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ABSTRACT

The PushGP genetic programming system, which evolves programs
expressed in the Push programming language, has been used for a
variety of research projects and applications over its sixteen-year
history. PushGP relies on an implementation of the Push language
in a host language, and it is generally easiest to use PushGP in
projects in which most other components, such as fitness functions
and data access instructions, are written in the same host language.
While versions of Push have been written in nearly a dozen dif-
ferent languages, a full-featured implementation in Python would
make it available to a particularly large user base, and facilitate
its integration with a wide range of existing data science tools.
This paper presents pyshgp as an open-source PushGP framework
implemented in the Python programming language, and describes
some of its features for data science applications.
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1 INTRODUCTION

PushGP is a genetic programming system that has been under con-
tinuous development, and has been used for a variety of research
projects, since its initial development in 2001 [17]. PushGP evolves
programs in the Push programming language, which was designed
to combine a minimal syntax with maximal expressive semantics;
this combination was sought in order to allow for relatively uncon-
strained variation while searching the space of arbitrary computa-
tional processes.

Both the Push language and the PushGP evolutionary framework
must be implemented in a host language. While implementations
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have been developed in many host languages (see below), the most
complete systems have been developed in languages with relatively
small user bases, limiting participation in PushGP reseach and
application development.

This paper presents the pyshgp package, which implements
PushGP in the Python programming language. Python is an ex-
tremely popular language in the machine learning and artificial
intelligence communities. Given that pyshgp is an open source
project, it is our goal that these larger communities will easily be
able to get involved with PushGP through the use of pyshgp, and
that contributions will be made to the project and to research and
development with PushGP more generally.

2 PUSHGP

In the Push programming language, computations are performed by
instructions that take inputs from, and put outputs onto, typed data
stacks. Any implementation will include stacks for some particular
set of data types, which will generally include a range of common
types such as integer, boolean, and string, but may also include
more complex or special-purpose types. The collection of stacks,
together with their contents, constitutes the entire state of a Push
interpreter [17].

In addition to common and special purpose types, Push supports
a code type and includes a special stack, called the exec stack,
onto which programs are pushed for execution. The exec stack
contains, at all times during the execution of a program, the code
that remains to be executed, and the process of executing a Push
program primarily involves a loop of popping and executing the top
element of the exec stack. When a literal (such as the integer 3) is
executed, it is pushed onto the stack of the appropriate data type (in
this case, the integer stack). When an instruction is executed, all
of the arguments that it requires are popped off of the appropriate
stacks, and the results are pushed onto the appropriate stacks. For
example, the integer_add instruction pops two integers off of the
integer stack and pushes their sum back onto the integer stack. If
an instruction requires arguments that are not present on the stacks
(for example, if integer_add is executed in a context with fewer
than 2 integers on the integer stack), then the instruction acts as
a “no-op” and has no effect. Instructions that explicitly manipulate
the contents of the exec stack can alter the future of a computation
and thereby express novel and complex control structures; they are
responsible for much of Push’s expressiveness [16].

Push’s syntactic minimality stems from the fact that arguments
are passed between instructions via typed stacks, rather than
through the relative positions of instructions and arguments in
a program’s text. This means that an instruction can never be given
an input of the wrong type, because the instruction itself will al-
ways take its inputs from the stacks of the correct types, if they
are available. In conjunction with the “no-op” behavior described
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above, this also means that any sequence of Push literals and in-
structions is valid and executable. Push programs can be nested
(with parentheses or brackets), which allows subprograms to be de-
lineated and independentently manipulated on the exec stack, and
this introduces the only real syntax constraint on Push programs:
parentheses or brackets must be balanced.

We use the name “PushGP” to describe any genetic program that
evolves Push programs. Aside from using Push as the language in
which evolving programs are expressed, a PushGP system might
use techniques employed in many other genetic programming sys-
tems. For example, it might use various common techniques for
parent selection and genetic variation, and many PushGP systems
have used techniques borrowed from tree-based GP [9], includ-
ing tournament selection and crossover based on the swapping of
sub-expressions.

With respect to genetic variation, however, a linear representa-
tion for Push programs has recently been developed, called Plush
(the “1” is for “linear”). This allows programs to be generated and
varied as linear sequences (“Plush genomes”), facilitating unifor-
mity of variation [8]. Plush genomes are “expressed” to produce
possibly-nested Push programs prior to execution.

2.1 Existing PushGP Implementations

It is relatively easy to build a basic Push interpreter, with support
for a few core types and instructions, in any programming language.
As a result, Push implementations have been developed in at least
the following languages: C++, Clojure, Common Lisp, Elixir, Java,
Javascript, Racket, Ruby, Scala, Scheme, and Swift.

The most complete and actively maintained implementations of
Push at present are written in Clojure (a Lisp for the Java Virtual
Machine). Clojush is an example of one such PushGP implemen-
tation 1. Prior to the use of Clojure, most PushGP research and
development was conducted in Common Lisp or Scheme. While
these Lisp dialects provide a convenient platform for experimen-
tation, they have limited the number of users who might find it
convenient to integrate PushGP into their work.

Because Python is widely used, both by new programmers and
by professionals, and because many easy-to-use data science tools
are also available in Python, we decided to develop a full-featured
implementation of Push and PushGP in Python. This should allow
many more users to try PushGP in conjunction with their other
tools, without significant effort. It should also allow many more de-
velopers to contribute to PushGP research and the PushGP software
ecosystem.

3 PUSHGP IN PYTHON: PYSHGP

This paper presents pyshgp, an open source python package that
implements PushGP. The main goal of pyshgp is to be easily usable
in more contexts than just genetic programming research. Ideally,
this would foster an increase in awareness and usage of PushGP not
only in the genetic programming community, but also in the wider
machine learning community and among application-oriented data
scientists looking for powerful new tools.

This goal is what led to the decision to use Python as the host
language for pyshgp, as Python is a commonly used language in
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machine learning. The desire for usability also caused the structure
of the pyshgp package to split into two main parts: A Push language
interpreter, and a genetic programming framework.

3.1 The pyshgp Push Interpreter

The Push language interpreter that exists as part of pyshgp is im-
plemented independently of the genetic programming framework.
It contains the implementation of a standard Push instruction set,
as well as a class capable of executing Push programs.

The set of instructions included with the current version of the
pyshgp interpreter is similar to that of the Clojush PushGP frame-
work. There are five basic supported data types that each have a
set of instruction associated with them. Examples of the provided
instructions include the following (which were selected from much
larger instruction sets):

Boolean: AND, OR, NOT, XOR
Character: char_is_letter, char_is_digit, char_is_white_space
Code: do_times, do_while, exec_when, exec_if
Integer: +,—,*, +, modulus, <,>, <, >, min, max, increment
Float: +, —, *, =, modulus, <, >, <, >, min, max, sin, cos, tan
String: concat, head, tail, split, length, reverse, replace

The pyshgp instruction set also contains type casting instructions
that convert elements on the Push stacks to different types and move
them to the appropriate stacks. For example, the
integer_to_boolean instruction takes the top integer off of the
integer stack, and pushes a False to the boolean stack if the integer
was a 0; otherwise a True is pushed to the boolean stack. Type
casting instructions exist between all types, where appropriate.

Some supported stack types also have a corresponding vector
type. The pyshgp Push interpreter currently supports the following
vector types: integer_vector, float_vector, boolean_vector,
and string_vector. All vector types support the same instructions.
These vector instructions perform typical vector operations, such as
concatenation of vectors, appending new values, splitting vectors,
reversing vectors, and retrieving values at particular indices of a
vector.

All stacks, both scalar and vector, contain common stack instruc-
tions that manipulate the order of items, remove items, or add items.
Some examples of these common instructions include:

dup: Duplicates the top item of the stack.

swap: Swaps the position of the top two items on the stack.

flush: Removes all elements on the stack.

stack_depth: Pushes the size of the stack to the integer stack.

yank: Moves the element at index i in the stack to the top of
the stack, where i is given by the top integer on the integer
stack.

eq: If the top two elements of the stack are equal, pushes
True to the boolean stack otherwise pushes False.

The instructions listed in this section give an idea of the types
of operations included in the pyshgp instruction set, but are not
the entire set of instructions. To summarize the types of operations
included in the instruction set one might say they are roughly the
same operations provided by popular languages humans write code
in (Python, Javascript, Java, etc).

This set of instructions, which deals with a variety of data types
including code and vectors, is part of what makes PushGP so capable
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of solving general program synthesis tasks [3, 6]. It is also possible
to perform Symbolic Regression and Classification tasks using this
instruction set.

Often if it is helpful to define new instructions when applying
PushGP to a particular domain. In pyshgp, each instruction is an
instantiation of the Instruction class. This class requires a Python
function that takes a PushState object as its argument and returns
a modified PushState. All instantiations of the Instruction class
are stored in a set of registered instructions. To add additional in-
structions to the pyshgp instruction set, one must instantiate a new
Instruction object and add it to the set of registered instructions.

Although the Push interpreter is used heavily during evolution-
ary runs in pyshgp, it can also be used standalone to execute Push
programs. This allows for other search methods, aside from evolu-
tion, to be used to search for a program. Also, previously evolved
programs can be reused in other contexts using just the Push inter-
preter in pyshgp.

3.2 Genetic Programming in pyshgp

PushGP systems evolve programs in the Push language, which can
be executed using a Push interpreter. During genetic programming
runs, these programs must be evaluated by a user defined error
function. These error functions must take the following arguments:
A push program, and a set of training cases. Each training case
consists of a list of input values to be supplied to each program and
a list of target output values.

In most cases, the user defined error function will iterate over
the list of training cases. At each iteration, the push program is
executed using the list of inputs for the current training case. The
output of the push program is compared against the target output
values of the training case to compute a single error value. Each of
the error values calculated on each training case are returned in a
“error vector”.

Note that pyshgp does not aggregate error values during evalua-
tion. An individual holds its entire error vector and its total error
so that selection methods can use either the aggregated error, or
the entire error vector.

The evaluation stage of evolution is where pyshgp relies on
some basic parallel computation. Each individual’s evaluation is
independent, thus evaluation of an entire population can be made
an “embarrassingly” parallel task. In pyshgp this is accomplished
by the pathos library [11]. Pathos contains the functionality to
create a pool of process running on separate CPU cores. Pathos,
unlike Python’s built in multiprocessing library, is capable of
“pickling” (converting to a byte stream) anonymous and nested
python functions to be sent to the processes in the pool. This is
crucial for sending pyshgp’s instruction set to each process so the
programs can be executed.

Although some speed increase is observed when using parallel
evaluation, it has been expressed by some users that requiring the
Pathos library as a dependency is not ideal, and it is likely that
more can be done in this area to improve how pyshgp parallelizes
the evaluation of the population.

Three selection methods are supported by pyshgp. The default
selection method is Lexicase Selection. Epsilon-Lexicase Selection
and Tournament Selection are the two other currently implement
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selection methods. Both forms of Lexicase selection select parents
based on their error vectors, while tournament selection selects
based on total error [7, 10, 13].

Push programs consist of nested lists of instructions and literals.
Although genetic operators can be performed on Push programs
directly, more recent PushGP systems use linear representations of
these programs to allow for more flexible genetic operators. These
linear representations are called Plush genomes [8]. The genetic pro-
gramming that is implemented in pyshgp uses these Plush genomes
during the variation stage of evolution. These genomes are easily
translated into Push programs for the evaluation stage of evolution.

Currently uniform mutation is the only form of mutation that
is supported by pyshgp [8, 14]. Uniform mutation iterates over a
Plush genome, potentially mutating each gene. Genes can either
be instructions, or literals of any supported data type. If uniform
mutation mutates a gene which is an instruction, it is either re-
placed by a random instruction or a random literal. If uniform
mutation mutates a gene which is a literal, it has a probability of
being replaced by an instruction, otherwise the literal is mutated
using a “constant mutator”. These mutators vary based on the data
type of the literal. Integers and Floats are perturbed by Gaussian
noise. Strings have random characters replaced by new characters.
Booleans are randomly set to a new value.

The only recombination operator currently included in the
pyshgp genetic programming framework is alternation [8, 14]. Al-
ternation iterates over both parent genomes to build the child
genome out of genes taken from both parents. Initially a “read
head” begins to iterate over the first parent genome, copying each
gene to the child genome. At each iteration, there is a probability
of switching which parent the genes are being copied from. If an
iteration of alternation switches between parent genomes, the po-
sition in the new parent genome which alternation begins to copy
from is the same as the position in the previous parent genome
after being perturbed by Gaussian noise. In other words, when
changing which parent genome to copy genes from, the “read head”
may be pushed forward or backward a random number of genes.
This is called alignment deviation, and it can cause genes of parent
genomes to be skipped or to be repeated in the child genome.

All parameters and tunable probabilities related to Uniform Mu-
tation and Alternation can be set by the user as described in section
4.1 and Figure 1.

Pyshgp allows for the user to specify the percent of each gen-
eration that is created via each genetic operator, as well as combi-
nations of genetic operators (ie. Number of children produced by
Alternation followed by Uniform Mutation).

It is likely that these large, relatively complex genetic operators
are not optimal for all problems that one would want to try pyshgp
on. A valuable area of future development and research is the
implementation of a many smaller genetic operators, and a more
robust way of chaining genetic operators together.

3.3 Automatic Program Simplification

Programs in the Push language are often difficult for human to
understand due to their lack of informative syntax. This issue
is made more drastic in Push programs produced by evolution,
because many instructions that have no effect on the program’s
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behavior tend to be present. A version of this problem arises in
other forms of genetic programming as well.

This issue has prompted most modern implementations of
PushGP, including pyshgp, to perform automatic program sim-
plification after GP runs [4, 15]. The process of automatic program
simplification in pyshgp operates on a Plush genome using an error
function, over a user defined number of simplification steps. The
error function used is generally the same as the error function used
during evolution.

At each simplification step, a small random number of genes in
the genome are flagged as “silent”. These genes are not included
when the Plush genome is translated into a executable Push pro-
gram. The genome is translated into a new, slightly smaller Push
program which is evaluated using the error function. If the error
value of the smaller program is equal to or lower than the original
program, the genes remain silent, otherwise all of the genes are
returned to their previous state.

Occasionally evolution produces Push programs that contain
instruction that do not effect program behavior, but their presence
is necessary. For example, consider the follow program.

[exec_stack_depth, float_add, string_length]

The exec_stack_depth instruction pushes the length of the re-
maining program onto the integer stack. In this case, the
exec_stack_depth instruction would push a 2 to the integer stack.
Assuming this program was run on an empty Push state, the
float_add and string_length instructions will not have any argu-
ments on the float and string stacks respectively, and thus will not
be executed by the interpreter. However, if either the float_add
or string_length instructions are removed from the program the
result of exec_stack_depth is impacted.

The above program can be made arguably easier to understand by
replacing the float_add and string_length instructions in noop
instructions that explicitly do not have a behavior, but do take up
space in the program.

The process of automatic program simplification in pyshgp op-
erates on a Plush genome by following Algorithm 1.

4 USAGE

Initially, pyshgp was created to be a standalone Python package. It
included the Push interpreter and a genetic programming frame-
work but little was included to help use the two together. The user
had a to write a new fitness function for every application, and set
the many hyperparameters related to evolution manually.

In many situations this is still true for the current state of pyshgp
but some improvements have been made which help integrate
pyshgp with the popular machine learning package, Scikit-learn
(see below).

4.1 Hyperparameters For Evolution

Like many evolutionary computation frameworks, pyshsp has a
large number of tunable hyperparamenters that need to be set for
each evolutionary run. The most important hyperparameters can be
found in Figure 1, although pyshgp also includes hyperparamters
to toggle which values should be printed during evolution to get a
sense of run health and diversity of the population.
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Input: genome

Input: error_func

Input: num_steps

for iin 1 to num_steps do

n < Random number in [1, 2, 3] ;

action < Random element of [“silent”, “noop”] ;
if action == 7silent” then
‘ new_genome «— genome with n random genes flagged
as silent.;
else

new_genome < Genome with n random genes
‘ replaced with with noop instructions ;

end

old_err « Translate genome and pass to error_func ;

new_err < Translate new_genome and pass to error_func ;

if new_err < old_err then
| genome < new_genome

end

end
return genome
Algorithm 1: The process of automatic program simplification

in pyshgp

All of these hyperparameters have default values although it is
highly unlikely one would want to keep all of these settings when
applying pyshgp to a particular problem. There are two ways to
easily override the default hyperparameters when using pyshgp as
a standalone Python package.

If the user has hyperparameter values they would like to consis-
tently use in their application of pyshgp, they can create a Python
dictionary containing the new values and pass the dictionary to
the pyshgp main evolution function. This will override the default
hyperparameter values that are present in the dictionary. This is
the most common way to set the atom_generators, which dictate
which instructions and literals will be included in random program
generation.

If the user would like to easily launch multiple runs of pyshgp
with different hyperparameter values, this can be achieved through
command line arguments. Hyperparameters set via the command
line when starting a pyshgp run will overwrite both the default
hyperparameter values and the hyperparameter values specified
in the dictionary passed to the evolution function. This is the best
way to experiment with different hyperparameter values without
changing any code.

An example usage of pyshgp as a standalone Python package
can be found in Figure 2. This source code denotes how one might
use pyshgp to evolve a program that determines if a number is
odd or even. This is one of many benchmark problems included
included in the pyshgp project on Github.

4.2 Scikit-Learn Integration

As previously mentioned, a major goal of pyshgp is to bring PushGP
to a larger audience. An important feature of pyshgp that helps
achieve this goal is the integration with Scikit-learn [12].
Scikit-learn is a popular and accessible machine learning pack-
age written in python. Many commonly used machine learning
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Description

error_threshold
population_size
max_generations
max_genome_initial size
max_points

atom_generators
genetic_operator_probabilities
selection_method
epsilon_lexicase_epsilon
tournament_size
alternation_rate
alignment_deviation

uniform_mutation_rate
uniform_mutation_constant_tweak _rate

uniform_mutation_float_gaussian_standard_deviation
uniform_mutation_int_gaussian_standard_deviation

uniform_mutation_string_char_change _rate

final_simplification_steps
max_workers

If any total error of individual is below this, that is considered a solution.

Size of the population at each generation.

Max generations before evolution stops. Will stop sooner if solution is found.
Maximum size of random genomes generated for initial population.

Maximum size of push genomes and push programs, as counted by points in the
program.

The instructions that pushgp will use in random code generation.

Probabilities of parents undergoing each genetic operator to produce a child.
Options are ’lexicase’[7], epsilon_lexicase’[10] or tournament’.

Defines a hard-coded epsilon. If None, automatically defines epsilon using MAD.
If using tournament selection, the size of the tournaments.

When using alternation, how often alternates between the parents.

When using alternation, the standard deviation of how far alternation may jump
between indexes when switching between parents.

The probability of each token being mutated during uniform mutation.

The probability of using a constant mutation instead of simply replacing the token
with a random instruction during uniform mutation.

The standard deviation used when tweaking float constants with Gaussian noise.
The standard deviation used when tweaking integer constants with Gaussian
noise.

The probability of each character being changed when doing string constant
tweaking.

The number of simplification steps that will happen upon finding a solution.

If 1, pyshgp runs in single thread. Otherwise, pyshgp runs in parallel. If None,
uses number of cores on machine.

Figure 1: Most of the parameters needed to be set for a genetic programming run with pyshgp. Some parameters were not
included to conserve space. Excluded parameters were regarding which values to print at each generation to monitor run

health.

techniques are available in Scikit-learn including: Support Vector
Machines, Random Forrest Classifiers, Artificial Neural Networks,
various clustering algorithms, and Principle Component Analysis.

Scikit-learn also has model selection and data preprocessing ca-
pabilities. This includes implementations of k-fold cross-validation,
grid search hyperparameter optimization, and a variety of feature

transformations.

Pyshgp includes implementations of classes that inherit from
Scikit-learn’s base estimators. This allows for pyshgp to easily be
compared against other machine learning methods. Also, Scikit-
learn’s model selection and data preprocessing capabilities can be
easily combined with pyshgp’s estimator classes to create pipelines

that perhaps perform better than using only pyshgp.

4.3 PushGPRegressor

The PushGPRegressor class that is included in pyshgp can be used
to easily perform symbolic regression alongside other Scikit-learn

components.

The advantage provided by the PushGPRegressor class is the
generation of a suitable error function from a given dataset. When
the fit method is called, a function is created which uses the
training data to produce a simple error function. This error function
uses the Mean Squared Error (MSE) as the default error metric, but
other metrics supported by Scikit-learn can be used as well.

4.4 PushGPClassifier

The PushGPClassifier class is similar to the PushGPRegressor
class, except it is designed to simplify using pyshgp alongside other
Scikit-learn components for Classification tasks.

Much like the PushGPRegressor, the PushGPClassifier gener-
ates an error function when the fit method is called with training
data. To produce class predictions, pyshgp relies on the use of
voting instructions. Each vote instruction is associated with a class
in the classification problem, as well as one of the numerical stack
types (integer or float). Each time one of these instructions is pro-
cessed by the Push interpreter, a vote amount it taken from the
numerical stack and added to the current vote level of the associated
class. After program execution, the class with the highest vote level
is considered the prediction.

5 BENCHMARKS

This paper presents some basic benchmarks of the pyshgp frame-
work. These benchmarks consist of some of the example problems
that can be found in the pyshgp repository on GitHub.
Below are the descriptions for each problem used to benchmark
for this paper [1, 2, 5, 6].
Access: Given a vector of integers, and an index integer, i,
return the integer at position i in the vector.
Decrement: Given a vector of integers, return the same vec-
tor with each element decremented by 1.
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Iris: Based on a small dataset containing measurements of
iris flowers, classify the flower species.

0Odd: Evolve a program which produces True if the input
integer is odd, and False otherwise.

Replace Space With Newline (RSWN): Given an input
string, print the string with each space character replaced
by a newline character and return an integer equal to the
number of non-whitespace characters.

Integer Regression: Fit the polynomial x> — 2x? — x using
integer constants.

String: Remove the last 2 characters of input string, and
concatenate the result with itself.

Below is a table of the success rates for each of these benchmark
problems.

Problem | Solutions | Number of Runs
Access 5 5
Decrement 5 5
Iris 5 7
0Odd 10 10
RSWN 6 10
Integer Regression 10 10
String 10 10

Unfortunately gathering meaningful runtime data on these
benchmark runs proved to be difficult. Each run was performed
on the ANONYMIZED College Cluster Computing Facility, where
each run is assigned a variable number of CPU cores and memory
based on resource availability. These differences in resources make
getting consistent timings for each benchmark problem difficult.

In the below table, the average runtime of each problem is given,
as well as the average number of generations taken to find a solution.
For runs where no solution was found, the maximum number of
generations for the run was used.

Problem | Avg. Runtime (min) | Avg. Generations

Access 14.5 9.5
Decrement 12.8 29.0

Iris 628.51 108.14
Odd 8.01 253

RSWN 277.25 130.4
Integer Regression 4.60 5.0
String 1.39 5.0

Although these benchmarks are not impressive results on their
own, they demonstrate that pyshgp has a working PushGP frame-
work and can be applied to regression, binary logic, list compre-
hension, string manipulation, and general software synthesis tasks.

6 OPEN SOURCE DEVELOPMENT

Pyshpg is hosted on GitHub where the source code is freely avail-
able to anyone?. The use of git version control and GitHub allows
for easy use of continuous integration tools.

Zhttps://github.com/erp12/pyshgp
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6.1 Contributing

Pyshgp is not the first PushGP implementation to utilize open
source contributions. Clojush is one example of a PushGP frame-
work that has benefited from being open source. Multiple re-
searchers, students, and enthusiasts have contributed to the Clojush
project via GitHub. Ideally, pyshgp will be able to leverage these
same benefits of being open source to the same degree, or possibly
more due to the fact that pyshgp’s host language of Python is more
popular than Clojush’s host language of Clojure.

6.2 Automated Testing Suite

The pyshgp project contains an automated test suite that is triggered
on every Pull Request to the repository on GitHub. This test suite
performs unit tests on most of the pyshgp code base, as well as
tests of the Push instruction set and small validation tests of the
genetic programming framework.

The tests of the instruction set are called “instruction unit tests”,
as they aim to test each instruction individually. To perform these
tests, a mock Push state is created that contains the necessary
arguments for the instruction. The instruction is then run against
the Push state and the resulting Push state is compared against
the expected Push state. Unlike normal program execution, the
interpreter does not continue to process the elements of the exec
stack until the exec stack is empty. Only the one instruction being
tested is executed.

The validation tests consist of small genetic programming runs
using the pyshgp genetic programming framework. These small
runs are 5 generations of the example programs included in the
pyshgp GitHub repository.

6.3 Automatic Documentation Generation

PushGP has undergone many changes since its creation in 2001.
These changes include modification to the Push instruction set, ge-
netic operators, Plush genomes, host language, and more. PushGP
continues to be used in genetic programming research and improve-
ments continue to be made. As the pyshgp open source community
adds these changes (and perhaps pioneers some of its own) it will
be important to keep documentation on the project up to date. This
is an area which other current PushGP frameworks struggle with.

To address this difficulty, the Sphinx python documentation gen-
erator is used to generate documentation files from docstrings and
rich text files found in the pyshgp GitHub repository. These gener-
ated documentation files take the form of HTML web documents.
The pyshgp project on GitHub currently uses the ReadTheDocs
service to host these web documents. This distributes the pysh
documentation to many potential users and contributors.?

Given that all documentation is generated from resources found
inside the repository, all contributions to pyshgp can be accompa-
nied by modifications to the documentation. This will cause the
ReadTheDocs documentation to always be synchronous with the
current pyshgp codebase.

3http://pysh2.readthedocs.io/en/latest/
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7 FUTURE WORK

pyshgp is a young project that could benefit from many improve-
ments. One such improvement is the more thoughtful use of parallel
computation. Currently, pyshgp uses fairly simplistic multi-core
population evaluation, and performance gains are modest.

Aside from improved parallel computation, pyshgp could also
benefit from the use of a more lightweight Push interpreter. Given
the Push interpreter mostly consists of simple operations on stacks,
it could be possible to replace large parts of the Push interpreter
with Python wrapped lower level language, such as C.

The current state of the genetic programming framework in
pyshgp could also be improved in a number of ways. Firstly, more
genetic operators that exist in genetic programming literature could
be included in addition to the existing genetic operators. Second,
the larger genetic operators could be broken into smaller operators
which are chained together. This would allow for more experimen-
tation and tuning of genetic operators.

The pyshgp open source community is currently extremely small,
and it is not clear how easy it is to make contributions. A major goal
of the pyshgp project is that the genetic programming and machine
learning communities engage in maintaining and improving the
codebase. It remains to be seen how feasible this will be.
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import random

import pyshgp.utils as u

import pyshgp.gp.gp as gp

import pyshgp.push.interpreter as interp

import pyshgp.push.instructions.registered_instructions as ri
import pyshgp.push.instruction as instr

def odd_error_func(program, debug = False):
errors = []

for i in range(10):
# Create the push interpreter
interpreter = interp.PushInterpreter([i])
# Run program
interpreter.run_push(program, debug)
# Get output from top of boolean stack.
prog_output = interpreter.state.stacks["_boolean"].ref (@)
# compare to target output
target_output = bool(i % 2)

if prog_output == target_output:
errors.append(@)
else:
errors.append(1)
return errors

# Define some new hyperparameter values.
odd_params = {

"population_size" : 500,
"atom_generators" : list(u.merge_sets(ri.registered_instructions,
[lambda: random.randint(@, 100),
lambda: random.random(),
instr.PyshInputInstruction(@)1))
}
if __name__ == "__main__":

# Run evolution using given error function and parameters.
gp.evolution(odd_error_func, odd_params)

Figure 2: Example source code for the Odd problem. This file starts a pushgp run that evolve a Push program that returns True
of the input problem is odd and False otherwise.
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