skip to main content
research-article

DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN

Published:31 July 2017Publication History
Skip Abstract Section

Abstract

At SIGMOD 2015, an article was presented with the title “DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation” that won the conference’s best paper award. In this technical correspondence, we want to point out some inaccuracies in the way DBSCAN was represented, and why the criticism should have been directed at the assumption about the performance of spatial index structures such as R-trees and not at an algorithm that can use such indexes. We will also discuss the relationship of DBSCAN performance and the indexability of the dataset, and discuss some heuristics for choosing appropriate DBSCAN parameters. Some indicators of bad parameters will be proposed to help guide future users of this algorithm in choosing parameters such as to obtain both meaningful results and good performance. In new experiments, we show that the new SIGMOD 2015 methods do not appear to offer practical benefits if the DBSCAN parameters are well chosen and thus they are primarily of theoretical interest. In conclusion, the original DBSCAN algorithm with effective indexes and reasonably chosen parameter values performs competitively compared to the method proposed by Gan and Tao.

References

  1. Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. 1991. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete 8 Computational Geometry 6, 1 (1991), 407--422. DOI:http://dx.doi.org/10.1007/BF02574698 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Gennady L. Andrienko, Natalia V. Andrienko, Christophe Hurter, Salvatore Rinzivillo, and Stefan Wrobel. 2011. From movement tracks through events to places: Extracting and characterizing significant places from mobility data. In Proceedings of the 2011 IEEE Symposium on Visual Analytics Science and Technology (VAST). 161--170. DOI:http://dx.doi.org/10.1109/VAST.2011.6102454 Google ScholarGoogle ScholarCross RefCross Ref
  3. Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. OPTICS: Ordering points to identify the clustering structure. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 49--60. DOI:http://dx.doi.org/10.1145/304182.304187 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. 2004. The priority R-tree: A practically efficient and worst-case optimal R-tree. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 347--358. DOI:http://dx.doi.org/10.1145/1007568.1007608 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sunil Arya and David M. Mount. 1993. Approximate nearest neighbor queries in fixed dimensions. In Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms (SODA). 271--280.Google ScholarGoogle Scholar
  6. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-tree: An efficient and robust access method for points and rectangles. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 322--331. DOI:http://dx.doi.org/10.1145/93597.98741 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Communications of the ACM 18, 9 (1975), 509--517. DOI:http://dx.doi.org/10.1145/361002.361007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Stefan Berchtold, Christian Böhm, Bernhard Braunmüller, Daniel A. Keim, and Hans-Peter Kriegel. 1997. Fast parallel similarity search in multimedia databases. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 1--12. DOI:http://dx.doi.org/10.1145/253260.253263 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999. When is “nearest neighbor” meaningful? In Proceedings of the 7th International Conference on Database Theory (ICDT). 217--235. DOI:http://dx.doi.org/10.1007/3-540-49257-7_15 Google ScholarGoogle ScholarCross RefCross Ref
  10. Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for nearest neighbors. In Proceedings of the 23rd International Conference on Machine Learning (ICML). 97--104. DOI:http://dx.doi.org/10.1145/1143844.1143857 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ergun Biçici and Deniz Yuret. 2007. Locally scaled density based clustering. In Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA) 2007. 739--748. DOI:http://dx.doi.org/10.1007/978-3-540-71618-1_82 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1994. Multi-step processing of spatial joins. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 197--208. DOI:http://dx.doi.org/10.1145/191839.191880 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based clustering based on hierarchical density estimates. In Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). 160--172. DOI:http://dx.doi.org/10.1007/978-3-642-37456-2_14 Google ScholarGoogle ScholarCross RefCross Ref
  14. Michel Marie Deza and Elena Deza. 2009. Encyclopedia of Distances (3rd ed.). Springer. Google ScholarGoogle ScholarCross RefCross Ref
  15. Jeff Erickson. 1995. On the relative complexities of some geometric problems. In Proceedings of the 7th Canadian Conference on Computational Geometry. 85--90.Google ScholarGoogle Scholar
  16. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD). 226--231.Google ScholarGoogle Scholar
  17. Christos Faloutsos and Ibrahim Kamel. 1994. Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 4--13. DOI:http://dx.doi.org/10.1145/182591.182593 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Junhao Gan and Yufei Tao. 2015. DBSCAN revisited: Mis-claim, un-fixability, and approximation. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 519--530. DOI:http://dx.doi.org/10.1145/2723372.2737792 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ade Gunawan. 2013. A faster algorithm for DBSCAN. Master’s thesis. Technical University of Eindhoven. http://repository.tue.nl/760643.Google ScholarGoogle Scholar
  20. Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA data mining software: An update. ACM SIGKDD Explorations 11, 1 (2009), 10--18. DOI:http://dx.doi.org/10.1145/1656274.1656278 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. 1997. On the analysis of indexing schemes. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 249--256. DOI:http://dx.doi.org/10.1145/263661.263688 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kirsten Hildrum, John Kubiatowicz, Sean Ma, and Satish Rao. 2004. A note on the nearest neighbor in growth-restricted metrics. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 560--561.Google ScholarGoogle Scholar
  24. Alexander Hinneburg and Daniel A. Keim. 1998. An efficient approach to clustering in large multimedia databases with noise. In Proceedings of the 4th ACM International Conference on Knowledge Discovery and Data Mining (KDD). 58--65.Google ScholarGoogle Scholar
  25. Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. 2010. Can shared-neighbor distances defeat the curse of dimensionality? In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM). 482--500. DOI:http://dx.doi.org/10.1007/978-3-642-13818-8_34 Google ScholarGoogle ScholarCross RefCross Ref
  26. Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC). 604--613. DOI:http://dx.doi.org/10.1145/276698.276876 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. David R. Karger and Matthias Ruhl. 2002. Finding nearest neighbors in growth-restricted metrics. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC). 741--750. DOI:http://dx.doi.org/10.1145/509907.510013 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Robert Krauthgamer and James R. Lee. 2004. Navigating nets: Simple algorithms for proximity search. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 798--807.Google ScholarGoogle Scholar
  29. Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. 2016. The (black) art of runtime evaluation: Are we comparing algorithms or implementations?Knowledge and Information Systems (KAIS) (Oct. 2016). DOI:http://dx.doi.org/10.1007/s10115-016-1004-2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moshe Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.Google ScholarGoogle Scholar
  31. Shaaban Mahran and Khaled Mahar. 2008. Using grid for accelerating density-based clustering. In Proceedings of 8th IEEE International Conference on Computer and Information Technology (CIT’08). 35--40. DOI:http://dx.doi.org/10.1109/CIT.2008.4594646 Google ScholarGoogle ScholarCross RefCross Ref
  32. Son T. Mai, Ira Assent, and Martin Storgaard. 2016. AnyDBC: An efficient anytime density-based clustering algorithm for very large complex datasets. In Proceedings of the 22st ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 1025--1034. DOI:http://dx.doi.org/10.1145/2939672.2939750 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and Yannis Theodoridis. 2003. R-trees have Grown Everywhere. Technical Report. Retrieved from http://www.rtreeportal.org/.Google ScholarGoogle Scholar
  34. Jirí Matousek. 1991. Reporting points in halfspaces. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science (FOCS). 207--215. DOI:http://dx.doi.org/10.1109/SFCS.1991.185370 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jirí Matousek. 1994. Geometric range searching. Computing Surveys 26, 4 (1994), 421--461. DOI:http://dx.doi.org/10.1145/197405.197408 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Apostolos Papadopoulos and Yannis Manolopoulos. 1997. Performance of nearest neighbor queries in R-trees. In Proceedings of the 6th International Conference on Database Theory (ICDT). 394--408. DOI:http://dx.doi.org/10.1007/3-540-62222-5_59 Google ScholarGoogle ScholarCross RefCross Ref
  37. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825--2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 16th International Symposium on Wearable Computers (ISWC’12). 108--109. DOI:http://dx.doi.org/10.1109/ISWC.2012.13 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vasilis Samoladas and Daniel P. Miranker. 1998. A lower bound theorem for indexing schemes and its application to multidimensional range queries. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 44--51. DOI:http://dx.doi.org/10.1145/275487.275493 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 1998. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2, 2 (1998), 169--194. DOI:http://dx.doi.org/10.1023/A:1009745219419 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid, and Arthur Zimek. 2015. A framework for clustering uncertain data. Proceedings of the VLDB Endowment 8, 12 (2015), 1976--1979. DOI:http://dx.doi.org/10.14778/2824032.2824115 https://elki-project.github.io/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. 2013. Geodetic distance queries on r-trees for indexing geographic data. In Proceedings of the 13th International Symposium on Spatial and Temporal Databases (SSTD). 146--164. DOI:http://dx.doi.org/10.1007/978-3-642-40235-7_9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2006. Introduction to Data Mining. Addison Wesley.Google ScholarGoogle Scholar
  44. R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/.Google ScholarGoogle Scholar
  45. Wei Wang, Jiong Yang, and Richard R. Muntz. 1997. STING: A statistical information grid approach to spatial data mining. In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB). 186--195.Google ScholarGoogle Scholar
  46. Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB). 194--205.Google ScholarGoogle Scholar
  47. Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. 2007. SCAN: A structural clustering algorithm for networks. In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 824--833. DOI:http://dx.doi.org/10.1145/1281192.1281280 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining 5, 5 (2012), 363--387. DOI:http://dx.doi.org/10.1002/sam.11161 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Database Systems
          ACM Transactions on Database Systems  Volume 42, Issue 3
          Invited Paper from SIGMOD 2015, Invited Paper from PODS 2015, Regular Papers and Technical Correspondence
          September 2017
          220 pages
          ISSN:0362-5915
          EISSN:1557-4644
          DOI:10.1145/3129336
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 July 2017
          • Revised: 1 March 2017
          • Accepted: 1 March 2017
          • Received: 1 November 2015
          Published in tods Volume 42, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader