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ABSTRACT
In this work, we show the feasibility of using functional pro-
gramming (more specifically F#) in connection with game-
based methods for synthesis of correct-by-construction con-
trollers (also called signaling plans) for railway networks.
This is a massively resource-demanding application.

A model for railway networks comprising trains, signals,
linear sections, and points is established together with a
domain-specific language capturing the important concepts
in the model. A translation from railway network models to
two-player reachability games is provided. In these games, the
existential player (the control system) controls signals and
points and the universal player (the antagonistic environment)
controls movement of trains. A winning strategy for the
existential player provides a signaling plan that will safely
guide trains through the network.

The concepts from the railway network model and the two-
player reachability game are captured, in a natural manner,
by type declarations in F#. Furthermore, the F# transla-
tion functions are formulated in a manner that is close to
the mathematical formulations. This increases confidence in
the correctness of the implementation and it decreases the
development time. Imperative features of F# proved useful
in two places: Hash tables and arrays were used in the repre-
sentations of the railway network model and the reachability
game. This allowed for more compact representations and a
more efficient game solver (providing the winning strategy).

Experiments show that we are able to synthesize signaling
plans for real railway networks of substantial size.

CCS CONCEPTS
• Theory of computation→ Algorithmic game theory;• Soft-
ware and its engineering → Functional languages; Domain-
specific languages;
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1 INTRODUCTION
Railway network systems are often mentioned as examples
of safety-critical systems, for obvious reasons, and formal
methods have a significant role in achieving confidence in
the correctness of such systems. Predominant approaches
to achieving this are based on verification techniques, in
particular model checking, but these techniques are geared
towards finding bugs in designs – they are of limited use in
the design process. We investigate the feasibility of using
game-based methods for synthesis of correct-by-construction
controllers [14, 21, 22].

The challenge of verification and synthesis techniques for
railway-network problems is state-space explosion: The num-
ber of positions of trains in a network grows exponentially
with the number of trains, the number of combinations of
signals in a network grows exponentially with the number of
signals, and so on. The goal of this work, which is based on
[17], is to show that

• game-based techniques can be used to synthesize
signaling plans for real railway networks of a sub-
stantial size (comparable to the size of the problems
that can be handled by verification techniques), and
that

• functional programming provides an efficient develop-
ment and implementation platform for a tool synthe-
sizing signaling plans from railway network models.

1.1 The Problem
A train’s movement in a railway network must be guided
by points and signals, such that it reaches its destination
without risk of derailment or collision. The points must direct
the trains along their respective routes and the signals must
halt certain trains in order to give way to others.

A simple example is found in Figure 1. It contains four
sections s10 , s11 , s12 and s20 , where s10 , s11 and s20 are
linear sections and s11 is a point. The point can switch
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Figure 1: A railway network (inspired by [24]) containing four
sections, two signals, two trains, and the point s11.

between connecting the sections s20 and s12 or the sections
s10 and s12 . Sections allow traffic in both directions.

The train t1 occupies section s20 and the train t2 occupies
the section s12 . If the signal along section s20 is closed, it
prevents t1 from entering s11 . The train t2 is free to enter
s11 and continue to s10 or s20 depending on the state of
s11 .

Based on the current positions of the trains, a control
system must select the right configuration of points and
signals. For this, the system needs a mapping from train
positions to configurations. Such a mapping is also called
a signaling plan and it can be considered an algorithm for
controlling the traffic in a network. A signaling plan is correct,
if it ensures that the trains reach their destinations without
crashing. We consider the following problem:

Synthesis of correct signaling plans for railway networks

1.2 Game-Based Synthesis
The synthesis problem is solved using game-based methods:
In a reachability game, two players: Adam (the universal
player) and Eve (the existential player), take turns moving a
token along the edges of a graph. Eve wins the game, if the
token reaches a designated set of vertices. Otherwise, Adam
wins. We model a railway network as such a game.

The states of the network act as the vertices of the game
and we make changes to the current state by moving the
game token. Eve takes the role of the control system and is
in charge of updating points and signals. Adam moves the
trains, obeying the signals. Eve wins if the trains reach their
destinations without crashing and Adam wins if he can move
a train away from its route or crash it. If Eve can force Adam
to lose, even if Adam acts as a perfect adversary, then we
can get the trains correctly through the network. A correct
signaling plan is obtained from Eve’s winning strategy.

Previously, game-based techniques have been used for syn-
thesis of control algorithms for concrete examples of railway-
networks (e.g. [9]). However, to the best of the authors’ knowl-
edge, at the time of writing, there have been no game-based
attempts at solving the synthesis problem for arbitrary rail-
way networks. For other examples of game-based synthesis,
see [3, 4, 18].

1.3 The functional approach
A functional programming language with a strong type sys-
tem, in this case F# [15, 23], was used as implementation
platform. The concepts from a mathematical model of rail-
way networks [17] are captured in a natural manner by type
declarations and so are the concepts from reachability games.
The F# translation functions from network models to games
are formulated in a manner that is close to the mathematical
formulation. This increases confidence in the correctness of
the implementation and it decreases the development time.
Imperative features of F# proved useful in two places: Hash
tables and arrays were used in the representations of the rail-
way network model and the reachability game. This allowed
for more compact representations and a more efficient game
solver (providing the winning strategy).

The most interesting experiment conducted so far is that
a correct signaling plan for (approximately one fourth of)
Florence Station with four trains is generated in 8.1 seconds.
The considered part of Florence Station has 69 linear sections,
23 points, and 46 signals. This is a size approaching the limit
of what state-of-the-art verification approaches, e.g. [24], can
handle.

1.4 Background
In Europe, the predominant standard for railway signaling
is the European Rail Traffic Management System (ERTMS),
see for example [24]. ERTMS comprises a standard ETCS
for in-cab signaling and automatic train protection systems
[10]. ETCS has three application levels ranging from Level 1
to Level 3, where Level 3 is the most autonomous. In 2009,
the Danish parliament decided to replace the entire railway-
signaling system with an implementation of ERMTS with
ETCS Level 2 [1].

In ETCS, signaling is controlled according to interlocking
tables. An interlocking table contains one entry for each el-
ementary route in the network. An elementary route starts
at a signal, ends at another signal, and there is no signal
between the two. Compound routes are formed by concate-
nating elementary routes. Signaling works according to the
principle that a route is locked exclusively for one train at a
time [24].

This static generation of routes has the advantage that
a train entering a route can drive to the end of that route
without stopping, thereby saving time and energy – frequent
stop-and-go is energy consuming. However, the statically
generated routes are inflexible and of no use if, for example,
a malfunctioning train blocks a track and alternative routes
are needed.

Correct signalling plans provide a controlling mechanism
that can be used at run-time: In any traffic situation the
controller makes a safe decision that brings the trains closer
to their destinations. But signaling plans do not guarantee
“good” routes: In the current form, there is no attempt at
avoiding stop-and-go situations.

PGSolver. The PGSolver framework [12] provides an effi-
cient platform for solving parity games, that is, a kind of



Synthesis of Railway-Signaling Plans using Reachability Games IFL 2016, August 31-September 02, 2016, Leuven, Belgium

two-player games of perfect information and infinite duration.
PGSolver is implemented in the functional programming
language OCaml and our solver for reachability games is
implemented in F#, which is closely related to OCaml. With
respect to choices of data structures, our implementation is
inspired by PGSolver.

2 GAMES FOR RAILWAY NETWORKS
In a turn-based two-player game, or from now on a game,
the players Eve and Adam move a shared token along the
edges of a shared game graph. The vertices of the game graph
are partitioned into VE and VA. Eve chooses the next move
from vertices in VE and Adam chooses the next move from
vertices in VA.

Given a winning condition and an initial vertex, we want
to know whether Eve can ensure a win, no matter how Adam
plays. If this is the case, we are also interested in a winning
strategy, which specifies a winning move from each vertex in
VE . We now provide formal definitions of the above concepts.
For a more thorough introduction, see e.g. [2, 19].

A game graph G is a tuple (VE , VA, E, c), where E ⊆
(VE∪VA)×(VE∪VA) is the set of edges and c : (VE∪VA) → C
is a function, which colors every vertex with a color from the
set C. We require that VE ∩ VA = ∅ and we let V = VE ∪ VA
denote the set of all vertices. Also, for every v ∈ V , we define
vE = {v′ | (v, v′) ∈ E}, which is the set of successors to v.
We assume that vE , ∅ for all v ∈ V .

A play in G is an infinite sequence α = v0v1v2 . . . of
vertices such that (vi, vi+1) ∈ E for all i ∈ N. Let c(α) denote
the corresponding sequence c(v0)c(v1)c(v2) . . . of colors.

A game is a pair (G,Win), where G is a game graph and
Win ⊆ Cω is a winning condition. Eve wins a play α, if
c(α) ∈Win. Otherwise, Adam wins.

A strategy for Eve is a function σ : V ∗VE → V such that
σ(xv) = v′ implies (v, v′) ∈ E. A play v0v1v2 . . . is played
according to the strategy σ, if

∀i ∈ N : vi ∈ VE ⇒ σ(v0v1 . . . vi) = vi+1.

Given an initial vertex v0 and a strategy σ for Eve, let
Out (σ, v0) denote all plays from v0 played according to σ. We
say that σ is a winning strategy from v0, if c(α) ∈ Win for
all α ∈ Out (σ, v0).

2.1 Reachability games
Suppose a designated target color c′ ∈ C is given. A game
with a winning condition of the form

{c0c1 . . . | ∃i ∈ N : ci = c′}

is called a reachability game [2]. In such a game, Eve wins
a play, if the token eventually reaches a vertex colored c′.
Vertices having color c′ are called goal vertices. For this type
of games, we have [2]:

Theorem 2.1. Let G = ((VE , VA, E, c),Win) be a reach-
ability game. Then, there exists a partition {WinE ,WinA}
of V , such that Eve has a winning strategy from any initial
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Figure 2: A subset of the game graph induced by the rail-
way network shown in Figure 1. The green edges (v1,v3) and
(v5,v7) indicate Eve’s winning moves.

vertex v ∈WinE and Adam has a winning strategy from any
initial vertex v ∈WinA.

In essence, this theorem states that if both players are perfect,
then the winner is determined before the first move. We use
the term winning areas to describe WinE and WinA.

In addition, it can be shown that reachability games are
memoryless determined [2]. This means that in order to ensure
a win, the winning player only needs to consider the current
vertex when deciding on his next move.

2.2 A Game for a Railway Network
A subset of the game graph for the railway network in Figure 1
is shown in Figure 2. Recall that Eve changes the configura-
tion of signals and points and Adam moves the trains. That
is, Eve controls the vertices with dashed edges and rounded
corners and Adam controls the vertices with solid edges and
sharp corners. In order to cause progression, we force Adam
to move a train, if these are not all blocked by closed signals.
The turn alternates between the two players.

The token starts at v1 , where the trains are at their initial
positions and the points and signals are in default states. The
vertex v8 is a goal vertex, as we assume that t1 and t2 have
sections s12 and s10 as respective destinations.
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In v1, Eve has the turn and she must move the token to
one of the vertices v2 , v3 , v4 , and some others not shown in
Figure 2. From v2 , Adam can derail t1 by moving the train
onto the point s11 , which connects s10 and s12 and not s20
and s12 . From v4 , Adam can collide the trains, because s11
connects s20 and s12 . Clearly, Eve wants to avoid these two
vertices.

In v3 , t1 is blocked by a closed signal, so Eve does not risk
derailment. The point s11 connects s10 and s12 , so she does
not risk collision either. In addition, from v3 , Adam is forced
to move t2 to s10 , which is the destination of t2 . Hence, Eve
moves from v1 to v3 and Adam moves from v3 to v5 .

In v5 , Eve has the turn and she can choose between v6 ,
v7 , and other vertices not shown in Figure 2. From v6 , Adam
can derail t2 , because the signal along s10 is open. Therefore,
Eve moves to v7 .

In v7 , the point s11 connects s20 and s12 and the train t1
is allowed to move, as the signal along s20 is open. Because
Adam is forced to move a train if he can, he must move t1 to
s12 by moving the game token to v8 . This vertex is a goal
vertex, so we terminate the game with Eve as the winner.
Furthermore, Adam never had a chance of winning, so Eve
has a winning strategy by making the moves just described.
Notice that these moves also describe a correct signaling plan
for the network.

2.3 Solving Reachability Games
The proof of Theorem 2.1 presented in [2] is interesting, be-
cause it reveals a way to compute an optimal strategy for Eve.
The corresponding algorithm is shown in Algorithm 1. This
algorithm computes Eve’s winning area based on a breadth-
first search: Starting from the goal vertices, it iteratively
expands the winning area by exploring the reverse game
graph. When the algorithm discovers an Eve vertex, it is
included in the winning area, as Eve can move to the current
winning area in one move. When the algorithm discovers an
Adam vertex where every successor has been explored, it is
also included in the winning area, as Adam has no choice but
to move to the current winning area. In order to achieve linear
time complexity, we keep track of the number of unexplored
successors to each vertex.

The optimal strategy for Eve is to move to a vertex ex-
plored earlier than the current one whenever possible. This
strategy is winning from every vertex in her winning area.

We use the types shown in Figure 3 to model game graphs
and the concepts from Algorithm 1. With these types, the
pseudocode of Algorithm 1 translates straightforwardly into
an F# function solveReachability with the following type:

GameGraph<’misc,’color> ->
’color ->
Winners<’misc,’color> * Strategy<’misc,’color>

Here, the second parameter specifies the target color of the
game. The function definition is in Appendix A.

We represent a game graph G = (VE , VA, E, c) using adja-
cency lists of the reverse graph and we augment each vertex
with its number of successors: An entry in the dictionary for

Algorithm 1 Algorithm for solving a reachability game G
with finite game graph (VE , VA, E, c) and target color c′.
The winning areas of G can be obtained by scanning the
output win and an optimal strategy for Eve is given by the
output strategy. This algorithm is inspired by [2].

1: function SolveReachability((VE , VA, E, c), c′)
2: for all v ∈ VE ∪ VA do
3: win[v]← Adam
4: P [v]← ∅
5: n[v]← 0
6: strategy[v]← ⊥
7: for all (u, v) ∈ E do
8: P [v]← P [v] ∪ {u}
9: n[u]← n[u] + 1

10: Q← ∅
11: for all v ∈ VE ∪ VA such that c(v) = c′ do
12: win[v]← Eve
13: Enqueue(Q, v)
14: while Q , ∅ do
15: v ← Dequeue(Q)
16: for all p ∈ P [v] do
17: n[p]← n[p]− 1
18: if win[p] = Adam ∧ (p ∈ VE ∨ n[p] = 0) then
19: win[p]← Eve
20: strategy[p]← v
21: Enqueue(Q, p)
22: return (win, strategy)

type Player = Adam | Eve
type Vertex<'misc, 'color>

when 'misc:equality and 'color:equality =
'misc * 'color * Player

type GameGraph<'misc, 'color>
when 'misc:equality and 'color:equality =
Dictionary<Vertex<'misc, 'color>,

int * List<Vertex<'misc, 'color>>>
type Winners<'misc, 'color>

when 'misc:equality and 'color:equality =
Dictionary<Vertex<'misc, 'color>, Player>

type Strategy<'misc, 'color>
when 'misc:equality and 'color:equality =
seq<Vertex<'misc, 'color> * Vertex<'misc, 'color>>

Figure 3: Representations of game graphs, winning areas, and
strategies. The int component of GameGraph is used to store
the number of successors to a vertex. The types List and
Dictionary are from the standard library of the Common
Language Infrastructure [6, 8] and they implement dynamic
arrays and hash tables.

a given vertex v is a pair (k, [v1; . . . ; vn]), where k is the num-
ber of unexplored successors to v in G and where (vi, v) ∈ E
for 1 ≤ i ≤ n. This representation is the basis of an efficient
game-solving algorithm that is linear in both the number of
vertices and the number edges.
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type Label = string
type Linear = Linear of Label
type LinearExtended = RealLinear of Linear | Derail
type Point = Point of Label
type LinearPort = Down of Linear | Up of Linear
type PointPort = | Stem of Point

| Plus of Point
| Minus of Point

type PointPortExtended = | RealPointPort of PointPort
| PointPortNull

type Port = | LinearPort of LinearPort
| PointPort of PointPort

type PortExtended = RealPort of Port | Null
type Signal = LinearPort

Figure 4: The types representing basic railway network con-
cepts.

3 RAILWAY NETWORK MODEL
The program design presented below is based on the mathe-
matical model of railway networks developed in [17].

3.1 Basic Concepts
The basic concepts from the mathematical model are ex-
pressed by F# types in Figure 4. Central concepts are linear
section (type Linear) and point section (type Point). Each
section has a unique label.

A port (type Port) is the end of a section: A linear sec-
tion has two ports called up and down and a point section
has three ports called stem, plus, and minus. The track be-
tween stem and plus forms the main path through the point.
These concepts originate from the Danish railway terminol-
ogy, where up (down) denotes the direction, in which the
distance from some reference location is increasing (decreas-
ing) [24]. A signal (type Signal) is placed at a port of a
linear section.

Some types have been extended in order to cover special
cases: For example, LinearExtended contains the artificial
section Derail, which indicates a derailment. Likewise, Port-
Extended contains the artificial port Null, which marks the
end of a track.

3.2 Network Specifications and States
In Figure 5, we present the types representing railway net-
works and their states. A network (type Network) is a tuple
(L,P, con,Signals, start, dest ), where

• L is the set of linear sections,
• P is the set of points,
• con is a function describing the connections of the

ports,
• Signals is the set containing the linear ports, at which

there are signals, and
• the vectors start and dest describe the initial posi-

tions and the destinations of the trains.
A state (type State) represents an instantaneous descrip-

tion of the network. A state is a tuple (pos, Π,Σ), where
• pos is a vector describing the train positions,

type PositionVector = Linear[]
type PositionVectorExtended = LinearExtended[]

type Network = (HashSet<Linear> * HashSet<Point>
* (Port -> PortExtended)
* HashSet<Signal>
* PositionVector * PositionVector)

type Direction = DirectionDown | DirectionUp
type PointState = PointStatePlus | PointStateMinus
[<CustomEquality; NoComparison>]
type State = State of PositionVectorExtended

* HashSet<Point>
* HashSet<Signal>

Figure 5: The types representing railway networks and their
states. The type HashSet is from the standard library of the
Common Language Infrastructure [7] and it implements math-
ematical sets.

• Π is a set containing every point in the plus-state
connecting the stem-port and the plus-port, and

• Σ is a set containing the open signals.
We have implemented custom definitions for equality and

comparisons of State. This is because the standard library
uses pointer equality to determine, whether two HashSets are
equal. Hence, without custom definitions, we may distinguish
states, which are equal in a mathematical sense.

Note that it is possible to optimize the types of Figure 4 and
Figure 5 for greater performance: By incorporating Signal
into Linear and PointState into Point, we can determine
the states of signals and points without lookups in Π and Σ.
In fact, Π and Σ would be unnecessary. However, in order
to increase development speed and minimize the risk of bugs,
we have kept the type definitions simple and close to the
mathematical model.

3.3 State Transitions
The railway model from [17] distinguishes between two types
of state transitions: Movements of trains and updates to
points and signals. The railway control system has no direct
control of the former, whereas it has full control of the latter
(leading to the roles of Adam and Eve).

At most one train moves during a single state transition. It
moves directly to the next linear section, possibly traversing
a point section in the process. It may also derail, if it leaves
a section through an unconnected port or if it enters a point
which is in the wrong state.

There is no restriction on the number of points and signals
that may change state during a single transition.

3.4 Translation to a Reachability Game
The states of a railway network act as the vertices of the
corresponding game graph and the state transitions act as
the edges. Given a railway network, we use a simple search
to generate the game graph explicitly: Starting from the
vertex representing the initial state, we iteratively generate
successors to discovered vertices. This continues until we have
explored the entire game graph.
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Function Type

color
Network -> PositionVectorExtended ->
Color

next
Network -> State -> Linear ->
Direction -> LinearExtended

succAdam
GameVariant -> Network ->
Direction[] -> Vertex ->
List<Vertex>

relPointsSigs2
Network -> Direction[] -> Linear[] ->
(List<LinearPort> * HashSet<Point>
* List<Signal>)

relPointsSigs3
Network -> Direction[] -> Linear[] ->
(bool * HashSet<Point>
* List<Signal * Point option>)

succEve
GameVariant -> Network ->
Direction[] -> Vertex ->
List<Vertex>

nextLinears
Network -> Direction -> Linear ->
Linear list

directions Network -> Directions[]

graph
GameVariant -> Network ->
(GameGraph<State,Color>
* Vertex<State,Color>)

Table 1: An overview of the central functions concerning
the translation from a network specification to a reachability
game.

We do not generate successors to crash vertices or goal
vertices, as the outcome of the game is known, when the
game token reaches such a vertex. We use the type Color
to distinguish crash vertices and goal (success) vertices from
the remaining vertices:

type Color = Crash | Nothing | Success

The type of the generated graph is Graph<State,Color>.
That is, the type of the vertices is Vertex<State,Color>.

The program design facilitating game-graph generation
is shown in Table 1. This design follows naturally from the
railway model presented in [17] and each function declara-
tion is formulated in a manner that closely resembles the
corresponding mathematical definition.

The main function is graph: Given a well-formed network,
it returns the corresponding game graph and the initial vertex.
To be more precise, graph generates the game graph of one
of four variants G0, G1, G2, and G3 of the reachability game.
We discuss these variants in Section 4. The desired variant
is specified by the first parameter, which is of type Game-
Variant:

type GameVariant = Zero | One | Two | Three

The function directions assigns directions to the trains:
Each train is assigned the direction, which allows the train to
reach its destination. This direction is found using a search on
the linear sections. During this search, we use nextLinears,
which computes the next linear sections in a given direction.

The functions succAdam and succEve generate successors
to a vertex. The function succAdam uses next to compute

the next linear section of a train based on the current state
of the network. Since at most one train can move during a
single state transition, one successor is generated for each
train not blocked by a closed signal.

The function succEve generates successors resulting from
updating points and signals. Since any number of points
and signals can be updated during a single state transition,
this function generates a number of successors exponential
in the number of points and signals. However, this only
applies to the game variants G0 and G1. When generating
the graphs of G2 and G3, succEve uses relPointsSigs2 and
relPointsSigs3 to determine the points and signals, which
influence train movements in the current state. By ignoring
the remaining points and signals, we drastically reduce the
number of successors. We go into further details in Section 4.

Finally, the function color colors a vertex based on the
positions of the trains in the corresponding state.

3.5 From Strategies to Signaling Plans
The function solveReachability computes Eve’s winning
strategy for a given game graph. From this strategy, we must
extract a signaling plan. A signaling plan contains exactly one
entry for each vector of train positions, from which we can
get the trains safely to their destinations. Thus, we partition
the winning vertices based on their train positions and select
one vertex from each partition. For each of these vertices,
the strategy describes Eve’s winning move. Since an Eve
move corresponds to an update of the points and signals,
each winning move describes a signaling configuration that
is a safe response to the given train positions. Hence, the
winning moves from the selected vertices yield the entries in
the signaling plan:

type SignalingPlan =
seq<PositionVector

* (HashSet<Point> * HashSet<Signal>)>

4 REDUCING GAME SIZE
Let G0 be the original reachability game, in which every
state is a vertex and every state transition is an edge. It
follows from the declaration of State that a network (L,P,
con,Signals, start, dest ) can be in (|L| + 1)n2|P |+|Signals| dif-
ferent states, where n denotes the number of trains. Since
both Eve and Adam can have the turn from any of these
states, an immediate upper bound on the number of vertices
in G0 is (|L| + 1)n21+|P |+|Signals|. With some simple combi-
natorics, it is possible to obtain the following tighter bound
[17]:

V 0
max = posmax21+|P |+|Signals| (1)

Here, posmax is an upper bound on the number of ways to
distribute the trains, keeping in mind that we stop the game
after a single derailment or a single collision. It is defined as

posmax =
(

1
(|L|−n)! +

n
(|L|−(n−1))! +

(n−1)n
2(|L|−(n−1))!

)
|L|!.

The first term is the number of distinct position vectors of
non-crash states, the second term is the number of distinct



Synthesis of Railway-Signaling Plans using Reachability Games IFL 2016, August 31-September 02, 2016, Leuven, Belgium

v1

s11

t1

s10

v2

s11

t1

s10

v3

s11

t1

s10

v4

s11

t1

s10

v5

s11

t1

s10

v6

s11

t1

s10

Figure 6: An abstraction that ignores irrelevant Eve vertices.
Adam resets every signal to closed before passing the turn to
Eve. Hence, the red edge (v1,v2) is replaced by the blue edge
(v1,v5). This renders v2 unreachable. Because v2 and v5 have
the same successors, v2 is in Eve’s winning area if and only
if v5 is in Eve’s winning area. Hence, we have not changed
the outcome from v1, so this abstraction does not change the
winner of the game.

position vectors in derail states, and the last term is the
number of distinct position vectors in collision states.

The upper bound V 0
max is exponential in the number of

points and signals and near-exponential in the number of
trains. This renders synthesis intractable for all but the small-
est networks. Therefore, we have devised three abstractions,
each of which significantly reduces the size of the game graph.
When all abstractions are applied, the upper bound on the
size of the game graph is exponential only in the number of
trains.

These abstractions do not change the winner of the game,
so the computed signaling plans remain correct. For each
abstraction, we provide an informal argument of this claim.
For formalizations and rigorous proofs, we refer to [17].

Starting from the original game G0, we obtain the game
variants G1, G2, and G3 by repeatedly applying an additional
abstraction to the previous variant.

4.1 Ignoring Irrelevant Eve Vertices
The first abstraction is based on the following observation:

When Eve receives the turn, the configura-
tion of points and signals is irrelevant, as
Eve can change it to whatever she likes be-
fore passing the turn to Adam. Hence, with-
out changing the outcome of the game, we
can force Adam to reset every point to the
minus-state and every signal to closed before
passing the turn to Eve.

This implies that every reachable Eve vertex has every point
in the minus-state and every signal closed. The effect of this
abstraction is illustrated in Figure 6. The game variant G1 is
the result of applying this abstraction to G0.

In G1, we can have at most one reachable Eve vertex per
obtainable vector of train positions. The number of Adam
vertices stays the same, so an upper bound on the number
vertices in G1 is

V 1
max = posmax (2

|P |+|Signals|
+ 1). (2)
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Figure 7: An abstraction that ignores irrelevant points and
signals. We assign the default value of closed to every signal
not directly in front of a train. Hence, we remove the red
edge (v1,v2). This renders v2 unreachable. Also, because v2
and v3 have the same successor, v2 is in Eve’s winning area if
and only if v3 is in Eve’s winning area. Therefore, we have not
changed whether v1 has a successor in the winning area. Thus,
we have not changed the outcome from v1 and consequently,
we have not changed the winner of the game.

4.2 Ignoring Irrelevant Points and Signals
The next abstraction is based on the following observation:

When Adam has the turn, the state of a
point or a signal not immediately in front of
a train is irrelevant, as Eve can change that
point or signal before a train comes close
enough to be influenced by it. Also, if we
consider a point s and every train about to
enter s is blocked by a closed signal, then
the state of s is irrelevant.

If we assign the default values of minus-state and closed
to irrelevant points and signals, then the size of the game
graph is reduced significantly. The effect of this abstraction
is illustrated in Figure 7. The game variant G2 is the result
of applying this abstraction to G1.

What is the upper bound on the number of vertices in G2?
The number of Eve vertices stays the same but the maximum
number of successors to each Eve vertex is 3n. Why? In the
worst case, each train is in front of a distinct signal s and
a distinct point p. We claim that there are three relevant
configurations of s and p: If s is closed, then the state of p
does not matter, so we use the default value of minus-state.
If s is open, then we need to consider both the minus-state
and the plus-state.

Each train gives raise to three such configurations and we
must generate all combinations. Hence, we have at most 3n
successors. In addition, this abstraction does not introduce
additional vertices, so V 1

max is still an upper bound. Hence,
we obtain the following:

V 2
max = min{posmax (3

n
+ 1), V 1

max} (3)

This upper bound is exponential only in the number of
trains. In contrast, the previous bound was exponential in the
number of trains, points and signals. Typically, the number of
trains is much smaller than the number of points and signals,
so this amounts a big difference in the size of the game graph.
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Figure 8: An abstraction that removes redundant Eve moves.
At most one signal can be open at any time. Hence, we re-
move the red edge (v1,v3) from the game. This renders v3
unreachable. Also, because the successors to v2 and v4 are
subsets of the successors to v3, if Eve wins from v3 she also
wins from v2 and v4. Consequently, removing (v1,v3) does
not influence the outcome from v1. Conversely, if Eve wins
from v2 or v4, her victory does not depend on v3. Hence,
adding (v1,v3) does not influence the outcome from v1 ei-
ther. We can conclude that this abstraction does not change
the winner of the game.

4.3 Removing Redundant Eve Moves
The third abstraction is based on the following observation:

Assume that every train has a signal in front
of it. Eve can close all but a single signal and
thereby determine, which train Adam is go-
ing to move. If Eve’s winning strategy allows
more than one signal to be open, then from
Eve’s point of view, it is irrelevant which of
the corresponding trains Adam moves. The
strategy leaves the decision up to Adam.
However, Eve can make this decision herself.
That is, she can select one of the signals al-
lowed to be open and close all other signals.

We can force Eve to make this decision by only generating
successor vertices, in which at most one signal is open. This
significantly reduces the number of Adam vertices. The effect
of this abstraction is illustrated in Figure 8. The game variant
G3 is the result of applying this abstraction to G2.

As with the other abstractions, this one does not change
the outcome of the game. However, in real railway networks
where trains can move concurrently, it does indeed make a
difference that at most one signal can be open at any time.
In situations where it is safe to allow more than one train to
move, this abstraction is restrictive and increases the time it
takes for all trains to get to their destinations. However, in
small networks with large numbers of trains, many signals
have to be simultaneously closed in order to avoid collisions.
In such cases, this abstraction does not appear too restrictive.

What is the upper bound on the number of vertices in
G3? Again, the number of Eve vertices stays the same but
the maximum number of successors to an Eve vertex is now
b2n−γ (2γ + 1)c, where γ = (2 − ln(2))/ ln(4) ≈ 0.94. Why?

First, consider only the trains directly in front of signals. Let
n′ denote the number of these trains. In the worst case, there
is a distinct point behind each signal. In each vertex, at most
one signal is open, so the only relevant point is the one behind
that signal. Hence, we have 2n′ relevant configurations in
addition to one where every signal is closed.

Now consider the remaining (n− n′) trains. In the worst
case, they are all in front of points, which gives raise to 2n−n

′

configurations. We must generate all combinations, so we
have 2n−n

′
(2n′+1) successors. Within the real numbers, this

value has a maximum at n′ = γ ≈ 0.94, so we arrive at the
following bound on the number of vertices:

V 3
max = min{posmax (b2

n−γ (2γ + 1)c + 1), V 2
max} (4)

If we compare this to the previous upper bound, we have
reduced the base of the exponential function.

5 A SYNTHESIS TOOL
The presented algorithms, abstractions, and F# definitions
have been incorporated into a synthesis tool. This tool accepts
specifications of railway networks written in a domain specific
language (DSL). The tool outputs correct signaling plans,
whenever such exist.

5.1 Domain-Specific Language
The following piece of DSL specifies the network shown in
Figure 1:
connections =

s10.up -> s11.plus,
s20.up -> s11.minus,
s11.stem -> s12.down

signals = s20.up, s10.down
trains = s20 -> s12, s12 -> s10
As shown, a network is specified by a list of port connec-
tions, a list of signals, and a list of the initial positions and
destinations of the trains. This immediately yields the last
four components of a network specification (L,P, con,Signals,
start, dest ). The sets L and P are extracted from the list of
connections. A formal grammar of this DSL is in [17].

The parser for this DSL was constructed using the parser-
combinator library FParsec [11]. This library is an adaptation
of the Haskell-library Parsec [11]. Compared to graph genera-
tion and game solving, parsing is blazingly fast (see Table 3).

5.2 Well-Formed Networks
The syntax of the DSL does not ensure that the network
specifications are well-formed. For example, a train may have
a destination, which is not a linear section. Therefore, after
parsing the network description into abstract syntax, we
check for ill-formed networks [17].

5.3 Example Output
If the given network is well-formed, the tool constructs the
game graph and solves the game. Afterwards, it outputs a
few performance statistics and a correct signaling plan, if one
exists.
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Railway network loaded!
Generating game graph...
Game graph generated!
Number of vertices: 37
Number of edges: 60
Computing signaling plan...
signalingplan([s20, s10]) =
- plus:
- minus: s11
- open: s20.up
- closed: s10.down
signalingplan([s20, s12]) =
- plus: s11
- minus:
- open:
- closed: s20.up, s10.down
Parsing and well-formedness: 0.0959 seconds
Game-graph generation: 0.0389 seconds
Signaling-plan computation: 0.0547 seconds
Total execution time: 0.190 seconds

Figure 9: Output of the synthesis tool after solving the net-
work from Figure 1 with G0.

The output after solving the network from Figure 1 is
shown in Figure 9. From this output, it is evident that the
tool has computed a signaling plan: If the trains t1 and
t2 have the respective positions s20 and s10 , then a safe
configuration is to put s11 in the minus-state and open
only the signal at the up-port of s20 . If t1 and t2 have the
positions s20 and s12 , then a safe configuration is to put s11
in plus-state and close all signals. This exactly corresponds
to Eve’s winning moves in the game from Figure 2.

6 EXPERIMENTS
In order to determine its performance, we conducted several
experiments with the synthesis tool [17]. We used, among
others, the networks Toy, Fork, Lyngby Station, and Florence
Station depicted in Figure 1, Figure 10, Figure 11, and Fig-
ure 12, respectively. The complexities of these networks are
summarized in Table 2.

Linears Points Signals Trains
Toy 3 1 2 2
Fork 7 2 6 3

Lyngby 11 6 14 5
Florence 69 23 46 4

Table 2: Overview of the sizes of the networks used for exper-
iments.

During the experiments, we measured the sizes of the
generated game graphs and the running times of several
phases of the computations. Each of the game variants G0,
G1, G2, and G3 was used to solve each of the networks. The
experiments were conducted on a MacBook Pro1 (Retina
13”, primo 2015). The results are shown in Table 3.
1This machine has a 2.7-GHz Intel-Core-i5 processor and 8GB of
1867-MHz DDR3 memory. The source code was compiled using The
Open Edition of the F# Compiler [20] and executed using the Mono
JIT compiler (version 4.2.3) under OS X El Capitan (version 10.11.5).

s11s10 s12

s1121 s20 s21

s30

s09s08

t1 t2 t3

Figure 10: The network Fork inspired by [24].
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Figure 11: A railway network resembling Lyngby Station lo-
cated north of Copenhagen, Denmark. Compared to the lay-
out of Lyngby Station shown in [24], we have added four linear
sections, as our model does not allow two points directly con-
nected to each other.

The most interesting result is that we are able to generate
correct signaling plans for Lyngby Station with five trains in
0.67 seconds and for Florence Station with four trains in 8.1
seconds. That is, we are able to generate signaling plans for
real railway networks in less than 10 seconds.

These running times are achieved using G3. With G2, the
running time for Lyngby Station approximately quadruples
to 2.6 seconds and for Florence Station it increases by roughly
50 percent to 12 seconds. When using G0 and G1, the tool
runs out of memory before the signaling plans are generated.
This is a testimony to the usefulness of the abstractions
presented in Section 4.

The abstraction of ignoring irrelevant points and signals
seems especially powerful: Lyngby and Florence Stations are
unsolvable with G1 but are solvable with G2. This is no real
surprise, as V 1

max (see equation (2)) is exponential in the
number of trains, points, and signals, whereas V 2

max (see
equation (3)) is exponential only in the number of trains.

The difference between G2 and G3 is much smaller: The
running times when using G2 are within a factor four of the
running times obtained by G3. Hence, if we find the at-most-
one-open-signal aspect of G3 too restricting, then we can use
G2 and expect no more than a quadruplication of the running
time.

It is also worth noting that the sizes of the generated
game graphs are significantly lower than the upper bounds
presented in Section 4. In these upper bounds, we include
every possible way of distributing the trains in a network.
However, many of these distributions are not obtainable,
as two trains cannot pass each other on a single track. In
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Figure 12: Layout of roughly a quarter of Florence Station
located in Florence, Italy. Each blue square represents a signal.
This drawing was kindly provided by Alessandro Fantechi.

addition, it is often the case a train cannot reach a large
part of the network, as it is not allowed to change direction.
Hence, in large networks with many trains, these bounds are
not very tight. However, if we keep this in mind, they can
still serve as indications of the complexity of a given railway
network.

We now turn to the running times of the individual compu-
tation phases: The parsing and the checks for well-formedness
always take around 0.1 seconds and the majority of this is
probably spent on disk access. These steps are fast, because
they only require an amount of work linear in the number
of network entities. For example, parsing a port connection
requires processing a constant amount of characters2.

For the networks Lyngby and Florence Stations, the gen-
eration of the game graph takes significantly longer than
solving the resulting game. This is expected, as Algorithm 1
spends very little time at each vertex: It makes a few reads
and writes in hash tables and adds new nodes to a queue. All
of these operations are fast. During graph generation, we have
to maintain the hash table that represents the game graph.
In addition, we need to find the next linear sections of trains,
find the relevant points and signals, and compute power sets
of points and signals. Therefore, game-graph generation is
the performance bottleneck.

Finally, the tool can use a lot of memory. This is indicated
by the fact that G and G1 cannot solve Lyngby and Florence
Stations without running out of memory. Also, adding a
2If the network features unusually long identifiers, then the time
complexity per connection cannot be described as constant.

fifth train to Florence Station causes the tool to run out of
memory when we use G2 and G3.

The maximum amount of memory that the tool can allo-
cate seems to be somewhere between 2.85GB and 3.37GB.
This is a limit imposed by the Common Language Runtime
or the operating system, as the machine used for experiments
has 8GB of memory and plenty of disk space for virtual
memory.

We did not have the time to figure out how to remove
this artificial limit. Hence, we cannot determine the precise
amount of memory needed to solve Florence Station with
five trains. However, when we add the fifth train, the upper
bound on the number of vertices in G3 increases from 6.0×108

to 8.1× 1010, which is a factor 135 increase. When solving
Florence Station with four trains, the tool uses approximately
0.14GB of memory, so it is reasonable to assess that the tool
needs roughly 19GB of memory to solve Florence Station
with five trains. By the same logic, it would take roughly 18
minutes to compute a signaling plan.

6.1 Purely Functional Game-Graph Generation
In order to determine the performance of purely functional
game-graph generation, we left the imperative constructs
of Algorithm 1 unchanged but replaced all other impera-
tive constructs with purely functional counterparts. In this
process, we replaced hash-based data structures with purely
functional ones. More specifically, we replaced HashSets and
Dictionaries with Sets and Maps from the F# library [13].
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Toy Fork Lyngby Florence

G0

V 0
max 240 236544 3.7× 1011 2.8× 1028

#vertices 37 34849 – –
parsing & WF 0.10 0.10 – –

graph generation 0.039 6.7 – –
game solving 0.055 0.31 – –

total time 0.19 7.1 – –

G1

V 1
max 135 118734 1.8× 1011 1.4× 1028

#vertices 24 14484 – –
parsing & WF 0.10 0.10 – –

graph generation 0.064 0.31 – –
game solving 0.025 0.042 – –

total time 0.19 0.46 – –

G2

V 2
max 135 12936 4.3× 107 2.0× 109

#vertices 18 672 78530 253063
parsing & WF 0.10 0.11 0.11 0.10

graph generation 0.069 0.085 2.3 12
game solving 0.021 0.028 0.11 0.40

total time 0.19 0.22 2.6 12

G3

V 3
max 105 6006 8.5× 106 6.0× 108

#vertices 15 410 25467 220733
parsing & WF 0.10 0.11 0.11 0.10

graph generation 0.068 0.074 0.51 7.5
game solving 0.024 0.024 0.057 0.47

total time 0.19 0.21 0.67 8.1
Table 3: The results of the experiments. The number of gen-
erated vertices is denoted #vertices and the checks for well-
formedness are denoted WF. Time measurements are given
in seconds and measurements less than 0.5 seconds have a
large relative uncertainty due to the unpredictable timing of
the garbage collector. A dash indicates that the computation
aborts with an out-of-memory exception after allocating be-
tween 2.85GB and 3.37GB of memory.

This purely functional version performed worse than the
imperative version: The running time of using G3 on Lyngby
Station was 4.8 seconds instead of 0.67 seconds and the
running time of using G3 on Florence Station was 63 seconds
instead of 8.1 seconds. This is roughly a factor 8 increase in
the running time.

The purely functional Sets and Maps are implemented
using balanced binary search trees [13], so lookups, insertions,
and deletions run in O(logn) time. In comparison, these
operations take expected O(1) time on the HashSets and
Dictionaries. This difference in the asymptotic running
times is the most likely explanation of the eight-fold increase
in the overall performance.

7 CONCLUSION
Reachability games have been successfully used to synthesize
signaling plans for railway networks:

(1) A mathematical model of railway networks was de-
veloped. This model describes the state space of a
network and the transitions between these states.
Furthermore, a simple DSL for describing railway
networks has been defined.

(2) A game semantics for the DSL was given in terms
of reachability games, where the states of a network
act as vertices and the state transitions act as edges.
Eve, the existential player, acts as the control system
being responsible for the points and signals, and
Adam, the universal player, acts as an adversary
controlling the trains. It was shown how to obtain a
correct signaling plan from Eve’s winning strategy.
This signaling plan will bring trains safely from their
initial positions to their destinations.

(3) A tool for synthesizing correct-by-construction signal-
ing plans from DSL specifications was implemented
in the functional programming language F#.

An upper bound on the size of the original railway game
was given. This bound is exponential in the number of trains,
points, and signals. This renders computations on large net-
works impossible, so three abstractions were introduced, each
leading to a game variant equivalent to the original. Each
abstraction significantly reduces the upper bound on the
game size.

The current implementation is able to generate correct
signaling plans for real railway networks of substantial size.
Specifically, in roughly 8 seconds, we are able to generate a sig-
naling plan guiding four trains through (a fourth of) Florence
Station. With five trains, the tool runs out of memory before
the computation is complete. The size of the problems, for
which synthesis is feasible, is approaching the size for which
state-of-the-art verification methods can verify correctness of
interlocking tables [24].

Due to the static and explicit generation of the full game
graphs, the bottleneck of the current implementation is the
memory needed during the graph generation process. The
game-solving part uses an efficient implementation of a linear-
time algorithm and for the networks considered that part
alone never took more than 0.5 seconds.

To improve on the space limitations during game graph
generation, the next step is to exploit on-the-fly methods,
which will only generate the part of the game needed to
find the winning area of Eve. Such techniques have been
successfully used in, for example, [5]. An even further step
would be to use symbolic methods to represent and solve
games. This approach is used in [16], where very large parity
games are solved symbolically. Because reachability games
are simpler than parity games, this approach seems promising
in the context of our railway game.

A functional programming approach proved to be most
adequate during the development of the synthesis tool. The
program design, expressed using F#’s type system, is very
close to the mathematical definition of the railway-network
model [17]. This has obvious benefits concerning the vali-
dation of correctness and the development time. The same
applies to the game design, implementation, and construction
parts.

Concerning efficiency, the experimental results show that it
is the exponential growth of the size of the game graph that is
the bottleneck – not the chosen data types nor the algorithms.
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Imperative data structure were used to represent the game.
In that way a more succinct representation could be obtained
that also resulted also in more efficient implementations of
the key algorithms.
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A GAME SOLVING
Below, we list the source code that implements Algorithm 1.
In contrast to Algorithm 1, the function solveReachability
takes as input a reverse game graph with information on the
number of successors to each vertex:

1 let color (_, c, _) = c
2 let owner (_, _, plr) = plr
3

4 //val solveReachability :
5 // GameGraph<'misc,'color> -> 'color ->
6 // Winners<'misc,'color> * Strategy<'misc,'color>
7 let solveReachability
8 (graph : GameGraph<'misc,'color>) target =
9

10 let numPos = graph.Count
11 let win : Dictionary<Vertex<'misc,'color>, Player> =
12 Dictionary (numPos)
13 let strategy : Dictionary<Vertex<'misc,'color>,
14 Vertex<'misc,'color>> =
15 Dictionary (numPos)
16

17 // Initialization
18 let queue = Queue ()
19 for KeyValue (v, _) in graph do
20 if color v = target then
21 win.[v] <- Eve
22 queue.Enqueue v
23 else
24 win.[v] <- Adam
25

26 // Breadth first search
27 while queue.Count > 0 do
28 let v = queue.Dequeue ()
29 for p in snd graph.[v] do
30 let (n, pred) = graph.[p]
31 graph.[p] <- (n - 1, pred)
32 if win.[p] = Adam && (owner p = Eve
33 || fst graph.[p] = 0)
34 then
35 win.[p] <- Eve
36 strategy.[p] <- v
37 queue.Enqueue p
38

39 // Post-processing of the computed strategy
40 let strategy' =
41 Seq.filter (fun (KeyValue (u, v)) ->
42 owner u = Eve)
43 strategy
44 let strategy'' =
45 Seq.map (fun (KeyValue (u, v)) -> (u, v))
46 strategy'
47 (win, strategy'')

B GAME GRAPH GENERATION
Below, we list the source code of the function graph, which
explicitly generates a reverse game graph. This graph carries
information on the number of successors to each vertex:

1 //val graph :
2 // GameVariant -> Network ->
3 // (Games.GameGraph<State,Color>
4 // * Games.Vertex<State,Color>)
5 let graph gameVariant (network : Network) =
6
7 let graph : Games.GameGraph<State,Color> =
8 Dictionary ()
9 let frontier :

10 HashSet<Games.Vertex<State,Color>> =
11 HashSet ()
12

13 // Graph-generation helper functions
14 let isNew v = not (graph.ContainsKey v)
15 let addVertex v = graph.[v] <- (0, List ())
16 let addEdge from' to' =
17 (snd graph.[to']).Add from' |> ignore
18 let setNumSuccessors v num plr =
19 match plr with
20 | Games.Player.Adam ->
21 countAdamMoves (int64 num)
22 | Games.Player.Eve ->
23 countEveMoves (int64 num)
24 let (_, pred) = graph.[v]
25 graph.[v] <- (num, pred)
26

27 // Compute the directions of the trains
28 let dir = directions network
29

30 // Graph-generation loop
31 let rec graphAux () =
32 if frontier.Count = 0 then ()
33 else
34 let v = takeOne frontier
35 let mutable succs = null
36 match v with
37 | (_, _, Games.Player.Eve) ->
38 succs <- succEve gameVariant
39 network dir v
40 setNumSuccessors v succs.Count
41 Games.Player.Eve
42 | (_, _, Games.Player.Adam) ->
43 succs <- succAdam gameVariant
44 network dir v
45 setNumSuccessors v succs.Count
46 Games.Player.Adam
47 for v' in succs do
48 if isNew v' then
49 frontier.Add v' |> ignore
50 addVertex v'
51 addEdge v v'
52 graphAux ()
53

54 // Initialize the search
55 let initialVertex = initialVertex network
56 match initialVertex with
57 | (_, Success, _) -> addVertex initialVertex
58 | (_, Crash, _) ->
59 failwith ("the starting vertex "
60 + "contains a failure state")
61 | (_, Nothing, _) ->
62 addVertex initialVertex
63 frontier.Add initialVertex |> ignore
64 graphAux ()
65

66 (graph, initialVertex)
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