 THE STANDARD OP-BASED COUNTER

Σ = N σ 0 = 0
prepare(o,σ) = o

effect(inc, t ,n) = n + 1
eval(value,n) = n

Figure 1: Pure G-counter

In the pure op-based model, each operation is tagged at the
source with a unique logical timestamp t and delivered to all repli-
cas by reliable causal broadcast. On delivery it is incorporated in the
state by a effect function that receives the operation, source times-
tamp and local state to mutate. A GCounter (Figure 1) is identical
to the purely sequential data type, given its commutative behavior,
and exploiting the exactly-once delivery: the state (Σ) is simply an
integer (∈ N); the inc operation increments it; and the eval query
returns it.

PaPoC’17, April 23, 2017, Belgrade, Serbia Georges Younes, Paulo Sérgio Almeida, and Carlos Baquero

A {}
inc
•

([1,0],inc)

{([1, 0], inc)} inc
•

([2,0],inc)

,,

{([1, 0], inc), ([2, 0], inc)} • {([2, 0], inc)}

B {} • {([1, 0], inc)} reset
•

([1,1],reset)
55

{} • {([2, 0], inc)}

Figure 2: Example of a Naive Resettable Counter

By not keeping track of each individual increment, such an im-
plementation is very efficient, but not suitable for a reset operation,
as we cannot select a subset of the increment operations to discard.
For instance, if reset was implemented as setting the integer to
zero, this would lead to divergent states when such a reset was
concurrent with an inc operation. Alternatively, if the reset was im-
plemented as decrementing by the local counter value, this would
lead to an incorrect outcome (decrement twice) if two reset opera-
tions were concurrently issued. These anomalies are caused by the
non-commutative nature of a reset, when trying to implement it in
the simple commutative, sequential data type above.

3 A NAIVE RESETTABLE COUNTER
A trivial, but naive, solution for a resettable counter is the design
in Figure 3. The state is a POLog (Partially-Ordered Log), map-
ping order comparable unique timestamps (∈ T) to corresponding
operations (∈ O). Each inc operation is tagged with a timestamp
(by the Tagged Reliable Causal Broadcast middleware of the pure
op-based model) and added to the POLog. The value query returns
the POLog size, which corresponds to the number of inc operations.
The reset operation, also tagged with a timestamp, discards all inc
operations in the POLog that are in its causal past, matching its
natural specification. In Figure 2, we show an example of a run
between two replicas. This counter design is unusable in practice,
as the number of entries in the POLog grows linearly with the
number of increments.

Σ = T ↪→ O σ 0 = {}

prepare(o, s) = o (with o either inc or reset)

effect(inc, t , s) = s ∪ {(t , inc)}

effect(reset, t , s) = s \ {(t ′, inc) ∈ s | t ′ < t }

eval(value, s) = |s |

Figure 3: Naive Resettable Counter

4 COMPACTING THE COUNTER
The pure op-based model envisages the use of two mechanisms
for compacting the POLog, causal redundancy and causal stability.
These are not needed for the simple GCounter (Figure 1), but we
now show that the second will allow obtaining a POLog-based
compact and resettable counter, if we change the POLog definition
from a set to a multiset.

4.1 Causal Stability
A timestamp t , and corresponding message, is causally stable at
node i when all messages subsequently delivered at i will have
timestamp t ′ > t . Stability can be locally detected by tracking in
each node the last timestamps received from each other node. The
pure op-based model uses causal stability, to discard timestamp
information of operations in the POLog once they become causally
stable.

4.2 Compact POLog-based Resettable Counter
We propose a new specification, in Figure 4, for a compact resettable
counter that is based on the naive counter, with two modifications:

• Causal stability is used, through stabilize, to discard times-
tamps, replacing them by a single bottom value.

• The POLog is a multiset (several instances of the same base
element are allowed, i.e., each base element has a given
multiplicity).

Σ = NT×O σ 0
i = {}

prepare(o, s) = o (with o either inc or reset)

effect(inc, t , s) = s ⊎ {(t , inc)}

effect(reset, t , s) = s \ {(t ′, inc) ∈ s | t ′ < t }

stabilize(t , s) = s[(⊥, inc)/(t , inc)]
eval(value, s) = |s |

Figure 4: Resettable POLog-based Counter using causal sta-
bility

We illustrate stabilization with an example in Figure 5: once an
operation with a timestamp ta is stable its timestamp is replaced
by ⊥, resulting in one more operation of the form (⊥, inc). Over
time, all but a small number of not-yet-stable increments will have
migrated to the multiplicity (denoted in subscript brackets [N]) of
the (⊥, inc) element, keeping the size of the base set small.

s0 = {(⊥, inc)[4], (ta , inc)[1], (tb , inc)[1], . . . , (tz , inc)[1]}

s1 = stabilize(ta , s0)

= {(⊥, inc)[5], (tb , inc)[1], . . . , (tz , inc)[1]}

Figure 5: stabilize Example

Compact Resettable Counters through Causal Stability PaPoC’17, April 23, 2017, Belgrade, Serbia

4.3 Concrete Implementation
Finally, for an actual implementation, we observe that: for grow-
only counters, a single kind of operation inc is in the POLog, and
therefore, we do not need to store the operation itself; we can store
an integer n that represents the multiplicity of stable operations; all
non-stable timestamps have multiplicity one, which means we can
store them in a set. This means that a concrete implementation can
be as simple as Figure 6. When a timestamp is stable, it is discarded
and n is incremented. A reset, sets n to 0 and discards timestamps
in its causal past. The value query returns n plus the size of the set
of non-stable operations.

Σ = N × P (T) σ 0 = (0, {})
prepare(o, (n, s)) = o (with o either inc or reset)

effect(inc, t , (n, s)) = (n, s ∪ {t })

effect(reset, t , (n, s)) = (0, s \ {t ′ ∈ s | t ′ < t })

stabilize(t , (n, s)) = (n + 1, s \ {t })
eval(value, (n, s)) = n + |s |

Figure 6: Concrete Resettable Counter Implementation

5 FINAL REMARKS
In the specifications for both counters in Figures 3 and 4, we use
what we consider the more intuitive semantics for the reset: a reset
operation cancels all operations in its causal past, without affecting
concurrent operations. Nevertheless, it is possible to support an
alternative reset semantics, in which a reset also cancels concurrent
operations, with some simple modifications: the reset is added to
the POLog, the value query ignores inc operations with concurrent
resets in the POLog; resets are removed once they become stable.
To be able to apply causal stability, making a POLog a multiset was
an essential ingredient: using the standard POLog definition as a
set, means that applying stability would incur loss of increments,
as they would be merged into a single element. It might be useful
in the future to define the POLog in the pure op-based model as
being a multiset (instead of a set) and thus have a more generic
framework.

REFERENCES
[1] P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and

beyond. Commun. ACM, 56(5):55–63, May 2013.
[2] C. Baquero, P. S. Almeida, and C. Lerche. The problem with embedded crdt

counters and a solution. In Proceedings of the 2Nd Workshop on the Principles and
Practice of Consistency for Distributed Data, PaPoC ’16, pages 10:1–10:3, New York,
NY, USA, 2016. ACM.

[3] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based crdts operation-
based. In Distributed Applications and Interoperable Systems - 14th IFIP WG 6.1
International Conference, DAIS 2014, Held as Part of the 9th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany,
June 3-5, 2014, Proceedings, pages 126–140, 2014.

[4] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak dt map: A composable,
convergent replicated dictionary. In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency, PaPEC ’14, pages 1:1–1:1, New York, NY,
USA, 2014. ACM.

[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Technical report, jan 2011.

[6] W. Vogels. Eventually Consistent. Queue, 6(6):14, oct 2008.

	Abstract
	1 Introduction
	2 The standard op-based counter
	3 A Naive Resettable Counter
	4 Compacting the Counter
	4.1 Causal Stability
	4.2 Compact POLog-based Resettable Counter
	4.3 Concrete Implementation

	5 Final Remarks
	References

