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Abstract

Many production-grade algorithms benefit from combining an asymp-
totically efficient algorithm for solving big problem instances, by split-
ting them into smaller ones, and an asymptotically inefficient algo-
rithm with a very small implementation constant for solving small
subproblems. A well-known example is stable sorting, where merge-
sort is often combined with insertion sort to achieve a constant but
noticeable speed-up.

We apply this idea to non-dominated sorting. Namely, we combine
the divide-and-conquer algorithm, which has the currently best known
asymptotic runtime of O(N(logN)M−1), with the Best Order Sort
algorithm, which has the runtime of O(N2M) but demonstrates the
best practical performance out of quadratic algorithms.

Empirical evaluation shows that the hybrid’s running time is typi-
cally not worse than of both original algorithms, while for large num-
bers of points it outperforms them by at least 20%. For smaller num-
bers of objectives, the speedup can be as large as four times.

1 Introduction

Many real-world optimization problems are multiobjective, that is, they re-
quire maximizing or minimizing several objectives, which are often conflict-
ing. These problems most often do not have a single solution, but instead
feature many incomparable solutions, which trade one objective for another.
It is often not known a priori which solution will be chosen, as decisions of
this sort are often recommended to be made late, as the decision maker can
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learn more about the problem [1]. This encourages finding a set of diverse in-
comparable solutions, which is a problem often approached by multiobjective
evolutionary algorithms.

In the realm of scaling-independent preference-less, and thus general-
purpose, evolutionary multiobjective algorithms, three paradigms currently
seem to prevail [1]: Pareto-based, indicator-based, and decomposition-based
approaches. Although there exist well-known decomposition-based [22] and
indicator-based [25,27,28] algorithms, the majority of modern algorithms are
Pareto-based [4–6,26].

Most Pareto-based algorithms belong to one of big groups according to
how solutions are selected or ranked: the algorithms which maintain non-
dominated solutions [3,4,13], perform non-dominated sorting [5–7], use domi-
nation count [9], or domination strength [26]. In this research we concentrate
on non-dominated sorting, as some popular algorithms make use of it [5, 6].

Non-dominated sorting assigns ranks to solutions in the following way:
the non-dominated solutions get rank 0, and the solutions which are dom-
inated only by solutions of rank at most i get rank i + 1. In the original
work [20], this procedure was performed in O(N3M), where N is the popu-
lation size and M is the number of objectives. This was later improved to
be O(N2M) in [6].

As the quadratic complexity is still quite large, both from theoretical and
practical points of view, many researchers concentrated on improving prac-
tical running times [8, 11, 16, 19, 21, 23, 24], however, without improving the
worst-case O(N2M) complexity. Jensen was the first to adapt the earlier re-
sult of Kung et at. [14], who solved the problem of finding non-dominated so-
lutions in O(N(logN)max(1,M−2)), to non-dominated sorting. This algorithm
has the worst-case complexity of O(N(logN)M−1). However, this algorithm
could not handle coinciding objective values, which was later corrected in
subsequent works [2,10]. A more efficient algorithm for non-dominated sort-
ing, or finding layers of maxima, exists for three dimensions [17], whose
complexity is O(N(log logN)2) with the use of randomized data structures,
or O(N(log logN)3) for deterministic ones. However, whether this algorithm
is useful in practice is still an open question.

A large number of available algorithms for non-dominated sorting opens
the question of algorithm selection [18]. What is more, a family of O(N2M)
algorithms for non-dominated sorting resembles a family of quadratic algo-
rithms for comparison based sorting, and theO(N(logN)M−1) non-dominated
sorting algorithms seem to take up the niche of O(N logN) sorting algorithms
(such as mergesort, heapsort, and randomized versions of quicksort).

For comparison-based sorting, the quadratic algorithms are often much
simpler and demonstrate better performance on small data, while asymptot-
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ically better algorithms take over starting from certain problem sizes. If the
latter algorithm is built using a divide-and-conquer scheme, it becomes pos-
sible to choose better algorithms for subproblems: if a subproblem, due to its
size, can be solved faster using a quadratic algorithm, then it should be done,
otherwise let the divide-and-conquer algorithm decompose the problem fur-
ther. For example, most stable sorting algorithms from standard libraries are
currently implemented using mergesort or TimSort, while for data fragments
smaller than, for example, 32 in the current implementation of sorting in
Java1, the quadratic insertion sort algorithm, with the binary search lookup,
is used.

This inspired us to apply the similar idea to non-dominated sorting. For
the “outer” divide-and-conquer algorithm, we use the only available algo-
rithm family of this sort [2, 10, 12]. For the quadratic algorithm to solve
smaller subproblems, we adapt the Best Order Sort [19], as it was shown
to typically outperform other quadratic algorithms. Our result is a hybrid
algorithm which uses primarily the divide-and-conquer strategy and decides
when to switch to Best Order Sort using a formula which depends on the
number of points in the subproblem and the number of remaining objectives
to consider.

This is a full version of the paper with the same name which was accepted
as a poster to the GECCO conference in 2017.

The rest of the paper is structured as follows. In Section 2, we give
the necessary definitions and describe the algorithms we put together: the
divide-and-conquer algorithm and Best Order Sort. Section 3 describes our
hybridizing approach, which includes the changes necessary to introduce to
Best Order Sort to serve as the subproblem solver, and the analysis of pre-
liminary experiments which established the formula used to switch between
the algorithms. Section 4 gives the main body of our experimental studies,
including their analysis. Section 5 concludes.

2 Preliminaries

In the following, we assume that all points are different, which enables us to
name any unordered collection of points a set. This is not true in general,
however, all equal points will receive the same rank, so implementations
are free, depending on their need, to either discard a point if there is an
equal one, or to keep all equal points in a same entity and run algorithms
on these entities instead, or to work directly with equal points with some

1http://grepcode.com/file_/repository.grepcode.com/java/root/jdk/

openjdk/8-b132/java/util/TimSort.java
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additional algorithmic care. None of these precautions change the worst-case
algorithmic complexity.

2.1 Definitions

We use capital Latin letters to denote sets of points, as well as the global
constants N (the number of points) and M (the number of objectives), while
small Latin letters are used for single points, standalone objectives and rank
values, and small Greek letters are used for mappings. The value of the i-th
objective of a point p is denoted as pi.

In the rest of the paper we assume, without losing generality, that we
solve a multiobjective minimization problem with the number of objectives
equal to M . In this case, the Pareto dominance relation is determined on
two points in the objective space as follows:

a ≺ b↔ ∀i ∈ [1;M ] ai ≤ bi and ∃i ∈ [1;M ] ai < bi

a � b↔ ∀i ∈ [1;M ] ai ≤ bi

where a ≺ b is called the strict dominance and a � b is the weak dominance.
Non-dominated sorting is a procedure which, for a given set P of N points

in the M -dimensional objective space, assigns each point p ∈ P an integer
rank τ(p), such that:

τ(p) = max{0} ∪ {1 + τ(q) | q ∈ P, q ≺ p}.

In other words, a rank of a point which is not dominated by any other point
is zero, and a rank of any other point is one plus the maximum rank among
the points which dominate it.

Following the convention from [15], we call the set of all points with the
given rank r a non-domination level Lr:

Lr = {p ∈ P | τ(p) = r}.

2.2 The Divide-and-Conquer Approach

The divide-and-conquer approach dates back to 1975, when Kung et al. pro-
posed a multidimensional divide-and-conquer algorithm for finding the max-
ima of a set of vectors [14], which, in the realm of evolutionary computation,
corresponds to the set of non-dominated points, or to points with rank zero.
The complexity of this algorithm is O(min(N2, N(logN)max(1,M−2)))), which
we shorten to O(N(logN)M−2) for clarity.
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This algorithm can be used to implement non-dominated sorting in the
following manner: first we determine the points with rank zero, then we
remove these points and run the algorithm again on the remaining points
(which yields points with rank one), then we repeat it until no points left.
However, the worst-case complexity of this approach is O(N2(logN)M−2). In
contrast, fast non-dominated sorting, shipped with the original NSGA-II of
Deb et at. [6], has a better O(N2M) complexity.

The divide-and-conquer approach has been generalized to perform non-
dominated sorting by Jensen [12], shortly afterwards the NSGA-II arrived.
The algorithm from [12] solves the problem in O(N(logN)M−1), which is
much faster for small values of M , as well as for large values of N , than
fast non-dominated sorting. However, this algorithm was designed with an
assumption that no two points have equal objectives, which is often not the
case, especially in discrete optimization, and is known to produce wrong re-
sults when this assumption is violated. This problem was overcome by Fortin
et al. [10], who proposed modifications of this algorithm to always produce
correct results. The average complexity was proven to be the same, but the
worst-case complexity was left at O(N2M). Finally, Buzdalov et al. [2] in-
troduced further modifications to achieve the worst-case time complexity of
O(N(logN)M−1).

We shall now briefly illustrate the working principles of this approach.
At any moment of time, the algorithm maintains, for every point p, a lower
bound on its rank r′(p), which are initially set to zero. The reason for
this lower bound can be explained as follows: at any moment of time, we
have performed a subset of necessary objective comparisons, which impose
approximations of ranks of the affected points. These approximations are of
course lower bounds of the real ranks.

To ease the notation, in the following we do not use the term “lower bound
of the rank”, as well as the r′ symbol. Instead, we will say “current rank”
for the current state of the lower bound of a certain point, which possibly
coincides with the real rank, and “final rank” when we know that the lower
bound coincides with the real rank.

One of the main properties of the algorithm is that whenever a comparison
of pm and qm is performed for the first time, where p and q are points and
1 ≤ m ≤M is the objective, then the following holds:

• for all objectives m′ such that m < m′ ≤ M , it holds that pm′ ≤ qm′ ,
that is, p weakly dominates q in objectives [m′;M ];

• the rank of p is known and final, that is, all comparisons necessary to
determine the rank of p have already been done.
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The top-level concept is the procedure HelperA(S,m), which takes a
set of points S sorted lexicographically (where non-zero lower bounds are
possibly known for some of the points from S) and makes sure all necessary
comparisons between the objectives [1;m] of these points are performed.
This procedure is called only when all necessary comparisons of points p
and q, such that q ∈ S and p /∈ S, have already been performed. To per-
form non-dominated sorting of a set P with M objectives, one should run
HelperA(P,M).

For m = 2, it calls a sweep line based algorithm SweepA(S), which runs
in O(|S| log |S|), which we will cover later. If there are at most two points in
S, it performs their direct comparisons and updates the rank of the second
point if necessary. If all values of the objective m are the same in the entire
S, it directly calls HelperA(S,m − 1). Otherwise, it divides S into three
parts using the objective m: the SL part with lower values, the SM part with
median values, and the SH part with higher values.

It is clear that ranks of points in SL do not depend on ranks of points
in neither SM nor SH , and SM also does not depend on SH . The algorithm
first calls HelperA(SL,m), which results in finding the exact ranks in SL,
because all necessary comparisons with points from SL on the right side and
other points on the left side have been performed before this call.

Next comes the set SM , but the ranks of these points still need to be
updated using the set SL (and nothing more). To do this, the algorithm calls
another procedure, HelperB(SL, SM ,m − 1), whose meaning is to update
the ranks of points from the second argument using the first argument and
objectives in [1;m − 1]. Then it calls HelperA(SM ,m − 1), as all other
necessary comparisons have been done, and all values for the objective m
are equal in SM . It then proceeds with HelperB(SL ∪ SM , SH ,m− 1) and
finishes with HelperA(SH ,m).

The HelperB(L,H,m) procedure, as follows from the short description
above, shall perform all the necessary comparisons between points p ∈ L on
the left and q ∈ H on the right, provided that in objectives [m+1;M ] it holds
that p ≺ q, and all ranks in L are final. For m = 2, it, again, runs a sweep line
procedure SweepB(L,H). If |L| = 1 or |H| = 1, a straightforward pairwise
comparison is performed. If the maximum value of the objective m in L
does not exceed the minimum value in H, it calls HelperB(L,H,m − 1).
Otherwise, it chooses a median of the objective m in L∪H and then, similarly
to HelperA, splits L into LL, LM and LH , and also splits H into HL, HM

and HH . Following the same logic as in HelperA, it performs the following
recursive calls:

• HelperB(LL, HL,m);
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(d)

Figure 1: Example iterations of the SweepA procedure. Gray points are
those whose rank is determined, the darker ones constitute a binary search
tree and thus connected with dotted lines. The numbers in white points are
the lower bounds on ranks. The vertical dashed line is the sweep line. In
(b), the representer of level 2 is removed as all possible remaining points
dominated by that point are also dominated by the representer of level 3;
similar thing happens in (c).

• HelperB(LL, HM ,m− 1);

• HelperB(LM , HM ,m− 1);

• HelperB(LL ∪ LM , HH ,m− 1);

• HelperB(LH , HH ,m).

The remaining parts to explain are SweepA(S) and SweepB(L,H).
The SweepA procedure utilizes a sweep line approach. Points from the
set S are processed in lexicographical order using first two objectives. In
the same time, the procedure maintains a binary search tree which contains
the last seen representative points for each non-domination level. When the
next point is processed, this binary search tree is traversed to determine
the biggest number of the level which still dominates the point in question,
and then the rank of this point is updated correspondingly. After that, this
point is inserted in the tree: it becomes the last representative of its non-
domination level and possibly throws out some of the other representatives,
which have no more chance to determine rank of any point on their own. An
example is shown in Fig. 1.

The SweepB procedure works in a similar way. The sweep line goes over
the union of sets, L∪H, however, the tree is built of the points from L only,
and rank updates are performed with points from H only.

The running times of SweepA and SweepB areO(|S| log |S|) andO((|L|+
|H|) log |L|), respectively. From the well-known theory of solving recursive
relations, and from the strategies of creating subproblems, it follows that the
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running time of HelperB(L,H,m) is O((|L| + |H|) · (log(|L| + |H|))m−1),
and of HelperA(S,m) it is O(|S| · (log |S|)m−1).

2.3 Best Order Sort

The Best Order Sort algorithm was proposed in [19]. It aims at removing as
many comparisons to be performed as possible. To do this, it sorts all points
by all objectives, thus constructing M sorted lists of points L1 . . . LM , and
processes the points in the following order: first, all first points in the lists
(L1,1, . . . , LM,1), then all second points (L1,2, . . . , LM,2), then all third points,
et cetera, until every point is processed at least once.

When a point p is processed for the first time, assume it happens in the
list of the m-th objective, its rank has to be determined. The key fact is
that only the points which precede p in Lm can dominate p, because all other
points have a greater value of the m-th objective. Thus, it makes sense to
compare p with the points that precede it in Lm.

To further decrease the number of comparisons, it is worth noting that,
when a certain point p is processed in objective m, all subsequent new points,
that is the points which will be processed for the first time, will have a value
of the m-th objective which is not smaller than the one of p. This means
that the objective m can be safely removed from the list of objectives to test
when some other point q is checked for being dominated by p.

The algorithm maintains a set of objectives to consider Op for every point
p. Initially, Op ← {1, 2, . . . ,M}. Whenever a point p is processed in the list
of the m-th objective, it is removed from Op. Whenever a point q is checked
for being dominated by p, only the objectives from Op need to be considered.

Finally, to determine the rank using fewer comparisons, the points, which
have been already considered in each objective list and have been assigned
ranks, are stored in separate lists, where each list corresponds to a rank. To
determine the rank of the next point, one can perform either a linear scan
(starting with rank zero and increasing ranks by one) or binary search for the
rank. As the number of points in rank lists cannot be non-trivially bounded,
both ways have the worst-case complexity of a single search of O(LM), where
L is the number of points in all lists.

Best Order Sort features two phases: the pre-sorting phase, which takes
O(NM logN), and the domination scanning phase. The complexity of the
latter, in the worst case, is O(N2M), but can be smaller under various con-
ditions. For instance, when all points are non-dominating, the points have a
chance to arrange such that the first N processed points are unique, which
means that every such point is tested against O(N/M) points in average,
which results in O(N2) running time.
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3 Hybridizing the Algorithms

Our hybridization scheme is similar to that of production-grade sorting al-
gorithms tuned for performance. As the top-level algorithm, we use the
divide-and-conquer algorithm. For each subproblem it decides, using certain
heuristic, whether to continue using the divide-and-conquer strategy or to
run Best Order Sort for this subproblem. In turn, Best Order Sort runs
uninterrupted until it solves the assigned subproblem.

Two problems need to be solved for this scheme to work. First, the
original Best Order Sort algorithm cannot be straightforwardly applied to
solve subproblems, because subproblems may feature non-zero lower bounds
for ranks of some points, which appear from comparisons of these points with
other points, which are out of the scope of the current subproblem. It also
does not support working with two point sets in order to serve as a back-end
of HelperB.

Second, the particular kind of heuristic to determine when to run Best
Order Sort is unclear. The main problem with it is that it should have a low
computation complexity: at most O(N), because otherwise evaluation of this
heuristic worsens the complexity of the divide-and-conquer algorithm. This
means we cannot perform any complicated analysis, such as, for instance,
principal component analysis, to predict which algorithm is best.

In this section we address these two problems, which determines the shape
of our hybridization approach.

3.1 Adaptation of Best Order Sort

When working as a part of the divide-and-conquer algorithm, Best Order
Sort can be called instead either HelperA or HelperB. In the first case,
it needs to assign final ranks to a set of points S using first m objectives
(m > 2, as SweepA, due to its simplicity, works faster than Best Order
Sort under any conditions), provided that all other necessary comparisons
have been already performed, and consequently every point p has a current
rank τ(p), which is a lower bound of its real rank. The only difference to the
original Best Order Sort is that some τ(p) can be non-zero. This is easily
compensated by checking only rank lists with ranks greater than or equal to
τ(p), and thus updating the rank only if the update is increasing.

The HelperB case is slightly more involved. If Best Order Sort is called
within HelperB(L,H,m), then ranks of points from L are already known,
and it is necessary to perform comparisons between points from L and points
from H to update the current ranks τ(p) of points p ∈ H using first m
objectives. In this case, all points are merged and are processed altogether.
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Figure 2: Example result of preliminary experiments on a dataset with 10
objectives and one non-domination level. The dataset has N = 105 points, all
other points correspond to divide-and-conquer subproblems for this dataset.
Tf is the running time of the divide-and-conquer algorithm, and Tb is the
running time of Best Order Sort. The value of (Tb − Tf )/max(Tf , Tb) is
plotted.

However, for points from L the rank is not updated (that is, the rank lists
are never checked), instead they go directly to the corresponding rank lists.
On the contrary, the rank update procedure is executed on points from H,
but they are never added to rank lists.

These changes are quite small, so the correctness of Best Order Search in
the changed conditions follows straightforwardly from the correctness of the
original algorithm [19]. The worst-case complexity of the HelperB case is
O(M · |L ∪H| · log |L ∪H|,M · |L| · |H|).

3.2 Design of the Switch Heuristic

To understand the possible kind of the heuristic algorithm to use for deciding
whether to use Best Order Sort for a certain subproblem, we conducted
a series of preliminary experiments. In these experiments, we considered
a series of datasets, where every dataset had N = 105 points with M ∈
[3; 20] objectives and was generated either by uniformly random objective
sampling (from the [0; 1]M hypercube) or by sampling from a hyperplane

10



Figure 3: Left bounds of the BOS-efficient range: actual bounds from
datasets with three levels and the fitted curve

(which yields a dataset with exactly one non-domination level). Then we ran
the divide-and-conquer algorithm on each of these datasets and recorded all
subproblems created during the run. After that, we measured the running
times of both the divide-and-conquer algorithm and Best Order Sort on all
these subproblems.

Fig. 2 shows an example of such experiment. In this figure, the point
above the abscissa axis means that for the corresponding subproblem the
divide-and-conquer algorithm took less time than Best Order Sort, while a
point below zero means the opposite. One can clearly see in Fig. 2 that Best
Order Sort behaves best, compared to the divide-and-conquer algorithm, for
N which are not too small and not too large.

As the similar effect has been noticed for all other datasets as well, we
attempted to deduce formulas for the left and right bounds of the higher
efficiency range of Best Order Sort. The following empirically constructed
formulas were found to fit our data rather well: nmin = m ln(m + 1) and
nmax = 150m((ln(d + 1))0.9 − 1.5), where m is the current number of first
objectives to consider, nmin is the left bound of the range, and nmax is the right
bound. Fig. 3 shows the plot of the left bound formula and the actual left
bounds in datasets with three non-domination levels, Fig. 4 does the same for
the right bound formula and datasets with twenty levels. The fitting quality
is the same for all other considered datasets.

As a result, the hybrid algorithm switches to Best Order Sort whenever
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Figure 4: Right bounds of the BOS-efficient range: actual bounds from
datasets with twenty levels and the fitted curve

the number of points n and the number of considered objectives m in the
current subproblem satisfy:

m ln(m+ 1) ≤ n ≤ 150m · ((ln(d+ 1))0.9 − 1.5).

4 Experiments

The main part of experiments was organized as follows. For every combina-
tion of:

• numbers of points N = b10n/4c where n ∈ [8; 20];

• numbers of objectives M ∈ {3, 5, 7, 10, 15, 20, 25, 30};

• numbers of non-domination levels L ∈ {1, 2, 3, 5, 10, 20};

ten datasets were created, and running times of all considered algorithms (the
divide-and-conquer algorithm, Best Order Sort, and the hybrid algorithm)
were measured.

The results are presented on pages 17–24 as bar plots for all M and L.
Each bar plot features a section corresponding to the value of N , consisting
of the following three bars: TBOS/avg(TDC), TDC/avg(TDC), TH/avg(TDC),
where TBOS is the running time of Best Order Sort, TDC is the running
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time of the divide-and-conquer algorithm, and TH is the running time of the
proposed hybrid algorithm. The bars for Best Order Sort are blue, and the
bars for the hybrid algorithm are brown. Every bar has an average, minimum
and maximum value (for the second bar plotting TDC , the average is always
one). Whenever a bar’s average is greater than one, that is, it points up, it
means that the corresponding algorithm is slower than divide-and-conquer,
and if it is faster, then the bar points down.

From plots on pages 17–24, one can immediately spot the characteris-
tic behavior of Best Order Sort: it is typically better at smaller numbers
of points, then it gradually becomes worse (for M = 7 and M = 10, this
tendency is seen the best). For somwhat higher dimensions (M = 20 and
M = 25), the lower bound of the Best Order Sort efficiency interval can
be seen. For the highest considered dimension, M = 30, Best Order Sort
demonstrates no significant improvement over the divide-and-conquer algo-
rithm.

The hybrid algorithm tends to perform at least as good as the best of the
two algorithms up to M = 7. Starting from M = 10, it features a somewhat
suboptimal performance at the middle problem sizes (N ∈ [103; 104]) while
still capturing the best behavior at small sizes and getting better than all
other algorithms close to N = 105.

In fact, the hybrid is always better than its parts for big numbers of
points. For N = 105, the average speedup compared to the best of the parts
can be as large as 4.28 when M = 3, and never seen to get less than 1.198
in all other considered datasets.

5 Conclusion

We presented a hybrid algorithm for non-dominated sorting which initially
runs a divide-and-conquer algorithm, however, when the size of a certain
subproblem seems to be suitable, it solves this subproblem using another
approach, Best Order Sort. For this to work, we slightly adapted Best Order
Sort, so that it can perform non-dominated sorting in a more general setup,
which needs to solve the divide-and-conquer subproblems. We also composed
a heuristic rule for when to switch to Best Order Sort, which is based solely
on the dimensions of a subproblem.

Our algorithm performs generally at least as well as its parts, except
for certain ranges around the switchpoint between the algorithms at higher
dimensions. This is an indicator that our heuristic on when to switch is
not perfect yet and has a room for improvement. Nevertheless, for the wide
range of testing data (3 to 30 objectives, 1 to 20 non-domination levels) our
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algorithm performs at least 20% better than the best of its parts for large
numbers of points (such as N = 105), and the speedup can be up to 4x for
smaller M . In a sense, this means that our hybridization scheme is rather
robust.
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