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1 Abstract

Systems are typically made from simple components regardless of their complexity.
While the function of each part is easily understood, higher order functions are
emergent properties and are notoriously difficult to explain. In networked systems, both
digital and biological, each component receives inputs, performs a simple computation,
and creates an output. When these components have multiple outputs, we intuitively
assume that the outputs are causally dependent on the inputs but are themselves
independent of each other given the state of their shared input Pearl (2014). However,
this intuition can be violated for components with probabilistic logic, as these typically
cannot be decomposed into separate logic gates with one output each. This violation of
conditional independence on the past system state is equivalent to instantaneous
interaction — the idea is that some information between the outputs is not coming from
the inputs and thus must have been created instantaneously. Here we compare evolved
artificial neural systems with and without instantaneous interaction across several task
environments. We show that systems without instantaneous interactions evolve faster,
to higher final levels of performance, and require fewer logic components to create a
densely connected cognitive machinery.

2 Introduction

Evolvable Markov Brains are networks of deterministic and probabilistic logic gates
whose function and connectivity are genetically encoded. They are a useful model to
study the evolution of behavior Olson et al. (2013), cognitive properties Marstaller et al.
(2013), and neural-network complexity Albantakis et al. (2014); Edlund et al. (2011),
and can also be used as classifiers Chapman et al. (2013). At each generation of
evolution within a particular task environment, networks are selected based on their
fitness and the populations adapt through random genomic mutations. The genome is
sequentially processed with specific sites indicating the start of a gene. An individual
gene encodes one Hidden Markov Gate (HMG), which specifies connections between
network elements and also determines input-output logic Marstaller et al. (2013). These
HMGs are generalized logic gates that encompass conventional logic gates such as XOR
or NAND, whose logic table is typically a static mapping of two inputs to a single
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output (Figure 1A), but allow for more than the typical two-in-one-out format and can
use a probabilistic mapping between input and output states. Here, HMGs could receive
up to four inputs mapped to maximally four outputs. In this way, each gene may
encode an entire logic module, as opposed to only a single logic function.

Depending on the environment, deterministic or probabilistic HMGs may provide a
mutually exclusive advantage for evolution. Apart from introducing randomness into
the Markov Brains, probabilistic HMGs also differ from deterministic HMGs in the way
they can be represented by a collection of simpler logic gates. The outputs of a
deterministic HMG are necessarily conditionally independent from each other: given the
input state, an output is either on (‘0’) or off (‘1’) with probability P = 1.0.
Information about the state of other outputs is irrelevant. As a consequence, a
deterministic HMG can always be decomposed into several logic gates with one output
each. For example, a two-in-two-out deterministic HMG (see Figure 1 panel B) can
easily be decomposed into two independent two-in-one-out gates (see Figure 1 panel A).
This decomposition works similarly for larger gates with more inputs and more outputs,
requiring one logic gate per output.

Probabilistic HMGs, on the other hand, are not generally decomposable into
separate logic functions for each output. In the case of a two-in-two-out probabilistic
HMG, a probability table (for a detailed explanation see Marstaller et al. (2013)) maps
all four possible input states to all four possible output states. Let us for simplification
purposes just consider the case where both inputs for such a gate are 0. Then, four
probabilities (P00, P01, P10, P11) determine the probability for each of the four possible
output states to occur given input state 00. P00 defines the probability that both
outputs are 0, and P11 the probability that both outputs are 1, and so forth. Observe
that all four probabilities must sum to 1.0:

P00 + P01 + P10 + P11 = 1.0 (1)

Except for the above requirement, the individual probabilities P00 to P11 evolve
independently for default probabilistic HMGs in Markov Brains.

Let us now try to use two probabilistic two-in-one-out gates (see Figure 1 panel C)
to achieve the same functionality as a two-in-two-out HMG. Pa = P (A = 1|I) denotes
the probability of the first gate (‘A’) to have an output of 1 for a given input state I.
Consequently, the probability for A to have an output of 0 is 1.0− Pa. Synonymously,
for the second gate (‘B’) Pb = P (B = 1|I). The joint input-output function of the two
individual gates A and B is the following:

P00 = (1.0− Pa)(1.0− Pb) (2)

P01 = (1.0− Pa)Pb (3)

P10 = Pa(1.0− Pb) (4)

P11 = PaPb (5)

Given eqs. 2-5, the summation rule (eq. 1) is met. In addition, the following
dependency between probabilities holds:

P00P11 = P01P10 (6)

It is easy to see that probabilistic HMGs with independently evolved probabilities P00

to P11 may violate equation 6. As a result, probabilistic HMGs typically cannot be
decomposed. Decomposition of a probabilistic two-in-two-out HMG is only possible if:

P (out1|I, out2) = P (out1|I) (7)

P (out2|I, out1) = P (out2|I) (8)
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for any input state I, which means that the two outputs must be conditionally
independent of each other given all possible I. Under these conditions, the HMG’s
probabilities can be expressed according to eqs. 2-5, with Pa = P (out1 = 1|I), the
marginal probability of out1 = 1 given I, and Pb = P (out2 = 1|I), the marginal
probability of out2 = 1 given I. The same principle can be applied to HMGs with
multiple conditionally independent outputs.

An example probability distribution for P00 to P11 that violates conditional
independence is PD = P (out1, out2|I) = (0, 0.5, 0.5, 0), whereas PD∗ = (0.25, 0.25,
0.25, 0.25) conforms with eqs. 1-8. Note that the marginal probabilities
P (out1 = 1|I) = P (out2 = 1|I) = 0.25 are the same in both cases. In fact, there are
infinitely many probability distributions with the same marginal probabilities, but only
PD∗ fulfills conditional independence given the input state. By contrast, PD contains
the additional constraint that P (out1 = 1|I, out2 = 1) = 0 and vice versa (cf. James and
Crutchfield (2016) for more intricate examples of hidden dependencies in probability
distributions). Making the temporal order explicit, the probabilities in PD∗ only
depend on the input I to the HMG at timestep t− 1, before the update. PD, however,
also requires instantaneous interaction between the outputs at time t.

This example demonstrates that, in Markov Brains with probabilistic HMGs, the
output state of an element at time t may depend on information that is not available at
t− 1. Such instantaneous interactions have implications with respect to the causal
structure of these Markov Brains, as they violate the postulate that causes must
precede their effects. In addition, instantaneous interactions defy the notion of
elementary causal components. Without conditional independence given the input state,
the interactions between elements in a probabilistic Markov Brain cannot be
represented as a directed acyclic causal graph Pearl (2014). This prohibits analyzing the
causal composition of these Markov Brains, which means, for example, that the
theoretical framework of integrated information theory (IIT) Albantakis and Tononi
(2015); Oizumi et al. (2014), which assesses how sets of elements within a system
causally constrain each other, cannot be applied to these Markov Brains. In short, while
Markov Brains with general, probabilistic HMGs may be useful tools for artificial
evolution experiments, the networks of elements they encode cannot generally be
interpreted as a network of causally interacting components.

While instantaneous interaction may be a curious phenomenon in evolvable Markov
Brains, the question remains whether the potential gain in computational power
through such instantaneous interactions has any effect on the evolution and
functionality of Markov Brains. To explore this question, we implemented a
decomposable version of the evolvable probabilistic HMGs (up to four-in-four-out) with
conditionally independent outputs {out1, . . . , outN}, such that:

P (outi|I, {out1:N\i}) = P (outi|I), (9)

for all input states I and all outputs {out1, . . . , outN}, where N is the number of
outputs. These decomposable HMGs comply with an extended version of eqs. 2-5:

P (out1:N = O|I) =
∏

i=1:N

P (outi = Oi|I) (10)

for all output states O and all input states I, and thus guarantee Markov Brains with
causally interpretable neural networks. In the following, we will compare the evolution
of Markov Brains generated by probabilistic HMGs against Markov Brains generated by
decomposable probabilistic HMGs in several task environments.

We will show that instantaneous interaction hampers evolutionary adaptation. At
the same time we show that systems evolved from components without instantaneous
interaction adapt their cognitive machinery. Contrary to what might be expected given
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Figure 1. Examples of gate decomposition into combinations of simpler gates. Panel
A shows two deterministic logic gates whose inputs are cross-wired so that both gates
receive the same inputs. The tables below show their probabilities to output 0 or 1
respectively. These probabilistic logic boundary cases are effectively deterministic logic
gates. Panel B shows a two-in-two-out logic gate that is functionally identical with the
two gates depicted in Panel A. Panel C shows two probabilistic logic gates similarly
connected like the deterministic gates from panel A. The logic tables below only show
the case where both inputs are 0. The lower table shows replacing both probabilistic
logic gates with a single two-in-two-out probabilistic logic gate (similar to panel B) and
how the new probabilities for that gate are constructed from the individual probabilities
of both gates.

the potential gain in computational power through instantaneous interactions, Markov
Brains with decomposable HMGs required fewer gates to create a more densely
connected network with better task performance. We conjecture that instantaneous
interactions provide no computational advantage for agents evolving in the tested
sensory-motor task environments.

3 Results

Probabilistic HMGs in Markov Brains can independently evolve the probabilities that
determine their outputs, which can lead to instantaneous interactions, as outlined above.
Here, we thus introduce another type of probabilistic HMG we call decomposable HMG.
These gates encode their size and connectivity in the same way as probabilistic HMGs.
Nevertheless, the probability tables of decomposable HMGs are restricted according to
eqs. 9 and 10, and thus must be encoded in a different way than those of general
probabilistic HMGs.

Probabilities are encoded as one number per one locus. In the non-decomposable
HMG these probabilities are transcribed directly from the genome to fill the probability
table, after which they are appropriately normalized given the table dimensions. For
decomposable HMGs we ensure decomposability by transcribing only the marginal
probabilities (eq. 9). The probability matrix is then created from these marginal
probabilities P (outi|I) by using eq. 10. This allows us to evolve Markov Brains with
either or both types of gates, conventional probabilistic and decomposable, or in other
words those which have instantaneous interaction and those which do not. The
difference in rate of adaptation, and differences in the solutions evolved, will highlight
the effect of instantaneous interaction on evolution.

Differences between Markov Brains with and without instantaneous interactions may
depend on the environments in which the virtual organisms were evolved. Some
environments might benefit from instantaneous interactions, while others might favor
conditional independence. For this reason, three different environments were tested:
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Temporal Spatial Integration
In this environment Albantakis et al. (2014); Marstaller et al. (2013) the agent can
move laterally left and right (one binary effector each) and is equipped with a set of
upwards facing sensors, two on the left and two on the right (one binary sensor each)
with a gap of 2 block subunits between them, and 8 hidden binary elements for storing
information. Small and large blocks are falling toward the agent one at a time, and
activate the sensors of the agent when above them regardless of distance. The blocks
fall in different directions, and the block sizes and sensors are arranged in such a way
that the blocks need to be observed over several updates in order to be distinguished.
Small blocks must be caught while large blocks must be avoided.

Foraging and Spatial Reasoning
Agents are placed at a designated home area in a two-dimensional environment and
must first discover and then obtain food. Once they obtained food, they must move it
to the home location, after which more food must be collected. Early in an agent’s life
food appears nearby, but the circular perimeter onto which food is randomly placed
increases in diameter with each successful collection, moving the food successively
farther away from home. The sensors for this agent provide a very coarse representation
of the environment and are only accurate for nearby objects. Inputs include sensor
signals for food and home locations: on, facing, and near, as well as angle to food with
perception of angle discretized to 45 degrees. Consequently, food and home locations
are not reliably observable, and the agent must navigate heuristically in the absence of
this sensory information. Outputs include turning left or right and moving forward.

Associative Memory
This two-dimensional environment Grabowski et al. (2010); Grabowski and Magana
(2014) presents the agent with a path of rewards, surrounded by a field of poison. The
agent receives 4 sensor inputs about whether its current location is on path, poison, or
one of the cues. In addition, it receives cues about upcoming turns in the path. These
cues, their turn associations, and the path itself are all randomly generated with each
visit to the environment. The agent may affect 2 outputs which encode 4 actions:
nothing, turn left one unit, turn right one unit, and move forward one unit. In addition,
the agent has 8 hidden binary elements for memory. The agent must explore the
environment and learn which of the two symbols indicates right and which one indicates
left. The agent must then remember those associations and use that knowledge to
navigate the path properly.

For each experimental condition, we evolved 120 independent populations of 100
organisms until their performance plateaued. A plateau was reached near generation
10,000 in the temporal spatial integration environment, generation 5,000 in the
associative learning environment, and generation 3,000 in the foraging environment.
After evolution the line of descent was reconstructed Lenski et al. (2003), that is the
path of inheritance from a random organism in the final population to its ancestor in
the initial population. All sweeping mutations are observable in the line of descent.

We find that in the foraging and temporal spatial integration environments agents
restricted to decomposable gates adapt much more quickly and also achieve a better
final performance (see Figure 2).

The associative memory environment has a tunable punishment parameter for the
cost of wandering off the correct path. The relative difference between the reward for
following the path and the punishment for straying from the path greatly influences
evolvability of successful strategies. If wandering off the path is very costly, then the
agent is severely limited in its freedom to make mistakes and explore if it is to maintain

5/16



0 2000 4000 6000 8000 10000

Generations

0.40

0.45

0.50

0.55

0.60

0.65

F
it
n
e
ss

A

0 500 1000 1500 2000 2500 3000

Generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
it
n
e
ss

B

Figure 2. Average fitness of organisms on the line of descent in the spatial temporal
(A) and foraging (B) environments. The solid line represents average performance of
agents restricted to conventional probabilistic HMGs (with instantaneous interactions),
dashed lines represents average performance of agents restricted to decomposable HMGs
(without instantaneous interactions). The y axes are normalized to show the fraction
of maximally attainable fitness in each environment. The gray shadow indicates the
bootstrapped 95% confidence interval of the mean.
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its status as a viable organism. This harsh limitation on mistake-making hampers
evolution. We find that when punishment for path deviation is relatively small or zero,
decomposable HMGs provide a clear evolutionary advantage. When punishment is high,
agents restricted to conventional probabilistic HMGs fail to evolve at all, while agents
restricted to decomposable HMGs still evolve functional Markov Brains (see Figure 3).

As shown in Figure 4, it is not only the rate of adaptation that is higher for
decomposable gates, but also the mean final achieved performance in all three
environments, even though the extrema and distributions vary greatly by environment.

In the above simulations, Markov Brains were restricted to one type of HMG, either
probabilistic or decomposable and seeded with 15 gates at the start of evolution. In a
second set of experiments we allowed Markov Brains to evolve both types of gates in
order to assess if there is preferential selection of one gate over the other. If either of the
gate types confers more of an advantage it should be selected more often than the other
gate type. The null hypothesis suggests both gates confer the same benefit and would
be under equal selection. While it took much more computational power to simulate
these populations longer, we wanted to investigate if there might be oscillations in
preferential selection for gate type. In all tested environments we find that
decomposable HMGs are used more often than conventional probabilistic HMGs (see
Figure 5). To exclude any variation resulting from the initial evolvability differences
between the gates, agents are seeded with 15 HMGs of each type. We find that selection
quickly reduces these, but decomposable HMGs are kept more often than probabilistic
HMGs. Observe that different tasks require brains of different sizes, but the effect of
the dominating decomposable gate type is independent of this phenomenon (see
Figure 5). 50 independent populations of 100 agents each were evolved in each
environment for these competitions.

So far, our results suggest that decomposable HMGs have a clear advantage when it
comes to evolutionary adaptation of Markov Brains. Furthermore, these results suggest
that systems without instantaneous interactions evolve faster, and select against
instantaneous interaction when possible. Instantaneous interaction allows components
to have outputs which share information beyond that of their inputs. As such, the
question was if instantaneous interactions provide an advantage to computation. Our
results suggest the opposite. The question is now if systems which cannot have
instantaneous interactions compensate for that loss. It may be that decomposed
components are more adaptable in a way that compensates for the missing information.
To investigate this issue we also assessed the effect of gate type on the structure of
cognitive machinery. Observe that the different kinds of gates only differ in how their
probabilities are encoded and do not differ in how connections are made or how
mutations affect their connection or abundance. While there are many ways to measure
these networks McCabe (1976) we test evolved brains for number of gates and graph
measures used in similar work: gamma index (connectivity), and brain diameter (for a
more detailed explanation see Schossau et al. (2015)).The first measure is simply the
number of gates present in the phenotype. The Gamma index measures the density of
connections relative to all possible connection which could have been made. A higher
gamma index indicates a more connected Markov Brain.

The brain diameter is the length of the shortest path between the furthest nodes in
the network. Diameter is assessed by computing all shortest connections between all
components. The longest of these shortest connections is the brain diameter. The larger
the brain diameter is the more steps it takes for information to traverse the Markov
Brain, and the more computations are possible.

Probably the most interesting result is that the total number of gates was lower when
only decomposable gates were allowed, at least when agents were evolved in the foraging
and in the association environment (see Figure 7 panel C). When agents were evolved in
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Figure 3. Average performance of agents evolved in the association environment with
increasing levels of error punishment. Performance of agents evolved while restricted to
decomposable HMGs is shown as a dashed line. Performance of agents evolved while
restricted to conventional probabilistic HMGs is shown as a solid line. The gray shadow
indicates the bootstrapped 95% confidence interval of the mean. Panel A shows the
results for agents receiving zero punishment for path-following errors. Panel B shows the
results for punishment of 0.05, meaning 0.05 was subtracted from the cumulative agent
score every time it wandered off the path. Panel C shows the results for agents evolved
with punishment 0.1, again subtracted from their score when wandering off the path.
The y axes were normalized to show relative performance, with 1.0 being the maximally
attainable fitness in each environment assuming ideal behavior.
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Figure 4. Distribution of performances at the end of evolution for each of two conditions
in each of three environments. At the end of evolution, the 200th-from-last agent of each
independent line of descent is collected to create these distributions. This near-the-end
data slicing is necessary to eliminate noise toward the end of the line of descent caused
by mutated extant agents not yet pruned from the line of descent by selection. The
three environments are represented on the x-axis as I (temporal spatial integration
task), F (foraging task), and A (association task with a punishment of 0.05). In each
environment (I, F, and A) agents were allowed to either use conventional probabilistic
HMGs (labeled as “prob”) or decomposable HMGs (labeled as “dec”). Red dashes
indicate the mean and extrema. Gray violin plots show the distributions of normalized
fitness for all 120 replicates per experimental condition. Fitness was normalized such
that maximal theoretically attainable fitness is represented as 1.0. For each environment
of Integration, Foraging, and Association, the conditions under which evolution was
limited to decomposable gates produced significantly better adapted agents. Significance
was tested using the Mann-Whitney U test, with p < 0.05 for each environment (p = 0.0,
p = 0.0, p < 2.2× 10−112).
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Figure 5. Average number of gates evolved along the line of descent in a competition
experiment executed in three different environments. Panel A shows the results from
the temporal spatial integration environment. Panel B shows the results from the
foraging environment. Panel C shows the results from the association environment with
a punishment cost of 0.05. The average number of preferentially selected decomposable
HMGs over generations is shown as a dashed line, whereas the solid line represents the
average number of preferentially selected conventional probabilistic HMGs. The gray
shadow indicates a 95% confidence interval.
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Figure 6. Average fitness along the line of descent in each environment while both
non-decomposable and decomposable gate types were evolvable: Panel A shows line of
descent fitness for the temporal spatial integration environment. Panel B shows line of
descent fitness for the foraging environment. Panel C shows line of descent fitness for
the association environment. The gray shadow indicates a 95% confidence interval.

11/16



the temporal spatial integration environments, we find a slightly higher number of
decomposable gates. This suggests that the subsequent effects on density and diameter
cannot simply be explained by a higher number of gates. We find that the density and
diameter of the evolved Markov Brains are higher for those experiments where agents
were restricted to the evolution of decomposable gates (see Figure 7 panel B and C).
This suggests agents with decomposable gates evolve to use fewer gates, and that these
fewer gates are more tightly connected. Additionally, the total diameter of the network
becomes longer. This result suggests a possible contradiction to the idea that a system
needs more decomposable gates to compensate for the lack of instantaneous interactions.
Secondly, it suggests that if the loss of instantaneous interactions is part of a trade-off,
then it is offset by an increase in connectivity and brain diameter, though it may only
be that these populations evolve faster and thus arrive at better-connected high-fitness
networks sooner. The increase in brain diameter suggests that more computations are
occurring sequentially in the brain. However, we have no intuition what this could mean
for the computations that happen in the Markov Brain.

While the mixed gate conditions favored evolution of decomposable gates, this could
have come at the cost of lower achieved fitness than in the homogeneous gate conditions.
However, an examination of the line of descent fitness show no degradation in
evolvability. This suggests that while the path for a slower and more complex
evolutionary trajectory with non-decomposable gates existed within the search space,
evolution preferentially selected against that path for one with more evolvability.

4 Discussion

Evolvable Markov Brains are a useful modeling framework for studying evolution Olson
et al. (2013) and complex cognitive systems Albantakis et al. (2014); Edlund et al.
(2011); Marstaller et al. (2013), but also provide a powerful alternative to conventional
machine learning approaches due to their capacity for solving classification tasks
Chapman et al. (2013). Their connectivity and logic structure is determined by genes
which encode HMGs that map inputs to outputs via a logic table. Probabilistic HMGs
yield the most general logic tables, as each entry is independently determined by one
locus in the genome with the only restriction that each row has to sum to 1. As a
consequence, probabilistic HMGs allow for instantaneous interactions, shared
information between outputs. This information sharing may contain information useful
to the system, but prohibits interpreting Markov Brains with probabilistic HMGs as a
network of elementary causally interacting components Albantakis and Tononi (2015);
Oizumi et al. (2014); Pearl (2014). While this may not impact machine learning
applications of Markov Brains, it may limit their use as a surrogate for biological
systems and aggravates analyzing their causal structure. To date, the possible role of
these instantaneous interactions in cognitive systems remains unclear.

Here we investigated the impact of instantaneous interactions on cognitive systems
by comparing the evolution of two different types of Markov Brains. Agents were
evolved in three different environments and were restricted to either conventional
probabilistic HMGs or decomposable HMGs which did not allow for instantaneous
interactions (eq. 9 and 10) but were otherwise identical to conventional probabilistic
logic gates.

The decomposable HMGs introduced here are a special case of probabilistic HMGs,
with the additional constraint that their outputs are conditionally independent given
the past system state. A priori, probabilistic HMGs thus have more computational
potential. Nevertheless, we found that decomposable HMGs without instantaneous
interactions not only allow faster adaptation of Markov Brains, but also promote
improved final agent performance. In populations which could evolve the use of both
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Figure 7. Distributions of different properties of Markov Brains at the end of evolution
in three environments and two conditions for each environment. The three environments
are represented on the x-axes as I (temporal spatial integration task), F (foraging task),
and A (association task with a punishment of 0.05). In each environment (I, F, and A)
agents were allowed to either use conventional probabilistic gates (labeled as ”prob”)
or decomposable gates (labeled as ”dec”). Panel A shows the number of gates, Panel
B shows the gamma index (that is the connection density), and Panel C shows the
diameter (longest of the shortest connections). Each panel shows the distributions as
violin plots in gray, and the mean as well as the extreme points as red dashes. For
each environment of Integration, Foraging, and Association, and for both properties
of Gamma Index and Diameter, the conditions under which evolution was limited to
decomposable gates produced significantly more connected and larger diameter Markov
Brains. Significance was tested using the Mann-Whitney U test, with p < 0.05. For
Gamma Index, the difference between gate restricted evolution within environments
produced p values of p = 4.9× 10−23, p = 6.5× 10−6, p = 1.3× 10−3 respectively. For
Diameter, the difference between gate restricted evolution within environments produced
p values of p = 2.2× 10−6, p = 3.6× 10−2, p = 4.2× 10−3 respectively.

probabilistic and decomposable HMGs, we found preferential selection for decomposable
gates in all three tested environments. Lastly, we found that populations restricted to
decomposable HMGs evolved to use fewer gates, have a larger diameter, and a higher
density of connectivity.

These findings suggest that instantaneous interactions hamper the evolution of
cognitive systems rather than providing computational advantages. In fact, Markov
Brains with decomposable HMGs evolved to higher fitness levels using a similar or even
fewer number of gates than Markov Brains with probabilistic HMGs. This indicates
that Markov Brains with decomposable HMGs had no need to compensate for a lack in
computational power. To the contrary, evolution seems to exploit the conditional
independence property of decomposable HMGs in these systems and to avoid
instantaneous interactions. This is suggested by the finding that Markov Brains with
decomposable HMGs are more densely connected, which means that individual
decomposable HMGs evolved on average more outputs than individual probabilistic
HMGs. Conditional independence thus seems to facilitate packing more input-output
relations into a single HMG. In Markov Brains with probabilistic HMGs more gates with
fewer average outputs may be required specifically to avoid instantaneous interactions.

Further investigation should provide more insight into the question why systems
with elementary causal components that do not allow instantaneous interactions evolve
faster. After all, an instantaneous interaction contains information seemingly “from
nothing” as it is created between outputs of logic units and is not solely caused by
inputs. Based on our simulations, several factors may contribute to explain why
evolution prefers decomposable gates:

Search Space Evolutionary search for a population using probabilistic gates must
traverse a larger state space, since probabilistic gates include the subset of gates which
are decomposable. When limiting evolution to explore only decomposable gates, the
search space becomes much smaller and thus easier to explore.

Epistatic Interactions In decomposable gates, mutations may have a different
functional phenotypic effect than those affecting conventional probabilistic gates. This
may allow transversing the evolutionary search space in greater leaps.

Robustness of Functions Related to the above, conditional independence between
the outputs of a decomposable HMG may lead to a more robust encoding of beneficial
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input-output relations.

Determinism with respect to Inputs All tested evolution environments required
the agents to react to sensor stimuli in order to achieve high fitness. While a certain
amount of intrinsic indeterminism (noise) may be useful to trigger exploratory behavior,
instantaneous interactions between outputs that are not explained by past inputs might
simply provide no fitness advantage in sensory-motor cognitive tasks. Decomposable
HMGs can be viewed as a noisy version of deterministic HMGs. Any additional freedom
in the logic table of probabilistic HMGs may be superfluous or even detrimental.

Our work has several practical implications for the use of Markov Brains across
disciplines. For machine learning applications, where the interest lies primarily in the
speed of evolution and final fitness, our results suggest that decomposable HMGs may
improve performance considerably compared to general probabilistic HMGs. As models
for cognitive systems, using decomposable HMGs instead of general probabilistic HMGs
has the additional benefit that decomposable gates lead to causally interpretable
Markov Brains. This allows analyzing the causal composition of the resulting Markov
Brains, for example, within the framework of Integrated Information Theory Albantakis
et al. (2014); Oizumi et al. (2014).

Finally, whether biology and fundamentally physics allow for true instantaneous
interactions in nature is an open question. Typical accounts of causation require that
causes precede their effects. Yet, missing variables and coarse-grained measurements
may lead to system models with apparent instantaneous interactions between
variables James and Crutchfield (2016). Taken together, our results suggest that there
is no apparent reason to include instantaneous interactions in Markov Brains.

Acknowledgements

L.A. receives funding from the Templeton World Charities Foundation (Grant
#TWCF0196).

References

Larissa Albantakis, Arend Hintze, Christof Koch, Christoph Adami, and Giulio Tononi.
2014. Evolution of integrated causal structures in animats exposed to environments of
increasing complexity. PLoS Comput Biol 10, 12 (2014), e1003966.

Larissa Albantakis and Giulio Tononi. 2015. The Intrinsic Cause-Effect Power of
Discrete Dynamical Systems–From Elementary Cellular Automata to Adapting
Animats. Entropy 17, 8 (jul 2015), 5472–5502. DOI:

http://dx.doi.org/10.3390/e17085472

Samuel Chapman, David B Knoester, Arend Hintze, and Christoph Adami. 2013.
Evolution of an artificial visual cortex for image recognition. In ECAL. 1067–1074.

Jeffrey A Edlund, Nicolas Chaumont, Arend Hintze, Christof Koch, Giulio Tononi, and
Christoph Adami. 2011. Integrated information increases with fitness in the evolution
of animats. PLoS Comput Biol 7, 10 (2011), e1002236.

Laura M Grabowski, David M Bryson, Fred C Dyer, Charles Ofria, and Robert T
Pennock. 2010. Early Evolution of Memory Usage in Digital Organisms.. In ALIFE.
The MIT Press, 224–231.

15/16

http://dx.doi.org/10.3390/e17085472


Laura M Grabowski and Javier A Magana. 2014. Building on Simplicity: Multi-stage
Evolution of Digital Organisms. In ALIFE. The MIT Press, 113–120.

Ryan G James and James P Crutchfield. 2016. Multivariate Dependence Beyond
Shannon Information. arXiv preprint arXiv:1609.01233 (2016).

Richard E Lenski, Charles Ofria, Robert T Pennock, and Christoph Adami. 2003. The
evolutionary origin of complex features. Nature 423, 6936 (2003), 139–144.

Lars Marstaller, Arend Hintze, and Christoph Adami. 2013. The evolution of
representation in simple cognitive networks. Neural computation 25, 8 (2013),
2079–2107.

T.J. McCabe. 1976. A Complexity Measure Issue. IEEE Transactions on Software
Engineering 2 (1976), 308–320.

Masafumi Oizumi, Larissa Albantakis, and Giulio Tononi. 2014. From the
Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory
3.0. PLoS Computational Biology 10, 5 (may 2014), e1003588. DOI:

http://dx.doi.org/10.1371/journal.pcbi.1003588

Randal S Olson, Arend Hintze, Fred C Dyer, David B Knoester, and Christoph Adami.
2013. Predator confusion is sufficient to evolve swarming behaviour. Journal of The
Royal Society Interface 10, 85 (2013), 20130305.

Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

Jory Schossau, Christoph Adami, and Arend Hintze. 2015. Information-theoretic
neuro-correlates boost evolution of cognitive systems. Entropy 18, 1 (2015), 6.

16/16

http://dx.doi.org/10.1371/journal.pcbi.1003588

	1 Abstract
	2 Introduction
	3 Results
	4 Discussion

