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ABSTRACT
We introduce a genetic programming method for solving multiple
Boolean circuit synthesis tasks simultaneously. �is allows us to
solve a set of elementary logic functions twice as easily as with a
direct, single-task approach.
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1 INTRODUCTION
Most evolutionary algorithms and metaheuristics built to date have
been used as single-task problem solvers. With a few exceptions
in areas like case-based reasoning [2] and robot shaping [3], tradi-
tionally there is no a�empt to store solutions, subcomponents, or
other evolved information from one task and to reuse it on other
tasks. Instead, these search algorithms rely on direct guidance
from an objective function to approach a solution via variation and
selection.

Very recently, a disjoint handful of researchers have begun to
design new kinds of evolutionary systems that depart signi�cantly
from this single-task, adaptationist paradigm. Preliminary e�orts
with multitask evolutionary systems have begun to reveal cases
where transferring and re-using information across super�cially
dissimilar tasks can serve to help a problem-solving agent perform
more e�ciently, or to provide a means of solving problems that
would otherwise be deceptive or intractable. A number of di�erent
mechanisms for e�ectively evolving solutions to multiple tasks
simultaneously or in sequence have recently been proposed by
authors working in di�erent domains. New structured-population
models such as MAP-elites, for instance, have been developed for
robotics and design applications [8], ‘multifactorial’ methods have

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3075615

I0 I1

Output A Output B Output C1 Output C2

Figure 1: A hypothetical logic circuit that solves three dis-
tinct Boolean functions over two inputs. �e tree that solves
task C reuses subtrees of the tree that solves task B.

been introduced for combinatorial optimization [5], and agent-
based ‘path-reuse’ mechanisms have been proposed to allow deep
neural networks that have been evolved for di�erent pa�ern recog-
nition tasks to reuse subcomponents that were trained for previous
tasks [4].

In this work, we are applying Cartesian genetic programming
(CGP, [7]) in a multitask fashion to evolve logic circuits that solve el-
ementary Boolean functions. Taking inspiration from the canonical
literature on multitask learning in neural networks [1], we follow
what we call a ‘multi-behavior’ approach to multitask evolution:
each individual genome in the evolutionary algorithm encodes a
solution to several tasks at once (Figure 1). In the resulting program
tree, the solutions to each task all share the same inputs, but have
their own designated outputs. �is allows subtrees that are useful
in the solution to one task to be reused as partial solutions to other
tasks.

CGP has o�en been applied in much this way to synthesize
solutions to single tasks with more than one output. Our focus
here is somewhat di�erent: we are interested in �nding ways of
sharing and transferring information across multiple distinct tasks.
�e question here is whether we can use multitask CGP to more
e�ciently solve a set of tasks that would traditionally be treated
separately.

2 METHODOLOGY
�e set of tasks used in this study is a simple suite T of 9 elementary
logic function synthesis tasks that were originally used by Lenski
et al. to demonstrate that complex tasks are sometimes easier to
solve in conjunction with other tasks than they are to solve directly
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[6]:

T = {AND, AND N, EQU, NAND, NOR, NOT, OR, OR N, XOR}.
Our primitive set consists only of {NAND}.

For a preliminary proof of concept we wish only to demonstrate
the following claim:

Hypothesis: A multi-behavior approach will be able to solve all
|T | = 9 tasks using less computational e�ort than a traditional
single-task approach.

To test this, we apply a standard (1 + 4)-style implementation of
Cartesian genetic programming to a �tness function that evaluates
each circuit on all 9 tasks simultaneously. We treat the average
�tness across all 9 tasks as a scalar �tness value.

Now, in multitask algorithm applications it sometimes happens
that progress is impeded by task interference: progress on one task
may overwrite the solution to previously solved tasks, preventing
the algorithm from encoding solutions to many tasks at once. In
light of this, we further hypothesize that multi-behavior CGP will
perform be�er if we avoid mutating genes that belong to a success-
ful solution to a task. We e�ect this by tracking which outputs each
circuit element contributes information to. We then con�gure the
probability that each element’s genes are mutated to be a decreasing
function of the mean �tness of all the tasks it belongs to. We test this
weighted mutation scheme with both linearly- and exponentially-
decreasing weighting functions. All together, we implemented one
single-task CGP algorithm and three multi-behavior algorithms (a
constant-mutation case, the linear case, and the exponential case).

In order to achieve a fair comparison, we performed an extensive
sweep over CGP’s free parameters and our weighted mutation
scheme parameters to select con�gurations of each algorithm that
solve the suite of tasks in the least computational e�ort on average.
As a result of this parameter-tuning process, some algorithms are
con�gured to use di�erent circuit sizes than others. To compare
results with di�erent circuit sizes, our measure of computational
e�ort is node-evaluations—that is, the number of individuals that
have been evaluated, multiplied by their size. To solve all 9 tasks
with each algorithm, we run each multi-behavior algorithm once
on the task suite, and then we run the single-task algorithm 9 times
in sequence, once for each of the tasks, measuring the total number
of node-evaluations expended along the way before a solution is
found.

3 PRELIMINARY RESULTS
Results on the 9-logic suite suggest that the multi-behavior CGP
algorithm is more e�cient than a single-task approach when a
constant or exponentially-weighted mutation rate is used. Figure 2
shows the distribution of e�ort each algorithm required to suc-
cessfully �nd solutions to all 9 tasks. On average, we �nd that the
exponentially-weighted algorithm solves the tasks twice as easily
as the single-task algorithm does.

One of the potential advantages of this kind of multitask evolu-
tion is that no prior knowledge is needed about how information
might be reused across di�erent tasks: evolution dynamically dis-
covers subproblems that are redundant across tasks. Much more
work is needed, however, to understand how sharing information
across tasks works in di�erent domains, and what conditions or
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Figure 2: Preliminary results indicate that a multi-behavior
approach ismore e�cient at solving all 9 tasks than a single-
task approach.

structural similarities among tasks are necessary to see performance
improvements from multitask evolution.

As this research continues, we intend to analyze the circuits
generated by the multi-behavior approach for pa�erns of reuse,
and to extend this methodology to more complex task suites and
primitive sets.
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