
Energy-E�icient Environment Mapping via Evolutionary
Algorithm Optimized Multi-Agent Localization

Ahmed Hallawa
Chair of Integrated Signal Processing Systems

Kopernikusstrae 16
Aachen, Germany

hallawa@ice.rwth-aachen.de

Stephan Schlupkothen
Chair of Integrated Signal Processing Systems

Kopernikusstrae 16
Aachen, Germany

schlupkothen@ice.rwth-aachen.de

Giovanni Iacca
Chair of Integrated Signal Processing Systems

Kopernikusstrae 16
Aachen, Germany

iacca@ice.rwth-aachen.de

Gerd Ascheid
Chair of Integrated Signal Processing Systems

Kopernikusstrae 16
Aachen, Germany

ascheid@ice.rwth-aachen.de

ABSTRACT
Miniature autonomous sensory agents (MASA) can play a profound
role in the exploration of hardly accessible unknown environments,
thus, impacting many applications such as monitoring of under-
ground infrastructure or exploration for natural resources, e.g. oil
and gas, or even human body diagnostic exploration. However,
using MASA presents a wide range of challenges due to limitations
of the available hardware resources caused by their scaled-down
size. Consequently, these agents are kinetically passive, i.e. they
cannot be guided through the environment. Furthermore, their
communication range and rate is limited, which a�ects the quality
of localization and, consequently, mapping. In addition, conduct-
ing real-time localization and mapping is not possible. As a result,
Simultaneous Localization and Mapping (SLAM) techniques are
not suitable and a new problem de�nition is needed. In this paper
we introduce what we dub as the Centralized O�ine Localization
And Mapping (COLAM) problem, highlighting its key elements,
then we present a model to solve it. In this model evolutionary
algorithms (EAs) are used to optimize agents’ resources o�-line
for an energy-e�cient environment mapping. Furthermore, we
illustrate a modi�ed version of Vietoris-Rips Complex we dub as
Trajectory Incorporated Vietoris-Rips (TIVR) complex as a tool to
conduct mapping. Finally, we project the proposed model on real
experiments and present results.
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1 INTRODUCTION
One of the powerful a�ributes associated with Evolutionary Algo-
rithms (EAs) is the fact they can be applied straight forwardly to
many optimization and search problems without, or with limited, a
priori knowledge of the problem under investigation. In the context
of exploration of unknown environments, localization and mapping
processes are challenging to design due to the lack of mathematical
representation associating all variables with the de�ned objectives.
Furthermore, adding constraints on the resources of the agents
conducting exploration, which is the case when using MASA, em-
phasises the need of an optimization technique that can conduct
the optimization process with limited a priori knowledge, which
presents EAs as an adequate solution. Consequently, the presented
solution in this work uses EAs at the core of its scheme, however,
to motivate the presented work, in this section potential applica-
tions using MASA for exploration of unknown environment are
highlighted. �is is followed by a problem description and paper
organization description.

1.1 Motivation
MASA o�er a robust solution to many applications such as monitor-
ing underground infrastructure. In this application, it is critical to
monitor leaks and ruptures of the infrastructure, e.g. underground
water supplies, oil and gas pipes. Furthermore, the system needs
to capture blockage and over�ow. Although literature is rich with
solutions to this problem, these solutions rely, in many cases, on
installation of static sensors [11] which is costly and not e�ective
as the infrastructure network is usually huge and/or not accessible
for such installations.
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Another application for MASA is the exploration for resources
such as oil in cold heavy oil production with sand (CHOPS) [9]
[12]. In this application millimeter-sized sensor agents are injected
via a pump and extracted to produce a pro�le of the potential oil
distribution, in addition to temperature and pressure pro�les. It is
important to highlight that large sensors (> mm-sized) can not be
used as they will be sha�ered by the injection pump.

Furthermore, many medical applications can rely on MASA.
Recently, literature proposed the use of micro-meter sized robots
in human body [6]. In these applications MASA would be suitable,
specially for diagnostic purposes, as controlling propulsion of these
mirco-robots still presents many challenges. As mentioned earlier,
SLAM is not suitable to be used in such applications as in MASA
are kinetically passive and have very limited available resources,
thus a new problem de�nition is needed. Next the COLAM problem
de�nition is discussed.

1.2 Problem Description
�e problem can be de�ned as follows: Given a set of observa-
tions Oi from di�erent sensors Sj embeded on a set of N sensory
agents over discrete time t , with F (i, Sj , t) as the function describing
resource consumption to capture these observations, COLAM prob-
lem is estimating the positions of the N agents ∀t and �nding the
map that describes the unknown environment under investigation
Gm with the least possible resource consumption for each agent
and with the least number of agents N . It is worth mentioning
that in case the unknown environment is hostile, the problem is
extended to include loosingM agents from the N injected ones in
the environment which changes the localization objective of the
problem to be the estimation of the positions of N - M extracted
agents instead of N .

1.3 Paper Organization
In the next section, a background on environment mapping is
presented, section 3 describes the proposed scheme to solve the
de�ned COLAM problem. Furthermore, section 4 is dedicated to
de�ne case studies used to test the proposed model, and �nally in
sections 5 and 6, results and conclusion are presented respectively.

2 BACKGROUND
2.1 Mapping via rips-complex
Mapping environments is one of the key objectives in COLAM
(Section 1.2). In this context, mapping is referred to as the ability to
reconstruct the environment topologyGm from collective sensor
readings Oi of extracted N agents.

In this context, it is paramount in the abstraction of the envi-
ronment to embed all available knowledge —such as the estimated
agent positions and trajectories— and link it to physical environ-
ment features such as the presence of obstacles or the general
layout of the environment. �is will also allow the accumulation
of knowledge granted from conducting simulations and real exper-
iments. Furthermore, in order to facilitate the use of EA to evolve
the environment model and converge to the “real” environment,
the environment must be abstracted in such a way that its “geno-
type” can be easily representation and evaluated in comparison
with other environments.

2.2 Vietoris Rips Complex
VR complex is an abstract simplicial complex, and its construction
can be divided into two main steps: geometric and topological.
Figure 2 illustrates these two steps starting from a cloud of points,
which in COLAM could be the positions of all agents at all times.
�e geometric step is essentially the establishment of a VR neigh-
bourhood graph Gϵ (s). �e topological step is called VR extension
graph Vϵ (s). To understand these two steps, it is needed �rst to
understand what is an abstract simplicial complex, which is intro-
duced in the next subsection.

2.2.1 Abstract Simplicial Complex. Given a set of vertices S =
{s1, . . . , sn }, a simplicial complex ∆ over S is a subset from S with
the property that si ∈ ∆∀i and if Λ ∈ ∆ then all subsets of Λ are
also in ∆. An element of ∆ is called a face of ∆, and the dimension
of a face Λ of ∆ is de�ned as | Λ | −1 where | Λ | is the number of
vertices of Λ [2].

Dimensions 0 and 1 of the faces are called vertices and edges,
respectively, furthermore, dim of ϕ = -1.

�emaximal faces of ∆ under inclusion are called facets of ∆. �e
dimension of the simplicial complex ∆ is the maximal dimension
of its facets; in other words:

dim∆ = max{dimΛ | Λ ∈ ∆} (1)

We denote the simplicial complex ∆ with facets Λ1, . . . ,Λq by

∆ =< Λ1 . . .Λq > (2)
and we call {Λ1, . . . ,Λn } the facet set of ∆.
Finally, if we replace each simplex in a simplicial complex with

the set of its vertices, we get a system of subsets of the vertex set.
In doing so we neglect the geometry of the simplices, which allows
us to focus on the combinatorial structure. �is is what is called an
abstract simplicial complex.

2.2.2 Vietoris Rips Expansion. As mentioned in the introduction
of this section, a VR complex can be divided into two steps, the
de�nition of the �rst step being as follows. Given S ⊆ Rd and scale
ϵ ∈ R, the VR neighborhood graph is a neighborhood graph (Gϵ (S),
w), where [5]:

Gϵ (S) = (S,Eϵ (S)) (3)

Eϵ (S) = {{u,v} | d(u,v) ≤ ϵ,u , v ∈ S} (4)

Gϵ (S) = (S,Eϵ (S)) (5)
Conducting this step computationally is not exhaustive, and

there are many well-established algorithms capable of implement-
ing this neighbourhood graph.

�e second step, which is the establishment of the complex itself,
can be summed up as follows. Given a neighbourhood graph (G,w),
(V (G),w) can be established if all edges of a simplex ∆ are in G,
then ∆ is in V (G). For G = (V ,E) [15]:

V (G) = V ∪ E ∪ {∆ | (∆, 2) ⊆ E} (6)
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and for ∆ ∈ V (G)

w(∆) =


0, for ∆ = {v},v ∈ V
w{(u,v)}, for ∆ = {u,v} ∈ E
maxw(τ ), otherwise.

(7)

3 METHODOLOGY
3.1 System Layout
Detailed overview of the system is laid out Figure 1. �e system
has three phases, initialization phase, virtual loop phase and a real
environment phase. �e initialization phase starts with an initial
real run (step i). �is leads to the initialization of motion model
estimation (details of this is in section 3.3). �e output of this
process combined with knowledge base, where previously solved
problems using this system are stored, to create an initial simula-
tion environment that can be then used in the virtual loop. �e
virtual loop represents a typical EA loop where minimization of the
number of used agents and the consumed resources used to conduct
localization is executed while ensuring adequate localization and
consequently mapping.

3.2 Virtual loop
the virtual loop is the core of the development process of the agent
by optimizing all tunable parameters available in the agent de-
sign by achieving localization and mapping with the least possible
resources.

(1) Agents EA optimization: A generation of agents is pro-
duced using a multi objective evolutionary algorithm. �e
objective is to �nd the least number of agents and tune the
agent’s design parameters which would consume the least
resources possible while conducting an adequate localiza-
tion and, consequently, mapping. �e objective function is
then minimization of consumed resources and maximiza-
tion of mapping quality.

(2) Simulation: Each generation produced from the EA mod-
ule is the evaluated on the simulation environment. �is
environment is generated in the initialization phase.

(3) Localization: Finding estimates to agent’s position o�-line.
(4) Mapping: Using the localization output a map of the simu-

lation environment is generated.
(5) Compare: A comparison between the reconstructed envi-

ronment and the simulation environment is conducted to
quantify the quality of the mapping process and to feed
the output to the EA module for further selection.

(6) Stop criterion: Is the stopping criteria to the EA process,
this can be an upper limit of the computational resources
used or reaching a prede�ned mapping quality with an
upper limit to resource consumption.

3.3 Localization
To enable the localization and hence also the environment mapping,
the agents are equipped with ultra-sonic transceivers with enable
e.g. two-way time of �ight measurements. �ereby, the agents take
measurements which will—a�er the extraction of the agents from
the environment—be used by the centralized processing unit to
obtain the agent positions. For the sake of simplicity, and because

the time of �ight measurements can easily be converted into dis-
tance information, it is assumed that the distance measurements
are subject to additive Gaussian noise:

d̃i j,t = di j,t + ni j , (8)

where di j,t = ‖pi,t − pj,t ‖2 denotes the true distance between the
agents i and j at time step t , which have respectively the Cartesian
positions pi,t and pj,t . Moreover, ni j ∼ N(0,σ 2i j ) denotes the addi-
tive and independently distributed measurement noise. �erewith,
the random variable describing the noisy distance measurement is
denoted as d̃i j,t . �is measurement noise assumption is common
and can be found e.g. in [1, 4, 13, 14].

Due to the COLAM approach, where the localization is being
conducted jointly for all agents and considering all measurements,
an in�nite horizon approach is used, which is brie�y summarized
in the following. �e principle thereof can be found e.g. in [8, 10].

3.3.1 Infinite Horizon Localization. Considered in the following
are N agents in the two-dimensional space which have positions
pi,t , i = 1, . . . ,N at time step t . �e state vector for each agent i at
time step t is denoted by si,t and is used to describe also the motion
of the agent. �e precise de�nition of the state vector components,
such as velocity, is given in Section 3.3.2.

�e motion and measurements of the passive agents can there-
with be described by

si,t+1 = f (si,t ,vi,t ) (9)
yi = h(si,t ,wi,t ), (10)

where f (·) is called the state evolution or motion model function
and vi,t is the process noise that describes e.g. motion model
inaccuracy. Function h(·) describes the measurements of the agents
which are subject to measurement noisewi,t .

In the following, it is assumed that

si,t+1 = f (si,t ) +vi,t , (11)
yi = h(si,t ) +wi,t (12)

wherevi,t ∼ N(0,P) andwi,t ∼ N(0,Q), withQ = diag(...,σ 2i j , ...)
in accordance with (8).

�erewith, the in�nite horizon maximum a posteriori estimation
problem can be given as, [10]:

argmax
{si,t }t=1, . . .,∞i=1, . . .,N

p
(
{si,t }t=1, ...,∞i=1, ...,N

��{yi,t }t=1, ...,∞i=1, ...,N

)
, (13)

where p(·) denotes the probability density function. (13) can be
further simpli�ed to:

argmax
{si,t }t=1, . . .,∞i=1, . . .,N

∞∑
t=1

∑
(i, j)∈E

logpdi j
(
di j (pi ,pj )|d̃i j

)
+

∞∑
t=1

N∑
i=1

logpsi
(
si,t+1 |si,t

)
+

N∑
i=1

logpsi,0
(
si,0

)
, (14)

where E = {(i, j) ∈ {1, . . . ,N }2 |∃d̃i j , i , j} denotes the set of
measurements.
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Figure 1: System Layout

Due to the Gaussianity assumption of vi,t andwi,t we obtain
�nally:

argmin
{si,t }t=1, . . .,∞i=1, . . .,N

∞∑
t=1

∑
(i, j)∈E

(d̃i j,t − ‖pi,t − pj,t ‖2)2

2σ 2i j
+

∞∑
t=1

N∑
i=1

1
2

(
si,t+1 − f (si,t )

)T P−1
(
si,t+1 − f (si,t )

)
+

N∑
i=1

1
2

(
si,0 − ŝi,0

)T P−10
(
si,0 − ŝi,0

)
, (15)

where P0 denotes the covariance matrix of the initial state assump-
tion for t = 0.

3.3.2 Agent Motion Model. To localize moving agents, assump-
tions regarding the motion model must be made. In this work, we
assumed that the motion of the agents can be described by the
following discrete-time model, [7]:

si,t+1 =
[
xi,t+1 yi,t+1 vi,t+1 ϕi,t+1 ωi,t+1

]T (16)

=



xi,k +
2vi,k
ωi,k

sin(ωi,kT /2) cos(ϕi,k + ωi,kT /2)
yi,k +

2vi,k
ωi,k

sin(ωi,kT /2) sin(ϕi,k + ωi,kT /2)
vi,k

ϕi,k + ωi,kT
ωi,k


+vi,t ,

(17)
where the process noisevi,t ∼ N(0,P) has the covariancematrix

P = blkdiag
[
0 0 T 2σ 2Ûv σ 2Ûω

[
T 3/3 T 2/2
T 2/2 T 2

] ]
, (18)

and where T denotes the sampling period. In (17), xi,t and yi,t
denote respectively the x and y position of agent i . �e speed vi,t ,

heading angle ϕi,t and turn rate ωi,t are de�ned in continuous
time byv =

√
(dx/dt)2 + (dy/dt)2, ϕ = atan((dy/dt)/(dx/dt)),ω =

dϕ/dt , [7].

3.4 Mapping
In this section, a proposed environment abstraction technique we
dubbed as Trajectory Incorporated Vietoris Rips (TIVR) complex is
introduced, this technique is presented to be used in the mapping
process in step 4 of the virtual loop.

A Trajectory Incorporated Vietoris-Rips (TIVR) complex is sim-
ply a VR complex that in addition to the set edges Eϵ (S) adds a new
set T of edges. T consists of edges set between any agent in any
position at time ti and its position at time ti+1 for all i . �is is done
even if that edge doesn’t comply with equation 4. To sum-up the
bene�ts of using TIVR complex:

• It has the ability to accumulate simulation and real runs
knowledge for both positions and trajectories.

• It has the ability to project from the given cloud of points
and trajectories a quasi-probabilistic map with zones re-
�ecting the probability of existence of an obstacle.

• Due to its structure, it can be straightforwardly integrated
into the EA and establishing a genotype-phenotype map-
ping can be easily done.

• Computationally, it can be obtained with wide range of
methods such as inductive or incremental.

3.5 Real environment
In this phase, agents are synthesized to perform a real run on the
environment with the optimized agents. �is may lead to new
observations that can enhance the simulation environment used
via the knowledge base (step iii in the initialization phase) and
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Figure 2: VR complex: an example [5]

consequently improve the optimization process of the agent design
in later runs.

4 CASE STUDY
To test the proposed scheme, we project it on a case study that can
be described as follows:

(1) A group of agents are to be injected to four di�erent un-
known environments.

(2) A�er their extraction, and from the set of observed sensed
data, it is required to conduct localization and mapping as
stated in the COLAM problem de�nition.

(3) Each agent has two possible o�-line tunable parameters:
communication rate and communication power.

(4) Agent power, which is directly associated with these two
parameters, is the resource that needs to be minimized
while achieving the needed localization and mapping.

(5) As de�ned in the COLAM problem de�nition, the number
of agents used in the mapping processes also needs to
minimized .

As stated in (1), the case study includes four unknown maps.
Each is 200 m × 100 m, and can be described as follows: a map
with a single obstacle located in the centre of the map, a map
with two consecutive obstacles located in the centre of the map,
a funnel shaped water channel with a an obstacle in the middle
going through the whole channel, and a map with an obstacle
located in the upper right corner. �e model described in Section
3 is used to solve de�ned COLAM problem on these unknown
maps. In this case-study non-sorting genetic algorithm [3] NSGAII
is used as the MOEA module due to limited number of parameters
and objectives. It is assumed that the communication frequency is
constant for all agents, furthermore, all communications are done
with no interference or multi-path. In addition, the proposed TIVR
is used for mapping. Next section is dedicated to highlight results.

5 RESULTS
To test mapping using the introduced trajectory incorporated TIVR
complex, simulations were conducted on di�erent environment
typologies of size 200m x 100m. In Figure 3 (map 1) the environment
had a single object in the middle. �e red color (3 simplex in the
TIVR graph) re�ects that that area is more dense with edges and
nodes and thus the probability of having an obstacle there is less
that the green one (2 simplex in TIVR graph). Figures 4 (map 2), 5
(map 3), and 6 (map 4) illustrate respectively the TIVR complex for
a map with two consecutive obstacles, a water channel with a pipe
in the middle, and a map with an obstacle in the upper right corner,
respectively.

Using a population of 50 and for 25 iterations (computational
power limit stopping criterion), the cost functions are set as follows:

Figure 3: Reconstructed Single Obstacle Environment via
TIVR complex

Figure 4: Reconstructed Two Obstacles via TIVR complex

M =
| A ∩ B |

κ+ | A \ B | + | B \A | (19)

Where M is mapping quality, | A ∩ B | represents the area where
the obstacle in the reconstructed map A and the real map B overlap
on the map grid, | A \ B | is the area of the obstacle which is in
the reconstructed map A but not in the real one B, | B \ A | is
the area of the obstacle that is in the real map B but not in the
reconstructed one A and κ is the max(| A |, | B |). Consequently, it
holdsM ∈ [0, 1]. On the other hand:

P = N (Cp + ϕCf ) (20)
Where P is power coe�cient, N is the number of agents, Cp is

the communication power factor andCf communication frequency
and ϕ is a weighting coe�cient. Table 1 highlights solutions from
the Pareto optimal front when number of agents (N) are 30.

Map Comm. Comm. Power Mapping
ID Frequency Range Coe�cient �ality
[#] [Hz] [m] [#] [%]
1 26.1 18.8 1290.2 95%
2 31.4 15.6 1363.2 86%
3 29.5 16 1317 93%
4 27.7 16.2 1268.4 90%
Table 1: Pareto optimal picked solutions at N=30
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Figure 5: Reconstructed Tunnel Water Channel via TIVR
complex

Figure 6: Reconstructed Side Blocked Channel via TIVR
complex

6 CONCLUSION
In this work a modi�ed version of SLAM problem dubbed as CO-
LAM is de�ned. In this problem a centralized o�-line localization
and mapping is conduced to reconstruct an unknown environment
topology with the least number of agents and with the least con-
sumption of the available agent’s resources. A full description of a
system that solves this problem is laid out. Moreover, a projection
on a case study is presented. In this case study, agents are optimized
in compliance with the COLAM problem to conduct mapping on
four di�erent environments. NSGAii is used with two objective
functions: maximization of mapping accuracy and minimization of
consumed power. Furthermore, an introduced technique dubbed as
TIVR is used for mapping.
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