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Abstract

We discuss the issue of heuristic bias in fragment-assembly methods
for protein structure prediction. We explain the importance of this issue,
which has been paid insufficient attention by evolutionary computation
researchers engaging with the structural biology community. We pro-
ceed by describing preliminary data that illustrates the significant (and
expectable) impact that fragment library composition has on search per-
formance, and discuss the challenges this poses for the development of
improved fragment libraries.

1 Introduction

Heuristic optimization approaches are of increasing importance in identifying
solutions to complex optimization problems that cannot be addressed using
methods from exact optimization alone. Meta-heuristic optimizers, in particu-
lar, play a crucial role in identifying approximate solutions to problems that are
challenging due to their scale, the presence of uncertainties and noise, and/or
the existence of multiple conflicting criteria. Meta-heuristic optimizers are fun-
damentally designed as “off-the-shelf” methods that are sufficiently general to
be useful for a diverse range of non-linear, global optimization problems. Nev-
ertheless, to obtain competitive performance on difficult real-world problems, a
careful design of representation, variation and initialization operators that in-
troduce suitable heuristic bias, as well as rigorous tuning, is often essential, and
can be, arguably, of more importance than the basic choice of meta-heuristic.

State-of-the-art methods for protein structure prediction typically employ a
meta-heuristic optimizer, including methods such as evolutionary algorithms [1],
EDAs [20] and simulated annealing [18]. There have been a number of recent
papers by evolutionary computation researchers that consider the deployment
and design of state-of-the-art meta-heuristics for this problem (see e.g. [19, 4, 7]).
In terms of the choice of representation of candidate protein structures, there
have been fewer concrete contributions from this community.

The class of fragment-assembly methods has remained the de novo prediction
approach of choice for the past two decades. Fragment-assembly approaches
typically employ an internal low-resolution representation of protein structure,
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e.g. based on backbone torsion angles, and use insertions of short segments from
known protein structures as their variation operator. More specifically, there
are two aspects to this internal representation.

• The specific low-resolution representation used.

• The choice of the fragment library, which defines the values available for
insertion at each position.

Arguably, the second of these is the most influential from a heuristic opti-
mization perspective, as the composition of the fragment library restricts the
available search space and may introduce significant heuristic bias towards cer-
tain regions of this space. This effective reduction of the search space is widely
seen as the key strength of fragment-assembly, but it can also be seen as the
Achilles heel of the approach: an unfavourable bias will clearly introduce prob-
lems for search algorithms, the severity of which will depend on the sensitivity
of the search protocol to such bias, and aspects of the objective function.

While there has been extensive research on the development of improved
fragment libraries in the structural biology community, this has focused on
improving the biophysical plausibility of candidate fragments. As far as we are
aware there is no published work that directly considers the impact of fragment
library composition on search performance. The closest work that touches upon
the issue is [3, 9], but this focuses on aspects of the variation operators, and the
impact of their definition on the search space and / or search performance. In
our current work, we are interested in defining the impact fragment selection
will have on search, and to explain previous findings on prediction performance
from this perspective.

The remainder of this paper is structured as follows. Section 2 describes
the standard process of generating a fragment library, using the example of
Rosetta’s fragment picker. Section 3 discusses and formalizes the heuristic bias
that the fragment library introduces into the search process. Section 4 summa-
rizes current evidence for the existence, and the significant impact, of such bias.
Section 5 highlights implications for future work and concludes.

2 Fragment-assembly and fragment library con-
struction

2.1 Fragment-assembly methods

Predicting protein tertiary structure from sequence information remains an
important unsolved problem. Techniques based on the principle of fragment-
assembly [21] have emerged as the leading class of methods to tackle this prob-
lem, as evidenced by their performance in the CASP experiments [15, 13]. How-
ever, their accuracy is known to decrease for larger, more complex proteins [13].

In general, fragment-assembly techniques rely on the fact that secondary
and tertiary structure can be strongly influenced by local amino acid sequence
[21]. These local propensities are taken into account and exploited during model
construction, by deriving fragments from known protein structures and using
them as building blocks during the search. The search techniques employed
are heuristic optimization algorithms that start from an initial structure (e.g. a
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fully extended chain), and which iteratively apply randomly selected fragment
insertions to generate novel candidate structures. An energy or scoring func-
tion is used to determine whether a particular candidate structure should be
accepted. A key assumption behind the use of an optimization procedure is
that near-native structures correspond to at least a local optimum in the energy
landscape defined by this function. State-of-the-art fragment-based prediction
pipelines typically employ many independent runs of a prediction technique (the
random-restart strategy) to arrive at a pool of structures, from which a subset
of promising predictions are chosen.

2.2 Fragment library generation - The example of Rosetta

The first step in applying any fragment-based prediction method is the selection
of appropriate structural fragments for the target protein sequence. Fragments
are typically identified based on sequence and structure profiles (obtained from
multiple sequence alignments), on the basis of threading against known tem-
plates, or by using constant fragment sets selected from a non-redundant set of
structures.

Like other methods, Rosetta’s fragment generation process employs auto-
mated secondary structure prediction methods to inform the choice of fragments
chosen for any given window of the sequence. A maximum of 3 three-state sec-
ondary structure predictors can be used: PSIPRED [10, 2], SAM (Sequence
alignment and Modelling; [12]) and Porter [16, 14] are currently supported.

The fragment picking process identifies putative fragments through the ap-
plication of a scoring function. Many different criteria can be used to score
fragments [8], and some commonly used metrics include similarity scores based
on PSI-BLAST sequence profiles, similarity between the predicted secondary
structure for a local sequence and fragment secondary structure, and agreement
with backbone torsion angles and solvent accessibility predictions from SPINE
X [6]. Different scoring criteria can be assigned different priorities when selecting
fragments; sequence profiles generally have the highest priority in deciding what
fragments should be selected. If an insufficient number of candidate fragments
are identified based on sequence profiles, the criterion with the next-highest pri-
ority value is used to select fragments (in this case, agreement with PSIPRED
predictions), and so on. Other criteria may include agreement with experimen-
tal data (such as chemical shifts) or other distance- or angle-based constraint
information.

Following the selection and scoring of putative fragments, the 200 highest-
scoring fragments are returned in the fragment libraries, which can then be used
for de novo structure prediction using Rosetta. Rosetta’s fragment generation
process is typically used to produce libraries of fragments that are 9 and 3
residues long (9-mers and 3-mers, used during different stages of Rosetta’s ab
initio protocol), although alternative lengths can be specified [9].

2.3 Diversity mechanisms during fragment picking

An interesting aspect of Rosetta’s fragment generation process is the inclusion of
a range of different criteria in the pipeline. This is testament to the fact that the
definition of the selection criterion is difficult, that reliance on a single criterion
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may be insufficient or risky, and that different criteria may gain importance in
specific circumstances.

More fundamentally, we note that, in Rosetta’s fragment picker, when more
than one secondary structure predictor is used (see above), a quota system
can be enabled, by which the fragment picker selects a certain percentage of
fragments for each window based on each predictor (Gront et al., 2011). This
quota mechanism is aimed at providing additional diversity in the fragment set,
in situations when the secondary structure predictions produced by different
methods do not agree.

Similarly, for any single predictor, fragments are chosen such that the pre-
dicted likelihood of the three secondary structural types (helix, strand or loop)
for any residue are maintained as best as possible in the resulting fragment set.

The above features indicate that there is a clear appreciation that a poor
quality fragment-library can be damaging to the fragment-assembly process and
that there are two conflicting aspects to this. Firstly, the fragment library
narrows down the search space. This facilitates the search process, and is the
main driver behind the success of fragment-assembly methods. Secondly, where
the fragment library for a particular position is inappropriate (i.e. it contains
only non-native local structures), this will make it difficult, if not impossible, to
identify a native structure at the tertiary level.

3 Heuristic bias and its presence in fragment-
assembly

Raidl and Gottlieb [17] define heuristic bias as follows: “Heuristic bias concerns
the mapping from search space to phenotype space... The efficacy of the search
process is strongly influenced by the mapping between these spaces. Hence,
using some heuristic in this mapping yields a certain distribution of phenotypes,
which can help to increase performance if the distribution is biased towards
phenotypes of higher fitness.”

A differentiation between the genotype and the phenotype in a fragment-
assembly method is not entirely straightforward. For a protein with N residues
and a default use of Rosetta during its first three stages (use of 9mers, 25
fragments per position), one possible way to think about the genotype is to
consider it a string of N integers, where each position can take up to 225 possible
values1, corresponding to an index of all possible angle triplets available for this
position [9]. While this genotype is never explicitly encoded within the fragment-
assembly method, this abstract definition allows us to think about the size of
the search space independently of the choice of fragment library employed and
the variation operator used.2 The choice of variation operator can have the
effect of eliminating access to portions of this search space, but this issue has
been discussed in [9] and is not further considered here.

1The 225 values stem from nine overlapping insertion windows. There are less overlapping
windows (and therefore values) for the first and the last eight positions of the string, see [9]
for details.

2If we considered the genotype to correspond directly to the angle-based representation
explicitly encoded in methods such as Rosetta, the set of possible genotypes/size of the search
space would no longer be independent of the choice of fragment library. Furthermore, the
likelihood of possible genotypes would be non-uniform in the sense that different instantiations
arise with different probability.
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Our focus here is on heuristic bias, i.e. the bias resulting from mapping the
above genotype to the phenotype. Essentially, this can be thought to correspond
to the mapping of each integer within our abstract genotype to the triplet of
torsion angles that it indexes within the fragment-library, and the final decoding
of the string of backbone angles into a tertiary structure. This dual mapping
process is independent of the choice of variation operator, but, in itself, it clearly
has the potential to introduce bias towards particular phenotypes. The vehicle
controlling this bias is the choice of fragment library alone. We therefore take the
view that, from an optimization perspective, the design of a fragment library
fundamentally corresponds to the problem of defining a genotype-phenotype
mapping with appropriate heuristic bias.

Considering the mechanisms discussed in Subsection 2.3, it is evident that
some of these mechanisms have been designed to counter-balance the risks intro-
duced through the fragment-picking process. Some of the procedures incorpo-
rated into existing methods implicitly reflect an understanding that, in regions
where significant uncertainty remains regarding the local propensity towards
particular types of secondary structure, fragment libraries need to remain di-
versified to allow for the balanced exploration of different types of solutions. In
other words, this can be seen as preliminary attempts to control the amount of
heuristic bias introduced for different parts of the protein chain. As fragment
library composition has not usually been considered from a search perspective,
it remains unclear to what extent these current ways of library construction
are sufficient to ensure that access of the native structure does not become
intractable for standard search heuristics.

In particular, it is unknown to what extent current fragment generation
methods do indeed manage to achieve a suitable balance between helpful heuris-
tic bias and a retention of unbiased options in those areas where uncertainty
regarding structure propensity remains. This is due to a number of factors.

In Rosetta’s fragment picker, diversity is implicitly defined at the level of the
secondary structure type (i.e. three classes: alpha, beta, loops), but it is unclear
whether this is appropriate and sufficient, e.g. as some types of local structure
(helices) are significantly less diversified than others (especially loops, but also
beta sheets).

Furthermore, estimates of the reliability of secondary structure predictions
are taken from the secondary structure predictors, but the literature is unclear
as to how accurate these estimates are (this is different to the actual estimates
of prediction performance). This may be an issue when these estimates are
used to inform the amount of diversity retained in the libraries, as is the case
for Rosetta’s fragment picker, see above.

Finally, we note that the variation operators used in most fragment-assembly
protocols consist of full-fragment insertions. This removes access to some areas
of the search space, and introduces interactions between the fragment libraries
of neighboring positions. Together, this has the potential to further reinforce
any bias introduced through the choice of fragment library.

4 Consequence of heuristic bias in fragment-assembly

In this manuscript, we aim to define the nature of heuristic bias in the context
of fragment-assembly methods and to encourage the community to reconsider
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the performance of current protocols in this context. To further emphasize this
point, this section highlights recent results from the academic literature that,
we believe, indicate the importance of the issue.

Recent research compared different fragment libraries in a setting that elim-
inated the confounding impact of imprecise energy functions and heuristic op-
timizers (through the use of a structure-based objective and a greedy construc-
tion heuristic) [22]. It was observed that fragment libraries constructed using
sequence profiles alone allowed for a more accurate reconstruction of the native
structure. However, when fragment selection considered secondary structures,
this led to a pronounced reduction in the diversity of fragments. This goes some
way to explain why state-of-the-art methods typically use both types of infor-
mation. The search space reduction arising from the use of secondary structure
information is likely to lead to “quick” wins on easy prediction targets, which will
have contributed to the adoption of this approach in state-of-the-art pipelines.
For future research, the finding does raise the question of whether more diverse
libraries and improved search techniques may be a more fruitful avenue to scale
prediction methods to more complex targets.

In another recent paper on fragment library construction [5], the authors
found that a selection approach that applied scoring to a random sample out-
performed the alternative of exhaustive scoring of all fragments. In particular,
the resulting fragment libraries provided higher precision and coverage. This
provides an additional indication that, given our reliance on imperfect fragment
scoring criteria, a controlled diversification of fragment libraries may be desir-
able, even when the impact of heuristic search is not considered. It is currently
unclear how this diversification is best approached to ensure inclusion of the
most accurate fragments, and to appropriately moderate heuristic bias.

Our own experiments with iterated local search heuristics reveal significant
differences in performance for different fragment libraries [11]. Strikingly, these
sensitivities are significantly more pronounced for advanced search heuristics
than for simple restart protocols such as Rosetta (see Figure 1), consistent with
the increased sensitivity of such techniques to heuristic bias. Our observations
also go some way to explain why the design of advanced sampling protocols has
often led to limited success in the literature: the potential advantages arising
from improved sampling may have been rendered insignificant by misleading
heuristic bias, introduced through the use of inappropriate fragment libraries.

5 Conclusion

Moving forward, we believe that the subject of heuristic bias needs to be consid-
ered much more explicitly in the design and comparison of prediction protocols.
Specifically, it can be challenging to draw conclusions regarding the performance
of search techniques, where contestant techniques are tested in the context of dif-
ferent (customized) fragment-libraries, and are thus operating in search spaces
with potentially different amounts of bias. Similarly, while methods are typi-
cally tested across a range of target proteins, deliberate testing across fragment
libraries with different (known) levels of diversity / heuristic bias has not been
considered. This would be desirable as such a setup appears to be more pow-
erful at identifying differences in the performance of the search techniques. In
our immediate future work, we will be developing strategies to explicitly under-
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Figure 1: Results obtained by standard Rosetta (using restarts) and an iterated
local search protocol [11] across two different fragment libraries for the same pro-
tein (1c8cA). The newer fragments (results in top figure) were generated using
the fragment picker and the structure database supplied with Rosetta version 3.5
(weekly release 2014.16.56682). The older fragments (results in bottom figure)
are taken from a previous study [9].

stand and control diversity of fragment libraries. This will feed into practical
improvements of fragment libraries, but also the design of benchmark libraries
that support the rigorous testing of new search protocols.
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