
Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms

�omas Gabor
LMU Munich

thomas.gabor@i�.lmu.de

Lenz Belzner
LMU Munich

belzner@i�.lmu.de

ABSTRACT
�e evolutionary edit distance between two individuals in a pop-
ulation, i.e., the amount of applications of any genetic operator
it would take the evolutionary process to generate one individual
starting from the other, seems like a promising estimate for the
diversity between said individuals. We introduce genealogical di-
versity, i.e., estimating two individuals’ degree of relatedness by
analyzing large, unused parts of their genome, as a computationally
e�cient method to approximate that measure for diversity.

CCS CONCEPTS
•Computing methodologies→ Heuristic function construc-
tion; Genetic algorithms;
ACM Reference format:
�omas Gabor and Lenz Belzner. 2017. Genealogical Distance as a Diversity
Estimate
in Evolutionary Algorithms. In Proceedings of GECCO ’17 Companion, Berlin,
Germany, July 15-19, 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082529

1 INTRODUCTION
Diversity has been a central point of research in the area of evo-
lutionary algorithms. It is a well-known fact that maintaining a
certain level of diversity aids the evolutionary process in preventing
premature convergence, i.e., the phenomenon that the population
focuses too quickly on a local optimum at hand and never reaches
more fruitful areas of the �tness landscape [4, 14, 16]. Diversity thus
plays a key role in adjusting the exploration-exploitation trade-o�
found in any kind of metaheuristic search algorithm.

We encountered this problem from an industry point of view
when designing learning components for a system that needs to
guarantee certain levels of quality despite being subjected to the
probabilistic nature of its physical environment and probabilistic
behavior of its machine learning parts [1]. Of course, any general
solution for this kind of challenge is yet to be found. However,
we believe that the engineering of (hopefully) reliable learning
components can be supported by exposing all handles that search
algorithms o�er to the engineer at site. For scenarios like this
one, we consider it most helpful to employ approaches that allow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082529

the engineer to actively control properties like diversity of the
evolutionary search process instead of just observing diversity and
adjust it indirectly via other parameters (like, e.g., the mutation
rate).

Among the copious amount of di�erent techniques to introduce
diversity-awareness to evolutionary algorithms, many do not im-
mediately make the job of adjusting a given evolutionary algorithm
easier but instead require additional engineering e�ort: For ex-
ample, one may need to de�ne a distance metric speci�cally for
the search domain at hand or adjust lots of hyperparameters in
island or niching models. We thus a�empt to de�ne a more domain-
independent and almost parameter-free measurement for diversity
by utilizing the genetic operators already de�ned within any given
evolutionary process.

We discuss related work in the following Section 2. We then
explain the target metric called “evolutionary edit distance” in
Section 3. Section 4 continues by introducing the notion of “ge-
nealogical diversity” as means to approximate that concept. We
improve this approach in Section 5 by using a much simpler and
computationally more e�cient data structure. To support our ideas,
we describe a basic evaluation scenario in which we have applied
both approaches in Section 6. We end with a short conclusion in
Section 7.

2 RELATEDWORK
�e importance of diversity for evolutionary algorithms is discussed
throughout the body of literature on evolutionary computing rang-
ing from entry level [4, 9] to specialized papers [13, 16]. In many
cases, authors refer to diversity as a measure of the evolutionary
algorithm’s performance and try to con�gure the hyperparameters
of the evolutionary algorithm as to achieve an optimal trade-o�
between exploration and exploration for the scenario at hand [15].
�is measure can then be used to interact with the evolutionary
process by adjusting its parameters [16] and/or actively altering the
current population, for example via episodes of “hypermutation”
[6] or migration of individuals from other (sub-)populations [11, 15].
On top of that, there exist a few approaches that include diversity
into the evolutionary algorithm’s objective function allowing us to
use evolution’s optimization abilities to explicitly achieve higher
diversity of solutions [2].

An extensive overview of current approaches to increase di-
versity in evolutionary algorithms is provided in [14], which also
de�nes a helpful taxonomy of said approaches. Whenever a diver-
sity objective can be quanti�ed, it can be used to build a classic
multi-objective optimization problem and to apply the vast amount
of techniques developed to solve these kinds of problems using
evolutionary algorithms [7, 8, 10, 13].

ar
X

iv
:1

70
4.

08
77

4v
1

 [
cs

.N
E

]
 2

7
A

pr
 2

01
7

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

�e authors of [17] address the very important issue of how
to e�ciently compute diversity estimates requiring to compare
every individual of a population to every other. �ey develop an ap-
proach to reduce the complexity of said computation to linear time.
However, it might still be interesting to analyze how well certain
metrics scale even beyond that, as for example in the present paper
we chose to sample the test set for diversity from the population to
further save computation time.

3 EVOLUTIONARY EDIT DISTANCE
As described in the previous Section, there exists a vast amount of
approaches to compute a population’s diversity (and an individual’s
diversity with respect to that population). We found, among other
things, that from an engineering point of view, many (if not most) of
these approaches require the designer of the evolutionary algorithm
to adjust certain functions or parameters based on the problem
domain [5]. �is gave rise to the idea of using the genetic operators
already programmed for the problem domain to de�ne a domain-
independent notion of diversity.

�e concept this line of thought is based on could be called
evolutionary edit distance: Given two individuals x1 and x2 we
want to estimate how many applications of a genetic operator it
would take to turn one of these individuals into the other.1 First,
we start o� by de�ning a lower bound on the number of operator
applications, i.e., the minimal evolutionary edit distance.

We can assume that a given evolutionary process provides the
genetic operator o : D∗ → D where D is the problem domain
in which our individuals live and D∗ is a list of arbitrary many
elements of D. Most evolutionary algorithms de�ne exactly two
instances of genetic operators called mutation m : D → D and
recombination c : D × D → D, but we describe the more gen-
eral case for now. However, in the general case genetic operators
perform in a probabilistic manner, meaning that their exact results
depend on chance. We describe this behavior mathematically by
adding an index s ∈ S to o which represents the seed of a pseudo-
random number generator (using seeds of type S). �en, we can
de�ne the minimal evolutionary edit distance mdist : D × D → N
as follows:

mdist(x1,x2) =
0 if x1 = x2

min
s ∈S

1 +mdist(os (x1),x2) otherwise

Note that as long as we assume the genetic operator o to be
symmetric (which they usually are), mdist is symmetric as well.

�e minimal edit distance is not an accurate estimate of the ac-
tual e�ort it would take the evolutionary process to turn x1 into
x2 since the required indexed instances os of the genetic operator
o may be arbitrarily unlikely to occur in the process. Instead, we
want to estimate the expected amount of applications of o given
a realistic occurrence of instances of the genetic operator. Sadly,
the complexity of this problem is equal to running an evolution-
ary algorithm optimizing its individuals to look like x2 and thus

1Because of the probabilistic nature of evolutionary algorithms, the evolutionary edit
distance would actually be a distribution over integers. If a scalar value is needed, we
could then compute the expected evolutionary edit distance.

potentially equally expensive regarding computational e�ort as the
evolutionary process we are trying to augment with diversity.

However, if we want to usemdist to compute the diversity of indi-
viduals for a given evolutionary process, we never want to compare
arbitrary solution candidates x1,x2 ∈ D but will only ever compare
individuals within the current population P ⊆ D or at most individ-
uals from the set X with P ⊆ X ⊆ D, which is the set of all individ-
uals ever generated by the evolutionary process. Each of those indi-
viduals has been generated through the repetitive application of the
genetic operators already and so we have a set of concrete instances
of o instead of having to reason about all os that could be used by
the evolutionary process. We write the set of all actually gener-
ated instances of o asO = {(x0,os0 ,x

′
0), (x1,os1 ,x

′
1)..., (xk ,osk ,x

′
k)}

wherek+1 is the total amount of evolutionary operations performed
and for all (xi ,osi ,x ′i) ∈ O the evolutionary process actually con-
structed x ′i ∈ X by computing osi (xi).

We can thus de�ne the factual evolutionary edit distance edist :
X × X → N as the total amount of operations it actually took to
turn x into x ′:

edist(x1,x2) =


0 if x1 = x2
1 if ∃s ∈ S : (x1,os ,x2) ∈ O
1 if ∃s ∈ S : (x2,os ,x1) ∈ O
edist ′(x1,x2) otherwise

edist′(x1,x2) =min
x ∈X

1 +

min
s ∈S,(x,os ,x1)∈O

edist(os (x),x1) +

min
s ∈S,(x,os ,x2)∈O

edist(os (x),x2))

Note that edist can only be de�ned this way when we assume
that its parameters x1 and x2 have actually been generated through
the application of genetic operators from a single base individual
only. �is is an unrealistic assumption: Completely unrelated indi-
viduals can be generated during evolution. Furthermore, de�ning
the evolutionary edit distance this way requires multiple iterations
through the whole set of X since we neglect many restrictions
present in most genetic operators o.

4 PATHS IN THE GENEALOGICAL TREE
In the context of evolutionary processes it seems natural to think
of individuals as forming genealogical relationships between each
other. �ese relations correspond to the genetic operators applied
to an individual x to create the individual x ′. Connecting all individ-
uals (of all generations of the evolutionary process) to their respec-
tive children yields a directed, acyclic and usually non-connected
graph. Starting from a single individual x , recursively traversing all
incoming edges in reverse direction yields a connected subgraph
containing all of x ’s ancestors. We call this graph the genealogical
tree of x .

Formally, we write G(x) = (Vx ,Ex) for the genealogical tree
of x consisting of vertices Vx and edges Ex . For an evolutionary
process producing (over all generations) the set of individuals X ,
it holds for all x1,x2 ∈ X that (x1,x2) ∈ Ex2 i� x2 is the result
of a variation of x1. If we consider an evolutionary process with

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

two-parent recombination as its only variation operator, our notion
of a genealogical tree is exactly the same as in human (or animal)
genealogy.

However, most evolutionary algorithms also feature a mutation
operator that works independently from recombination. For the
genealogical tree, we treat it like a one-parent recombination in
that we consider a mutated individual an ancestor of the original
one. �is approach does not re�ect the fact that a single mutation
usually has a much smaller impact on the genome of an individual
than recombination has. We tackle this issue in Section 5.

Given these graphs, we can then trivially de�ne the ancestral
distance from an individual x1 ∈ X to another individual x2 ∈ X as
follows:

adist(x1,x2) =


∞ if x1 < Vx2

0 if x1 = x2
min

x ∈X ,(x,x2)∈Ex2
1 + adist(x1,x) otherwise

Note that adist as de�ned here is still not symmetric, i.e., it
returns the amount of variation steps it took to get from x1 to x2,
which is a �nite number i� x1 is an ancestor of x2. �is also usually
means that if adist(x1,x2) is �nite, adist(x2,x1) = ∞.

Given two individuals x1 and x2, we can use these de�nitions to
compute their latest common ancestor L(x1,x2), i.e., the individual
with the closest relationship to either x1 or x2 that appears in the
respective other individual’s genealogical tree. Formally, if a (latest)
common ancestor exists it is given via:

L(x1,x2) = argmin
x ∈Vx1∩Vx2

min(adist(x ,x1), adist(x ,x2))

Note that L is symmetric, so L(x1,x2) = L(x2,x1). For our de�-
nition of genealogical distance we consider the ancestral distance
from the latest common ancestor to the given individuals. However,
we also want to normalize the distance values with respect to the
maximally achievable distance for a certain individual’s age. �e
main bene�t here is that when normalizing genealogical distance
on a scale of [0; 1], e.g., we can assign a �nite distance to two com-
pletely unrelated individuals. For this reason we de�ne a function
E which computes the earliest ancestor of a given individual:

E(x) = argmax
x ′∈Vx

adist(x ′,x)

Note that for all x ′ ∈ Vx it holds that adist(x ′,x) is �nite. We can
now use the ancestral distance to an individual’s earliest ancestor to
normalize the distance to the latest common ancestor with respect
to the age of the evolutionary process. Note that if x1 and x2 share
no common ancestor, we set gdist(x1,x2) = 1 and otherwise:

gdist(x1,x2)=
min(adist(L(x1,x2),x1), adist(L(x1,x2),x2))
max(adist(E(x1,x2),x1), adist(E(x1,x2),x2))

�is genealogical distance function gdist then describes for two
individuals x1,x2 how close their latest common ancestor is in
comparison to their combined “evolutionary age”, i.e., the total
amount of variation operations they went through.

Following up from the previous Section, we claim that this ge-
nealogical distance correlates to the factual evolutionary edit dis-
tance between two individuals. It is not an exact depiction, though,
because for cousins, e.g., we choose the minimum distance to their
common ancestor instead of adding both paths through which they
originated from their ancestor. Our reason for doing so is that we
want to treat the comparison of cousins to cousins and of parents
to children the same way, but the ancestral distance from child to
parent is∞. In the end, we are not interested in the exact values but
only in the comparison of various degrees of relatedness, which is
why lowering the overall numbers using min instead of summation
seems reasonable.

In e�ect, the metric of gdist still appears to be needlessly exact
for the application purpose inside the highly stochastic nature of
an evolutionary algorithm. And while a lot of algorithmic opti-
mizations and caching of ancestry values can help to cut down the
computation time of the employed metric, comparing two individ-
uals still takes linear time with respect to the node count of their
ancestral trees, which in turn is likely to grow over time of the
evolutionary process. We tackle these issues by introducing a faster
and more heuristic approach in the following Section.

5 ESTIMATING GENEALOGICAL DISTANCE
ON THE GENOME

At �rst, it seems impossible or at east overly di�cult to estimate
the genealogical distance (or for that ma�er, the evolutionary edit
distance) of two individuals without knowing about their ancestry
inside the evolutionary process. However, life sciences are facing
that problem per usual and have found a way to estimate the rela-
tionship between two di�erent genomes rather accurately. �ey
do so by computing the similarity in genetic material between two
given genomes.

To most arti�cial evolutionary processes, this approach is not
directly applicable for a few reasons:

(i) Most evolutionary algorithms use genomes that are much
smaller than that of living beings. �us, it is much harder to
derive statistical similarity estimates and the analysis is much
more prone to be in�uenced by sampling error.

(ii) In many cases, the genomes used are not homogeneous but
include various �elds of di�erent data types. Comparing simi-
larity between di�erent types of data requires a rather complex
combined similarity metric.

(iii) �e way genomes are usually structured in evolutionary algo-
rithms means that most to all parts of the genome are subject
to selection pressure reducing the variety found between dif-
ferent genomes.

�e last point may seem odd because, obviously, genomes found
in nature are subject to selection pressure as well. However, biology
has found that, in fact, most parts of the human genome are not
expressed at all when building the phenotype (i.e., a human body)
[12] and are thus not directly subjected to selection pressure.

We can, however, mitigate these problems making a rather sim-
ple addition to an arbitrary evolutionary algorithm: Add more genes.
As these additional genes do not carry any meaning for the solution
candidate encoded by the genome, they are not subjected to selec-
tion pressure (iii). We can choose any data type we want for them,

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

so we can adhere to a type that allows for an easy comparison be-
tween individuals (ii). And �nally, we can choose a comparatively
large size for these genes so that they allow for a subtle comparison
(i). For the lack of a be�er name, we call these additional genes
by the name trash genes to emphasize that they do not directly
contribute to the individual’s �tness.

For our experiments thus far, we have chosen a simple bit vector
of a �xed length τ to encode the added trash genes. Choosing τ
too small (2τ < n where n is the population size) can obviously
be detrimental to the distance estimate, but choosing very large τ
(2τ � n) has not shown any negative e�ects in our preliminary
experiments. Using bit vectors comes with the advantage that
genetic operators like mutation and recombination are trivially
de�ned on this kind of data structure.

Formally, to any individual x ∈ X we assign a bit vector T (x) =
〈t0, ..., tτ−1〉 with ti ∈ {0, 1} for all i , which is initialized at random
when the individual x is created. Every time a mutation operation
is performed on x , we perform a random single bit �ip on T (x).2
For each recombination of x1 and x2, we generate the child’s trash
bit vector via uniform crossover of T (x1) and T (x2).

We can then compute a trash bit distance tdist between two
individuals x1 and x2 simply by returning the Hamming distance
between their respective trash genes:

tdist(x1,x2) =
1
τ
∗ H (T (x1),T (x2))

=
1
τ
∗

τ−1∑
i=0
|T (x1)i −T (x2)i |

�is metric clearly is symmetric. Again, we normalize the out-
put by dividing it by τ . Furthermore, trash bit vectors allow for a
more detailed distinction between the impact of various genetic
operators: �e expected distance between two randomly gener-
ated individuals x1 and x2 is E(tdist(x1,x2)) = 0.5. However, the
distance between parents and children is reasonably lower: If x is
the result of mutating x ′, we expect their trash bit distance to be
E(tdist(x ,x ′)) = 1/τ . �e trash bit distance between a parent x ′ of
a recombination operator and its child x is E(tdist(x ,x ′)) = 0.25
since the child shares about half of its trash bits with this one parent
x ′ by the nature of crossover, resulting in a Hamming distance of
0 on this subset, and the other half with the other parent, say x ′′,
with which the �rst parent x ′ naturally shares about half of its trash
bits when no other assumptions about the parents’ ancestry apply.
�is means that for the subset of trash bits inherited from x ′′, x
and x ′ have a trash bit distance of 0.5, resulting in a 0.25 average
for the whole bit vector of x .3 If the parents are related (or share
improbable amounts of trash bits by chance), lower numbers for
tdist can be achieved.

�ese examples should illustrate that the computed trash bit di-
versity is able to express genealogical relations between individuals.
It stresses recombination over mutation but in doing so re�ects
the impact the respective operators have on the individual’s actual

2Note that this works for typical mutation operators on the non-trash genes, which
tend to change very li�le about the genome as well. If more invasive mutation operators
are employed, a likewise operation on the bit vector could be provided.
3�ese numbers correspond closely to the degrees of genetic relationship mentioned
in [3].

Figure 1: Illustration of the setup of the scenario. Marked
in red is the starting position of the agent. �e green area
de�nes the goal which the agent is supposed to drive to.
�e gray area is the main obstacle the robot needs to drive
around.

genome. We thus propose trash bit vectors as a much simpler and
more e�cient implementation of genealogical diversity.

As is clear from the usage of the “expected value” E in these
computations, the actual distance between parents and o�spring
is now always subject to random e�ects. However, so is their
similarity on the non-trash genes as well.4 �is kind of probabilistic
behavior is an intrinsic part of evolutionary algorithms. However,
it may make sense to base the recombination on the trash bit vector
on the recombination of the non-trash genes so that probabilistic
tendencies are kept in sync. �is is up to future research.

Finally, the computational e�ort to compute the trash bit distance
is at most times negligible. Computing the distance between two
individuals is an operation that can be performed inO(τ) and while
we expect there to be a lose connection between population size and
the optimal τ , for a given evolution process with a �xed population
size, this means that trash bit diversity can be computed in constant
time. Trivially, this also means the concept scales with population
size and age.

6 EXPERIMENT
To verify the practical applicability of the concept of genealogical
diversity and its realizations presented in the previous Sections 4
and 5, respectively, we constructed a simple experimental setup:
We de�ne a simple routing task in which a robot has to choose a
sequence of 10 continuous actions a ∈ R × R to reach a marked
area. Each action takes exactly one time step and can move the
robot across a Manha�an square of 0.5 at most. For each time step
the robot remains inside the designated target area, it is rewarded
a bonus of +1. In order to reach that area, the robot has to �nd a
path around an obstacle blocking the direct way. Figure 1 shows a
simple visualization of the setup described here.

4For example, a child generated via uniform crossover has very slim chance of not
inheriting any gene material from one parent at all. �e same e�ect can now happen
not only on the �tness-relevant genes but also on the genes used for diversity marking.

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: Average �tness achieved over time by the the non-
diverse genetic algorithm (black), the domain-speci�c di-
verse genetic algorithm (blue), the genealogically diverse al-
gorithm based on the genealogical tree distance (green) and
the genealogically diverse genetic algorithm using the trash
bit distance (red). To mitigate random e�ects a bit, the �t-
ness values have been averaged over 10 complete evolution
runs.

We solved this scenario with four di�erent evolutionary algo-
rithms. All of these use a population size of 20 individuals and
have been executed for 1000 generations. For this kind of con-
tinuous optimization problem, that is not enough time for them
to fully converge. We constructed a standard setup of an evolu-
tionary algorithm with a continuous mutation operator working
on a single action at a time and activated with a probability of
0.2. We employ uniform crossover with a probability of 0.3 per
individual. A recombination partner is selected from a two-player
tournament and o�spring is added to the population before the
selection step. Furthermore, 2 new individuals per generation are
generated randomly.

Within this setup, we de�ne a standard genetic algorithm using
a �tness function that simply returns the aforementioned bonus
for each individual. It performs well but seems to su�er from
premature convergence in this setup (see Figure 2 for all plots).
�is is the baseline approach all diversity-enabled versions of the
genetic algorithm can be tested against.

To introduce the diversity of the solutions to the genetic algo-
rithm, we choose the approach to explicitly include the distance
of the individual x to other individuals of P in x ’s �tness. But
we do not construct a multi-objective optimization problem (as in
[10, 13], e.g.) but simply de�ne a weighting function to �a�en these
objectives. Formally, given the original �tness function f and an
average diversity measure d of a single individual with respect to
the population P ⊆ X , we de�ne an adapted �tness function f ′ as
follows:

f ′(x , P) = f (x) + λ ∗ d(x , P)
It is important to note that while we use f ′ for the purpose of

selection inside the evolutionary algorithm, all external analysis

(plo�ing, e.g.) is performed on the value of f only in order to keep
the results comparable. Also note that we reduce the computational
e�ort to calculate any distance metric d used in this paper by not
evaluating a given individual’s diversity against the whole popula-
tion P but only against a randomly chosen subset of 5 individuals.
In our experiments, this approach has been su�ciently stable.

Furthermore, we determined the optimal λ for each algorithm
using grid search on this hyperparameter. In a scenario like this,
where higher diversity yields be�er results overall, it appears rea-
sonable to think that λ could be determined adaptively during the
evolutionary process. �is is still up to further research.

For evaluation purposes, we provided a domain-speci�c distance
function. In this simple scenario, this can be de�ned quickly as well
and we chose to use the sum of all di�erences between actions at the
same position in the sequence. Figure 2 shows that this approach
takes a bit longer to learn but can then evade local optima be�er,
showing a curve that we would expect from a more diverse genetic
algorithm.

Finally, we implemented both genealogical distance metrics pre-
sented in this paper. We can see in Figure 2 that both approaches in
fact perform comparably, even though trash bit vectors require
much less computational e�ort. For this experiment, we used
τ = 32.

7 CONCLUSION
In this paper, we have introduced the expected evolutionary edit dis-
tance as a promising target for diversity-aware optimization within
evolutionary algorithms. Having found that it cannot be reason-
ably computed within another evolutionary process, we developed
approaches to estimate that distance more e�ciently. To do so, we
introduced the notion of genealogical diversity and presented a
method to estimate it accurately using very li�le computational
resources.

�e experimental results show the initial viability of the ap-
proach used here and allow for many future applications. Some
of these have been realized in [5]. Other promising directions for
future work have been mentioned throughout and include plans to
omit the hyperparameter λ by using genealogical diversity within
a true multi-objective evolutionary algorithm or by opening λ for
self-adaptation by the evolutionary process. Furthermore, from
a biological point of view, a genealogical selection process is less
common in survivor selection than it is in parent selection. Testing
if the metaphor to biology holds in that case would be an immediate
next step of research.

REFERENCES
[1] Lenz Belzner, Michael Till Beck, �omas Gabor, Harald Roelle, and Horst Sauer.

2016. So�ware engineering for distributed autonomous real-time systems. In
Proceedings of the 2nd International Workshop on So�ware Engineering for Smart
Cyber-Physical Systems. ACM, 54–57.

[2] Markus Brameier and Wolfgang Banzhaf. 2002. Explicit control of diversity
and e�ective variation distance in linear genetic programming. In European
Conference on Genetic Programming. Springer, 37–49.

[3] Richard Dawkins and others. 2016. �e sel�sh gene. Oxford university press.
[4] Agoston E Eiben and James E Smith. 2003. Introduction to evolutionary computing.

Vol. 53. Springer.
[5] �omas Gabor. 2017. Preparing for the Unexpected: Diversity Improves Re-

silience in Online Genetic Algorithms. In Proceedings of �e 14th IEEE Interna-
tional Conference on Autonomic Computing (ICAC2017). Submi�ed.

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

[6] John J Grefenste�e and others. 1992. Genetic algorithms for changing environ-
ments. In PPSN, Vol. 2. 137–144.

[7] Je�rey Horn, Nicholas Nafpliotis, and David E Goldberg. 1994. A niched Pareto
genetic algorithm for multiobjective optimization. In Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on. Ieee, 82–87.

[8] Abdullah Konak, David W Coit, and Alice E Smith. 2006. Multi-objective opti-
mization using genetic algorithms: A tutorial. Reliability Engineering & System
Safety 91, 9 (2006), 992–1007.

[9] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, and
Ma�hias Steinbrecher. 2016. Computational intelligence: a methodological intro-
duction. Springer.

[10] Marco Laumanns, Lothar �iele, Kalyanmoy Deb, and Eckart Zitzler. 2002. Com-
bining convergence and diversity in evolutionary multiobjective optimization.
Evolutionary computation 10, 3 (2002), 263–282.

[11] Chengjun Li and Jia Wu. 2017. Subpopulation Diversity Based Selecting
Migration Moment in Distributed Evolutionary Algorithms. arXiv preprint
arXiv:1701.01271 (2017).

[12] Ryan E Mills, E Andrew Benne�, Rebecca C Iskow, and Sco� E Devine. 2007.
Which transposable elements are active in the human genome? Trends in genetics
23, 4 (2007), 183–191.

[13] Carlos Segura, Carlos A Coello Coello, Gara Miranda, and Coromoto León. 2016.
Using multi-objective evolutionary algorithms for single-objective constrained
and unconstrained optimization. Annals of Operations Research 240, 1 (2016),
217–250.

[14] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in
evolutionary optimization. Information Sciences 329 (2016), 782–799.

[15] M Tomasini. 2005. Spatially structured evolutionary algorithms. (2005).
[16] Rasmus K Ursem. 2002. Diversity-guided evolutionary algorithms. In Interna-

tional Conference on Parallel Problem Solving from Nature. Springer, 462–471.
[17] Mark Wineberg and Franz Oppacher. 2003. �e underlying similarity of diver-

sity measures used in evolutionary computation. In Genetic and Evolutionary
Computation Conference. Springer, 1493–1504.

	Abstract
	1 Introduction
	2 Related Work
	3 Evolutionary Edit Distance
	4 Paths in the Genealogical Tree
	5 Estimating Genealogical Distance on the Genome
	6 Experiment
	7 Conclusion
	References

