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Abstract

We study the basic allocation problem of assigning resources to players so as to maximize
fairness. This is one of the few natural problems that enjoys the intriguing status of having a
better estimation algorithm than approximation algorithm. Indeed, a certain Configuration-LP
can be used to estimate the value of the optimal allocation to within a factor of 4+ε. In contrast,
however, the best known approximation algorithm for the problem has an unspecified large
constant guarantee.

In this paper we significantly narrow this gap by giving a 13-approximation algorithm for
the problem. Our approach develops a local search technique introduced by Haxell [Hax95] for
hypergraph matchings, and later used in this context by Asadpour, Feige, and Saberi [AFS12].
For our local search procedure to terminate in polynomial time, we introduce several new ideas
such as lazy updates and greedy players. Besides the improved approximation guarantee, the
highlight of our approach is that it is purely combinatorial and uses the Configuration-LP only
in the analysis.
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1 Introduction

We consider the Max-Min FairAllocation problem, a basic combinatorial optimization problem,
that captures the dilemma of how to allocate resources to players in a fair manner. A problem
instance is defined by a set R of indivisible resources, a set P of players, and a set of nonnegative
values {vi j}i∈P, j∈R where each player i has a value vi j for a resource j. An allocation is simply a
partition {Ri}i∈P of the resource set and the valuation function vi : 2R 7→ R for any player i is
additive, i.e., vi(Ri) =

∑

j∈Ri
vi j. Perhaps the most natural fairness criterion in this setting is the max-

min objective which tries to find an allocation that maximizes the minimum value of resources
received by any player in the allocation. Thus, the goal in this problem is to find an allocation
{Ri}i∈P that maximizes

min
i∈P

∑

j∈Ri

vi j.

This problem has also been given the name Santa Claus problem as interpreting the players as
kids and the resources as presents leads to Santa’s annual allocation problem of making the least
happy kid as happy as possible.

A closely related problem is the classic scheduling problem of Scheduling on Unrelated
ParallelMachines to MinimizeMakespan. That problem has the same input as above and the
only difference is the objective function: instead of maximizing the minimum we wish to minimize
the maximum. In the scheduling context, this corresponds to minimizing the time at which all
jobs (resources) are completed by the machines (players) they were scheduled on. In a seminal
paper, Lenstra, Shmoys, and Tardos [LST90] showed that the scheduling problem admits a 2-
approximation algorithm by rounding a certain linear programming relaxation often referred to
as the Assignment-LP. Their approximation algorithm in fact has the often stronger guarantee that
the returned solution has value at most OPT+vmax, where vmax := maxi∈P, j∈R vi j is the maximum
value of a job (resource).

From the similarity between the two problems, it is natural to expect that the techniques devel-
oped for the scheduling problem are also applicable in this context. What is perhaps surprising
is that the guarantees have not carried over so far, contrary to expectation. While a rounding of
the Assignment-LP has been shown [BD05] to provide an allocation of value at least OPT−vmax,
this guarantee deteriorates with increasing vmax. Since in hard instances of the problem (when
vmax ≈ OPT) there can be players who are assigned only one resource in an optimal allocation, this
result provides no guarantee in general. The lack of guarantee is in fact intrinsic to the Assignment-
LP for Max-Min FairAllocation as the relaxation is quite weak. It has an unbounded integrality
gap i.e., the optimal value of the linear program can be a polynomial factor larger than the optimal
value of an integral solution.

To overcome the limitations of the Assignment-LP, Bansal and Sviridenko [BS06] proposed to
use a stronger relaxation, called Configuration-LP, for Max-Min Fair Allocation. Their paper
contains several results on the strength of the Configuration-LP, one negative and many positive.
The negative result says that even the stronger Configuration-LP has an integrality gap that grows
asΩ(

√
|P|). Their positive results apply for the interesting case when vi j ∈ {0, v j}, called Restricted

Max-Min FairAllocation. For this case they give an O(log log |P|/ log log log |P|)-approximation
algorithm, a substantial improvement over the integrality gap of the Assignment-LP. Notice that
the restricted version has the following natural interpretation: each resource j has a fixed value v j

but it is interesting only for some subset of the players.
Bansal and Sviridenko further showed that the solution to a certain combinatorial problem

on set systems would imply a constant integrality gap. This was later settled positively by
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Feige [Fei08a] using a proof technique that repeatedly used the Lovász Local Lemma. At the time
of Feige’s result, however, it was not known if his arguments were constructive, i.e., if it led to a
polynomial time algorithm for finding a solution with the same guarantee. This was later shown to
be the case by Haeupler et al. [HSS11], who constructivized the various applications of the Lovász
Local Lemma in the paper by Feige [Fei08a]. This led to the first constant factor approximation
algorithm for RestrictedMax-Min FairAllocation, albeit with a large and unspecified constant.
This approach also requires the solution of the exponentially large Configuration-LP obtained by
using the ellipsoid algorithm.

A different viewpoint and rounding approach for the problem was initiated by Asadpour, Feige,
and Saberi [AFS12]. This approach uses the perspective of hypergraph matchings where one can
naturally interpret the problem as a bipartite hypergraph matching problem with bipartitions P
and R. Indeed, in a solution of value τ, each player i is matched to a subset Ri of resources of total
value at least τ which corresponds to a hyperedge (i,Ri). Previously, Haxell [Hax95] provided
sufficient conditions for bipartite hypergraphs to admit a perfect matching, generalizing the well
known graph analog, viz., Hall’s theorem. Her proof is algorithmic in the sense that when the
sufficient conditions hold, then a perfect matching can be found using a local search procedure that
will terminate after at most exponentially many iterations. Haxell’s techniques were successfully
adapted by Asadpour et al. [AFS12] to the Restricted Max-Min Fair Allocation problem to
obtain a beautiful proof showing that the Configuration-LP has an integrality gap of at most 4.
As the Configuration-LP can be solved to any desired accuracy in polynomial time, this gives a
polynomial time algorithm to estimate the value of an optimal allocation up to a factor of 4+ ε, for
any ε > 0. Tantalizingly, however, the techniques of [AFS12] do not yield an efficient algorithm for
finding an allocation with the same guarantee.

The above results lend the RestrictedMax-Min FairAllocation problem an intriguing status
that few other natural problems enjoy (see [Fei08b] for a comprehensive discussion on the difference
between estimation and approximation algorithms). Another problem with a similar status is the
restricted version of the aforementioned scheduling problem. The techniques in [AFS12] inspired
the last author to show [Sve12] that the Configuration-LP estimates the optimal value within a
factor 33/17 + ε improving on the factor of 2 by Lenstra et al. [LST90]. Again, the algorithm
in [Sve12] is not known to terminate in polynomial time. We believe that this situation illustrates
the need for new tools that improve our understanding of the Configuration-LP especially in the
context of basic allocation problems in combinatorial optimization.

Our results. Our main result improves the approximation guarantee for the RestrictedMax-Min
Fair Allocation problem. Note that 6 + 2

√
10 ≈ 12.3.

Theorem 1.1. For every ε > 0, there exists a combinatorial (6 + 2
√

10 + ε)-approximation algorithm for

the RestrictedMax-Min Fair Allocation problem that runs in time nO(1/ε2 log(1/ε)) where n is the size
of the instance.

Our algorithm has the advantage of being completely combinatorial. It does not solve the
exponentially large Configuration-LP. Instead, we use it only in the analysis to compare the value
of the allocation returned by our algorithm against the optimum. As our hidden constants are
small, we believe that our algorithm is more attractive than solving the Configuration-LP for a
moderate ε. Our approach is based on the local search procedure introduced in this context by
Asadpour et al. [AFS12], who in turn were inspired by the work of Haxell [Hax95]. Asadpour et al.
raised the natural question if local search procedures based on alternating trees can be made to run
in polynomial time. Prior to this work, the best running time guarantee was a quasi-polynomial
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time alternating tree algorithm by Poláček and Svensson [PS12]. The main idea in that paper was
to show that the local search can be restricted to alternating paths of length O(log n) (according to
a carefully chosen length function), where n is the number of players and resources. This restricts
the search space of the local search giving the running time of nO(log n). To further reduce the
search space seems highly non-trivial and it is not where our improvement comes from. Rather,
in contrast to the previous local search algorithms, we do not update the partial matching as soon
as an alternating path is found. Instead, we wait until we are guaranteed a significant number
of alternating paths, which then intuitively guarantees large progress. We refer to this concept
as lazy updates. At the same time, we ensure that our alternating paths are short by introducing
greedy players into our alternating tree: a player may claim more resources than she needs in an
approximate solution.

To best illustrate these ideas we have chosen to first present a simpler algorithm in Section 3.
The result of that section still gives an improved approximation guarantee and a polynomial time
local search algorithm. However, it is not combinatorial as it relies on a preprocessing step which
in turn uses the solution of the Configuration-LP. Our combinatorial algorithm is then presented
in Section 4. The virtue of explaining the simpler algorithm first is that it allows us to postpone
some of the complexities of the combinatorial algorithm until later, while still demonstrating the
key ideas mentioned above.

Further related work. As mentioned before, the Configuration-LP has an integrality gap of
Ω

(√
|P|

)

for the general Max-Min FairAllocation problem. Asadpour and Saberi [AS07] almost

matched this bound by giving a O(
√
|P| log3(|P|))-approximation algorithm; later improved by

Saha and Srinivisan [SS10] to O(
√

|P| log |P|/ log log |P|). The current best approximation is O(nε)
due to Bateni et al. [BCG09] and Chakraborty et al. [CCK09]; for any ε > 0 their algorithms run in
time O(n1/ε). This leaves a large gap in the approximation guarantee for the general version of the
problem as the only known hardness result says that it is NP-hard to approximate the problem to
within a factor less than 2 [BD05]. The same hardness also holds for the restricted version.

2 The Configuration-LP

Recall that a solution to the Max-Min Fair Allocation problem of value τ is a partition {Ri}i∈P of
the set of resources so that each player receives a set of value at least τ, i.e., vi(Ri) > τ for i ∈ P. Let
C(i, τ) = {C ⊆ R : vi(C) > τ} be the set of configurations that player i can be allocated in a solution of
value τ. The Configuration-LP has a decision variable xiC for each player i ∈ P and each C ∈ C(i, τ).
The intuition is that the variable xiC takes value 1 if and only if she is assigned the bundle C. The
Configuration-LP is now a feasibility linear program with two sets of constraints: the first set says
that each player should receive (at least) one configuration and the second set says that each item
should be assigned to at most one player. The formal definition is given in the left box of Figure 1.

It is easy to see that if CLP(τ0) is feasible, then so is CLP(τ) for all τ 6 τ0. We say that the value of
the Configuration-LP is τOPT if it is the largest value such that the above program is feasible. Since
every feasible allocation is a feasible solution of the Configuration-LP, τOPT is an upper bound on
the value of the optimal allocation and therefore CLP(τ) constitues a valid relaxation.

We note that the LP has exponentially many variables; however, it is known that one can
approximately solve it to any desired accuracy by designing a polynomial time (approximate)
separation algorithm for the dual [BS06]. For our combinatorial algorithm, the dual shall play
an important role in our analysis. By associating the sets of variables {yi}i∈P and {z j} j∈R to the
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∑

C∈C(i,τ)

xiC > 1, ∀ i ∈ P,
∑

i,C: j∈C,C∈C(i,τ)

xiC 6 1, ∀ j ∈ R,

x > 0.

max
∑

i∈P
yi −

∑

j∈R
z j

yi 6

∑

j∈C
z j, ∀i ∈ P,∀C ∈ C(i, τ),

y, z > 0.

Figure 1: The Configuration-LP for a guessed optimal value τ on the left and its dual on the right.

constraints in the primal corresponding to players and resources respectively, and letting the
primal have the objective function of minimizing the zero function, we obtain the dual of CLP(τ)
shown in the right box of Figure 1.

3 Polynomial time algorithm

To illustrate our key ideas we first describe a simpler algorithm that works on clustered instances.
This setting, while equivalent to the general problem up to constant factors, allows for a simpler
exposition of our key ideas. Specifically, we will prove the following theorem in this section.

Theorem 3.1. There is a polynomial time 36-approximation for restricted max-min fair allocation.

We note, however, that producing such clustered instances requires solving the Configuration-
LP. To avoid solving it, and get a purely combinatorial algorithm, we will show how to bypass the
clustering step in Section 4.

Before describing our algorithm formally, we begin by giving an informal overview of how it
works, while pointing out the key ideas behind it.

3.1 Intuitive Algorithm Description and Main Ideas

Our first step towards recovering an approximate solution to an instance of restricted max-min
fair allocation, is guessing the value of the Configuration-LP τOPT by performing a binary search
over the range of its possible values. For a particular guess τ, assuming that CLP(τ) is feasible, our
goal now is to approximately satisfy each player. That is, we will allocate for each player a disjoint
collection of resources, whose value for that player is at least τ/36. Towards this end, we design
a local search procedure, that we will apply iteratively in order to find such a 36-approximate
allocation. The input to this procedure will be a partial allocation that satisfies some (possibly
empty) subset of the players, and an unsatisfied player. Then, our local search procedure will
extend the allocation in order to satisfy the input player as well; hence, applying this procedure
iteratively will satisfy all the players.

We now illustrate some key aspects of this local search procedure through an example that
appears in Figure 2; for simplicity, in this example we consider only resources of value less than
τ/36. Given a partial allocation of resources to a subset of the players, we wish to extend this to
satisfy an additional player p. If there are free resources (i.e., not already appearing in our partial
allocation) of total value τ/36 for p, then we just satisfy p by assigning those resources to her.
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Otherwise, we find a set of resources whose value for p is at least 2τ/5; these resources constitute
a bundle (or, as we will refer to it later on, an edge) ep we would wish to include in our partial
allocation in order to satisfy p. However, we cannot include this edge right away because there
already exist edges in our partial allocation that share resources with ep; in other words, such edges
are blocking the inclusion of ep into our partial allocation. In Figure 2(a), ep is the gray edge, and its
blocking edges are the white ones.

At this point, we should make note of the fact that the size of ep is considerably larger than our
goal of τ/36; this is by design and due to our greedy strategy. By considering edges whose size
exceeds our goal, we are able to increase the rate at which blocking edges are inserted into our
local search; indeed, in Figure 2(a), a single greedily-constructed edge (ep) introduced 3 blocking
edges. Ultimately, this will allow us to bound the running time of our local search.

Now, since our goal is to include ep in our partial allocation, we are required to free up some
of ep’s resources by finding an alternative way of satisfying the players included in ep’s blocking
edges. The steps we take towards this end appear in Figure 2(b): for each player in ep’s blocking
edges, we find a new edge that we would wish to include into our partial allocation. But these
new gray edges might also be blocked by existing edges in our partial allocation. Therefore this
step introduces a second layer of edges comprising a set of edges we would like to include in our
allocation, and their corresponding blocking edges; these layers are separated by dashed lines in
the example.

Next, we observe that 2 of the 3 gray edges in the second layer actually have a lot of resources
that do not appear in any blocking edge. In this case, as one can see in Figure 2(c), we select a
subset of free resources from each edge of size at least τ/36 (drawn with dashed lines), and swap
these edges for the existing white edges in our partial allocation. We call this operation a collapse
of the first layer, only to be left with ep and a single blocking edge in the first layer. The way we
decide when to collapse a layer, is dictated by our strategy of lazy updates: similar to Figure 2(c),
we will only collapse a layer if that would mean that a large fraction of its blocking edges will be
removed.

Finally, in Figure 2(d), a significant amount of resources of ep has now been freed up. Then, we
choose a subset of these resources (again, drawn with a dashed line), and allocate them to p. At
this point, we have satisfied p, and managed to extend our partial allocation to satisfy one more
player.

We proceed by formally defining and analyzing the local search algorithm we sketched above.

3.2 Parameters

Let τ > 0 be a guess on the value of the Configuration-LP. Our algorithm will use the following
setting of parameters:

β := 36,

α := 5/2,

µ := 1/500.

(3.1)

Here, β is the approximation guarantee, α determines the “greediness” of the edges introduced
into the layers, and µ determines the “laziness” of the updates of our algorithm. As our goal is to
expose the main ideas, we have not optimized the constants in this section.

We shall show that whenever CLP(τ) is feasible, our algorithm will terminate with a solution
of value at least τ/β for the given instance of restricted max-min fair allocation. Combining this
with a standard binary search then yields a β-approximation algorithm.
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(a)

p

(b)

p

(c)

p

(d)

p

Figure 2: An example execution of our local search algorithm. In this figure, boxes correspond to
players, and circles correspond to resources.

3.3 Thin and fat edges, and matchings

We partition the resource set R into R f := {i ∈ R : vi > τ/β} and Rt := {i ∈ R | vi < τ/β}, fat and thin
resources respectively. Note that in a β-approximate solution, a player is satisfied if she is assigned
a single fat resource whereas she needs several thin resources. We will call a pair (p,R), for any
p ∈ P and R ⊆ R such that vp(R) = v(R) where v(R) =

∑

j∈R v j, an edge. Notice that this definition
implies that every resource in R is a resource that player p is interested in. We now define thin and
fat edges.

Definition 3.2 (Thin and fat edges). We will call an edge (p,R), where p ∈ P and R ⊆ R, fat,
if { j} = R ⊆ R f contains a single fat resource that p is interested in; this already implies that
vp(R) > τ/β. On the other hand, we will call an edge (p,R), where p ∈ P and R ⊆ R, thin, if R ⊆ Rt

is a set of thin resources that p is interested in.
Finally, for any δ > 1, we will call an edge (p,R), where p ∈ P and R ⊆ R, a δ-edge, if R is a

minimal set (by inclusion) of resources of value at least τ/δ for p, i.e., vp(R) > τ/δ.

Remark 3.3. A thin δ-edge has value at most τ/δ + τ/β due to the minimality of the edge.

As we have already mentioned, the goal of our local search algorithm is to iteratively extend a
partial matching:
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Definition 3.4 (Matchings). A set M of β-edges is called a matching if each player appears in at
most one edge and the set of resources used by the edges in M are pairwise disjoint. We say that
M matches a player p ∈ P if there exists an edge in M that contains p. Moreover, it is called a perfect
matching if each player is matched by M, and otherwise it is called a partial matching.

Using the above terminology, our goal is to find a perfect matching yielding our desired
allocation of value τ/β. Our approach will be to show that as long as the matching M does not
match all players in P we can extend it to obtain a matching that matches one more player. This
ensures that starting with an empty partial matching and repeating this procedure |P| times we
will obtain an allocation of value at least τ/β. Thus, it suffices to develop such an algorithm. This
is precisely what our algorithm will do. We first state a preprocessing step in Section 3.4 before
describing the algorithm in Section 3.5.

3.4 Clustering step

This preprocessing phase produces the clustered instances referred to earlier. The clustering step
that we use is the following reduction due to Bansal and Sviridenko.

Theorem 3.5 (Clustering Step [BS06]). Assuming that CLP(τ) is feasible, we can partition the set of
players P into m clusters N1, . . . ,Nm in polynomial time such that

1. Each cluster Nk is associated with a distinct subset of |Nk| − 1 fat items from R f such that they can be
assigned to any subset of |Nk| − 1 players in Nk, and

2. there is a feasible solution x to CLP(τ) such that
∑

i∈Nk

∑

C∈Ct(i,τ) xiC = 1/2 for each cluster Nk, where
Ct(i, τ) denotes the set of configurations for player i comprising only thin items.

Note that the player that is not assigned a fat item can be chosen arbitrarily and independently
for each cluster in the above theorem. Therefore, after this reduction, it suffices to allocate a thin
β-edge for one player in each cluster to obtain a β-approximate solution for the original instance.
Indeed, Theorem 3.5 guarantees that we can assign fat edges for the remaining players. For the
rest of the section we assume that our instance has been grouped into clusters N1, . . . ,Nm by an
application of Theorem 3.5. The second property of these clusters is that each cluster is fractionally
assigned 1/2 LP-value of thin configurations. We will use this to prove the key lemma in this
section, Lemma 3.6.

We now focus only on allocating one thin β-edge per cluster and forget about fat items com-
pletely. This makes the algorithm in Section 3.5 simpler than our final combinatorial algorithm,
where we also need to handle the assignment of fat items to players.

3.5 Description of the algorithm

Notation: Recall that it suffices to match exactly one player from each cluster with a thin β-edge.
With this in mind, we say that a cluster Nk is matched by M if there exists some player p ∈ Nk

such that p is matched by M. For a set S of edges, we let R(S) =
⋃

(p,R)∈S R denote the union of the
resources of these edges and we let P(S) =

⋃

(p,R)∈S{p} denote the union of players of these edges.
To ease notation, we abbreviate P(Bt) by Pt in the description of the algorithm and its analysis.
Finally, for any family of sets S0, S1, . . . , Sℓ we denote S0 ∪ S1 ∪ · · · ∪ St by S6t.

The input to Algorithm 1 is a partial matching M that matches at most one player from each
cluster N1, . . . ,Nm, and a cluster N0 that is not matched by M; our goal is to extend our partial
matching by matching N0.
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Input: A partial matching M and an unmatched cluster N0.
Output: A matching M′ that matches all clusters matched by M and also matches N0.

1. (Initialization) Select an arbitrary player p0 ∈ N0 and let A0 = ∅,B0 = {(p0, ∅)}, ℓ = 0, L = (A0,B0).

(Iterative step) Repeat the following until N0 is matched by M:

2. (Build phase) Initialize Aℓ+1 = ∅; then for each cluster Nk with a player in Pℓ do:

– If there is a thin α-edge (p,R) with p ∈ Nk and R ∩ R(A6ℓ+1 ∪ B6ℓ) = ∅ then
Aℓ+1 = Aℓ+1 ∪ {(p,R)}.

At the end of the build phase, let first Bℓ+1 be the edges of M that are blocking the edges in Aℓ+1.
Then update the state of the algorithm by appending (Aℓ+1,Bℓ+1) to L and by incrementing ℓ
by one.

3. (Collapse phase) While ∃t : It+1 = {(p,R) ∈ At+1 : vp(R \ R(Bt+1)) > τ/β} has cardinality > µ|Pt|:

– Choose the smallest such t.
//We refer to the following steps as collapsing layer t.

– For each cluster Nk with players q, p satisfying q ∈ Pt and (p,R) ∈ It+1:

– Let (q,Rq) ∈ Bt ∩M be the edge containing q.
– Replace (q,Rq) in M with edge (p,R′), where R′ is a τ/β-minimal subset of R \R(Bt+1),

i.e., update M←M \ {(q,Rq)} ∪ {(p,R′)}.
– Finally, remove (q,Rq) from Bt.

– Discard (Ai,Bi) from L for all i > t and set ℓ = t.

Output the matching M that also matches N0.

Algorithm 1: Polynomial Time Algorithm for Clustered Instances

The state of the algorithm is described by a (dynamic) tuple (M, ℓ,L), where M is the current
partial matching and L = ((A0,B0), (A1,B1), · · · , (Aℓ,Bℓ)) is a list of pairs of sets of “added” and
“blocking” edges that is of length/depth ℓ. We shall refer to (Ai,Bi) as the i’th layer1.

Invariants. The description of our algorithm appears as Algorithm 1. The algorithm is designed
to (apart from extending the matching) maintain the following invariants at the start of each
iterative step: for i = 1, . . . , ℓ,

1. Ai is a set of thin α-edges that are pairwise disjoint, i.e., for two different edges (p,R) ,
(p′,R′) ∈ Ai we have p , p′ and R ∩ R′ = ∅. In addition, each α-edge (p,R) ∈ Ai has
R∩R(A6i∪B6i−1 \ {(p,R)}) = ∅ (its resources are not shared with edges from earlier iterations
or edges in Ai).

2. Bi = {(p,R) ∈M : (p,R) is blocking an edge in Ai} contains those edges of M that blocks edges
in Ai, where we say that an edge (p,R) ∈M blocks an edge (p′,R′) if R ∩ R′ , ∅.

3. The players of the edges in Ai belong to different clusters and any cluster Nk with a player
p ∈ Nk that appears in an edge in Ai has a player q ∈ Nk (that may equal p) that appears in an
edge in Bi−1.

1The edges of the algorithm naturally form layers as described in Section 3.1 and as depicted in Figure 2. The edges
in Ai are added so as to try to “replace” edges in Bi−1 in the matching M. Bi are then the edges of M that are blocking the
edges in Ai.
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4. |Ii| < µ|Pi−1|where, as in Step 3 of Algorithm 1, Ii = {(p,R) ∈ Ai : vp(R\R(Bi)) > τ/β} is defined
to be those edges that have sufficient amount of unblocked resources so as to be added to
the matching.

In what follows, we further explain the steps of the algorithm and why the invariants are
satisfied. It will then also be clear that the algorithm outputs an extended matching whenever it
terminates. We then analyze its running time in the next section.

First the algorithm initializes by selecting an arbitrary player p0 in the cluster N0 that we wish
to match. Then each iteration proceeds in two steps. In the build phase, the algorithm adds thin
α-edges (at most one for each cluster with a player in Pℓ) to Aℓ+1. Notice that the resources of these
edges are disjoint from R(A6ℓ ∪B6ℓ) and from each other. We therefore maintain the first invariant.
At the end of the build phase, we define Bℓ+1 to satisfy the second invariant. The third invariant
is also satisfied since we only iterate through the clusters with a player in Pℓ and add at most one
edge to Aℓ+1 for each such cluster. So after the build phase, the first three invariants are satisfied.

The collapse phase will ensure the fourth invariant while not introducing any violations of
the first three. Indeed, the while-loop runs until the fourth invariant is satisfied so we only need
to worry about the first three still being satisfied. The first and third invariants remain satisfied
because any set Ai that was affected in the collapse phase is discarded from the algorithm and if
Bi was changed then Ai+1 was also discarded. For the second invariant, note that after updating
the matching M, we remove the edge that was removed from the matching from Bt. Hence, Bt still
only contains edges of the new matching that blocks edges in At. Moreover, by the first invariant,
the newly introduced edge in the matching does not share any resources with edges in A6t ∪ B6t.
Hence, the second invariant also remains true. Finally, we note that M remains a matching during
the update procedure that matches all clusters that were initially matched. Indeed, when (q,Rq)
is removed an edge (p,R′) is added to the matching with p being from the same cluster as q (or
the algorithm terminates by having successfully matched a player in N0). The added edge is a
β-edge and its resources are disjoint from all edges in M since (1) R′ is a subset of R \ R(Bt+1), (2)
Bt+1 contains all blocking edges of At+1 with respect to the matching before the collapse phase, and
(3) the edges in At+1 are disjoint so (p,R′) is disjoint from any other edges added to the matching
in the same collapse phase. We thus maintain a valid matching, in which all edges are pairwise
disjoint, and the output is an extended matching that also matches the cluster N0.

3.6 Analysis of the algorithm

We now proceed to show that the algorithm in Section 3.5 terminates in polynomial time, which
then implies Theorem 3.1. Recall that α is the parameter that regulates the “greediness” of the
players while β is the approximation guarantee, and µ dictates when we collapse a layer.

The key lemma that we prove in this section is that in each layer (Ai+1,Bi+1), the number of
edges in Ai+1 is large compared to the number of blocking edges (or, similarly, the number of
players) of lower layers.

Lemma 3.6. Assuming that CLP(τ) is feasible, at the beginning of each iterative step, |Ai+1| > |P6i|/5 for
each i = 0, . . . , ℓ − 1.

We defer the proof of this statement for now and explain its consequences. As thin items are of
value less than τ/β = τ/36, and each edge in A6ℓ is a thin α-edge of value at least τ/α = 2τ/5, this
implies that Bi must be quite large, using |Ii| < µ|Pi−1| from the fourth invariant. This means that
the number of blocking edges will grow quickly as we prove in the next lemma.
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Lemma 3.7 (Exponential growth). Assuming that CLP(τ) is feasible, at the beginning of the iterative
step |Pi+1| > 13|P6i|/10 for i = 0, . . . , ℓ − 1.

Proof. Fix an i such that 0 6 i < ℓ. By the fourth invariant, |Ii+1| < µ|Pi| at the beginning of the
iterative step. This means that there are at least |Ai+1| − µ|Pi| many edges in Ai+1 which are not
in Ii+1. As each edge in Ai+1 \ Ii+1 has resources of value at least τ/α − τ/β that are blocked (i.e.,
contained in R(Bi+1)), we can lower bound the total value of blocked resources appearing in Ai+1
by

(

τ

α
− τ
β

)

(|Ai+1| − µ|Pi|
)

.

Further, since each edge in Bi+1 is of value at most 2τ/β by minimality, the total value of such
resources is upper bounded by |Pi+1| · 2τ/β. In total,

(

τ

α
− τ
β

)

(|Ai+1| − µ|Pi|
)

6 |Pi+1|
2τ
β
=⇒ |Pi+1| >

(β − α)(1/5 − µ)
2α

|P6i| > 13|P6i|/10,

where we have used Lemma 3.6 to bound |Ai+1| by |P6i|/5 from below. �

Since the number of blocking edges grows exponentially as a function of the layer index, an
immediate consequence of Lemma 3.7 is that the total number of layers in the list L at any step
in the algorithm is at most O(log |P|). This means that we have to satisfy the condition in the
while-loop of the collapse phase after at most logarithmically many iterative steps. When this
happens, Algorithm 1 selects the smallest t satisfying the condition and then proceeds to update
At+1 and Bt. Note that, by the condition of the while-loop, and since each edge in It+1 will be
updated in the for-loop (using the third invariant), a constant fraction (at least µ as defined in (3.1))
of the edges in Bt are removed. We refer to these steps of the algorithm as the collapse of layer
t. Furthermore, due to the algorithm’s first invariant, we know that the edges that compose It+1
are pairwise disjoint; therefore, we are able to insert all of them simultaneously into our matching,
which means that the size of our matching does not decrease during the collapse operation. On
the contrary, if p0 is part of the edges that are inserted into M, then we have actually achieved to
extend our matching M. Intuitively we make large progress whenever we update M during the
collapse of a layer. We prove this by maintaining a signature vector s := (s0, . . . , sℓ,∞) during the
execution of the algorithm, where

si := ⌊log1/(1−µ) |Pi|⌋.
Lemma 3.8. The signature vector always reduces in lexicographic value across each iterative step, and the
coordinates of the signature vector are always non-decreasing, i.e., s0 6 s1 . . . 6 sℓ.

Proof. Let s and s′ be the signature vectors at the beginning and at the end of some iterative step.
We now consider two cases depending on whether a collapse operation occurs in this iterative
step.

Case 1. No layer was collapsed. Clearly, s′ = (s0, . . . , sℓ, s
′
ℓ+1,∞) has smaller lexicographic value

compared to s.

Case 2. At least one layer was collapsed. Let ℓ + 1 denote the index corresponding to the newly
created layer in the build phase. Let 0 6 t 6 ℓ be the most recent index chosen in the
while-loop during the collapse phase. As a result of the collapse operation suppose the
layer Pt changed to P′t. Then we know that |P′t | < (1 − µ)|Pt|. Since none of the layers
with indices less than t were affected during this procedure, s′ = (s0, . . . , st−1, s

′
t ,∞) where

s′t = ⌊log1/(1−µ) |P′t |⌋ 6 ⌊log1/(1−µ) |Pt|⌋ − 1 = st − 1. This shows that the lexicographic value of
the signature vector decreases.
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In both cases, the fact that the coordinates of s′ are non-decreasing follows from Lemma 3.7 and
the definition of the coordinates of the signature vector. �

Choosing the “∞” coordinate of the signature vector to be some value larger than log1/(1−µ) |P|
(so that Lemma 3.8 still holds), we see that each coordinate of the signature vector is at most U and
the number of coordinates is also at most U where U = O(log |P|). Thus, the sum of the coordinates
of the signature vector is always upper bounded by U2. We now prove that the number of such
signature vectors is polynomial in |P|.

A partition of an integer N is a way of writing N as the sum of positive integers (ignoring
the order of the summands). The number of partitions of an integer N can be upper bounded by
eO(
√

N) by a result of Hardy and Ramanujan [HR18]2. Using that the coordinates of our signature
vectors are non-decreasing, each signature vector corresponds to a partition of an integer of value
at most U2, and vice versa: given a partition of an integer of size ℓ, the largest number of the
partition will correspond to the ℓ-th coordinate, the second largest to the ℓ−1-th coordinate, and so
on. Therefore, we can upper bound the total number of signature vectors by

∑

i6U2 eO(
√

i) = |P|O(1).
Since each iteration of the algorithm takes only polynomial time along with Lemma 3.8 this proves
Theorem 3.1.

Before we return to the proof of the key lemma in this section, Lemma 3.6, let us note an
important property of the algorithm which follows from that in the build-phase we add an α-edge
for each cluster as long as it is disjoint from the already added resources.

Fact 3.9. Let q be a player from some cluster Nk. Notice that if a player q is part of some blocking edge in
the ith layer, i.e., q ∈ Pi, and further there is no edge (p,R) ∈ Ai+1 with p ∈ Nk then it means that none of
the players in Nk have a set of resources of value at least τ/α disjoint from the resources R(B6i ∪A6i+1).

Proof of Lemma 3.6. Notice that since the set Ai is discarded if it is modified or any of the sets
A0,A1, . . . ,Ai−1, B0,B1 . . . ,Bi−1 is modified, it is sufficient to verify the inequality when we construct
the new layer (Aℓ+1,Bℓ+1) in the build phase. The proof is now by contradiction. Suppose
|Aℓ+1| < |P6ℓ|/5 after the build phase. LetN ⊆ {N1, . . . ,Nm} be the clusters that have a player in an
edge B6ℓ but no player in an edge in A6ℓ+1. We have that, |N| = |P6ℓ| − |A6ℓ+1 |.

Recall that Ct(i, τ) denotes the set of configurations for player i comprising only thin items. By
Theorem 3.5 there exists an x that is feasible for CLP(τ) such that

∑

i∈Nk

∑

C∈Ct(i,τ) xiC = 1/2 for each
cluster Nk. Now form the bipartite hypergraphH = (N∪Rt,E) where we have vertices for clusters
in N and thin items in R, and edges (Nk,C) for every cluster Nk and thin configuration C such
that xpC > 0 and p ∈ Nk. To each edge (Nk,C) inH assign the weight

(

∑

i∈Nk
xiC

)

∑

j∈C v j. The total
weight of edges inH is at least |N|τ/2. Let Z = R(B6ℓ ∪ A6ℓ+1) denote the thin items appearing in
the edges of L and Aℓ+1. Let v(Z) =

∑

j∈Z v j denote their value. Now remove all these items from
the hypergraph to formH ′ which has edges (Nk,C \ Z) for each edge (Nk,C) inH . The weight of
(Nk,C \ Z) is similarly defined to be

(

∑

i∈Nk
xiC

)

∑

j∈C\Z v j.
Let us upper bound the total value of thin items appearing in Z. Consider some layer (A j,B j).

The total value of resources in thin α-edges in A j is at most (τ/α+ τ/β)|A j| by the minimality of the
edges. The value of resources in B j not already present in some edge in A j is at most (τ/β)|B j| also
by minimality of the thin β-edges in B j. Therefore, v(Z) is at most

ℓ
∑

j=1

(

(
τ

α
+
τ

β
)|A j| + (

τ

β
)|B j|

)

+ |Aℓ+1|
(

τ

α
+
τ

β

)

< |A6ℓ+1|
(

τ

α
+
τ

β

)

+ |P6ℓ |
τ

β
.

2The asymptotic formula for the number of partitions of N is 1
4N
√

3
exp

(

π
√

2N
3

)

as N →∞ [HR18].
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As the sum of the edge weights inH is at least (|N|/2)(τ), the sum of edge weights inH ′ is at
least |N|τ/2 − v(Z). And by Fact 3.9, the sum of edge weights inH ′ must be strictly smaller than
(N/2)(τ/α). Thus,

(|P6ℓ | − |A6ℓ+1|)
2

τ − |A6ℓ+1|
(

τ

α
+
τ

β

)

− |P6ℓ |
τ

β
<

(|P6ℓ| − |A6ℓ+1|)
2

τ

α
. (*)

Note that |A6ℓ+1| appears with a larger negative coefficient (in absolute terms) on the left-hand-side
than on the right-hand-side. Therefore, if (*) holds then it also holds for an upper bound of |A6ℓ+1|.
We shall compute such a bound and reach a contradiction.

We start by computing an upper bound on |A j+1| for j = 0, . . . , ℓ − 1. The fourth invariant says
that except for at most µ|P j| edges in A j+1, the remainder have at least τ/α− τ/β value of resources
blocked by the edges in B j+1. Using this,

(

τ

α
− τ
β

)

(

|A j+1| − µ|P j|
)

6 |P j+1|
2τ
β

summing over j
=⇒

(

τ

α
− τ
β

)

(|A6ℓ | − µ|P6ℓ−1|
)

6 |P6ℓ|
2τ
β
.

Rearranging terms we have,

|A6ℓ| 6 |P6ℓ|
2α
β − α + µ|P6ℓ−1| 6 |P6ℓ|

(

2α
β − α + µ

)

.

Substituting this upper bound in (*) along with our assumption |Aℓ+1| < |P6ℓ |/5 we get (after
some algebraic manipulations)

|P6ℓ|
(

1 − 1
α
− 2
β

)

− |P6ℓ |
(

2α
β − α + µ + 1/5

) (

1 +
1
α
+

2
β

)

< 0.

This is a contradiction because if we substitute in the values of α, β, and µ from (3.1) the left-hand-
side is positive. �

4 Combinatorial Algorithm

In the previous section, we described a 36-approximation algorithm for restricted max-min fair
allocation; however, this algorithm required us to solve the Configuration-LP. In this section, we
will design and analyze a purely combinatorial (6 + 2

√
10 + ε)-approximation algorithm, for any

0 < ε 6 1 (for reference, note that 6 + 2
√

10 < 13). This will prove our main result, Theorem 1.1.
We start by providing an informal overview of how the combinatorial algorithm works.

4.1 Intuitive Algorithm Description

To begin with, the general framework of our combinatorial algorithm is similar to that of the
simpler algorithm we described in Section 3: we guess an optimal value τ for the Configuration-
LP, and we then try to find an allocation of resources which approximately satisfies every player,
i.e., assigns to each player a set of resources of total value at least τ/13 for that player. To do so, we
will again design a local search procedure, whose goal will be to extend a given partial allocation
of resources, so as to satisfy one more player.

An example execution of our combinatorial algorithm appears in Figure 3: there, given a partial
allocation of resources to players, we want to extend this allocation to satisfy player p. Naturally,
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if there is a set of resources, that do not appear in the given partial allocation, and whose total
value for p is at least τ/13, we will assign these resources to player p. Otherwise, we find an edge
ep whose total value for p is at least τ/2 (the bottom gray edge in Figure 3(a)), and consider all the
edges in our given partial allocation that share resources with that set (the white edges intersecting
ep in Figure 3(a)); these edges constitute the first layer that is shown in Figure 3(a).

At this point, we should make note of the fact that, similar to the simpler algorithm we
described in Section 3, we will again be using a greedy strategy with respect to the edges we wish
to include in our partial matching. Specifically, even though we wish to only assign resources of
total value at least τ/13 to each player, the gray edges we attempt to include in our matching are
significantly more valuable (i.e., of total value at least τ/2). Again, this will imply that every gray
edge will intersect with multiple white/blocking edges, which will eventually help us prove that
the algorithm’s running time is polynomial in the size of the input.

Next, similar to the simpler algorithm we described in Section 3, we want to free up the
resources that appear in edge ep. We do this by finding disjoint sets of resources that satisfy the
players appearing in the white edges of the first layer. However, here we encounter the first
major difference compared to our previous algorithm: some of the players that appear in the
white edges of the first layer can be satisfied by using fat resources, i.e., resources whose value for
their corresponding players is at least τ/13. Since every fat edge we would like to include in our
partial allocation can only be blocked by exactly one edge that already belongs to our allocation,
alternating paths of fat edges are created. Such a path, that ends in a gray thin edge, is displayed
in Figure 3(b); if we wish to include the gray edge that contains q2 into our partial allocation, then
we would have to replace the white fat edges with the gray ones.

However, considering such alternating paths of fat edges brings up one issue: since, as is
shown in Figure 3(a), the alternating paths that originate at players p1 and p2 end at two distinct
gray thin edges, if we were to include both of these edges into our matching, then we would have
to guarantee that we will not use the same fat resource to satisfy two different players. In order
to do this, we will include the gray edges that contain players q1 and q2 into our partial allocation,
only if the alternating paths that end in these players are vertex-disjoint, as is the case in Figure 3(c).

Next, since we have solved the problem of deciding if we can update our partial matching by
replacing white edges with gray ones, the question that arises is when should we do that. Similar
to our simpler algorithm, we will employ the strategy of lazy updates. In other words, we will be
replacing the white edges of some layer with gray ones (or, as we will call this operation, collapse a
specific layer), only if that would mean that a significant amount of the white edges gets replaced.
Replacing a significant amount of white (i.e., blocking) edges then implies that we make significant
progress towards matching player p.

Finally, after we update our partial allocation, by inserting the gray edges containing players
q1 and q2, inserting the gray fat edges that belong to the corresponding alternating paths, and
removing the white fat edges that belong to the corresponding alternating paths, we have managed
to free up a significant amount of resources of edge ep. Hence, we choose a subset of the resources
contained in ep, whose total value is at least τ/13, and include it into our partial allocation. At
this point, we have managed to extend our partial allocation to include one more player, namely,
player p.
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(a) (b)

(d) (c)

⇓

⇒

⇐

p

p2

q2

p1

q1

p2

q2

p

q1

p1

q2

p2

Figure 3: An illustration of our combinatorial algorithm. In this figure, boxes correspond to players
and circles correspond to resources.

4.2 Parameters

Let τ > 0 be a guess on the value of the Configuration-LP, and fix some 0 < ε 6 1. Our algorithm
will use the following setting of parameters:

β := 2(3 +
√

10) + ε,

α := 2,

µ := ε/100.

(4.1)

Similar to our simpler algorithm, β is the approximation guarantee, α determines the “greediness”
of the algorithm, and µ determines the “laziness” of the updates of our algorithm.

We shall show that whenever CLP(τ) is feasible, our algorithm will terminate with a solution
of value at least τ/β for the given instance of restricted max-min fair allocation. Combining this
with a standard binary search then yields a β-approximation algorithm.

4.3 Description of the Algorithm

We begin by noting that we will be re-using the definitions of fat and thin edges, δ-edges, and (partial)
matchings that we introduced in Section 3.3. However, we remind the reader that the parameters
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we used in the above definitions have now changed, see (4.1).
The goal of our algorithm will be to find a perfect matching. Similar to our simpler algorithm,

the way we do this is by designing an augmenting algorithm, that will extend any given partial
matching to satisfy one more player. Thus, starting from an empty matching and iteratively apply-
ing the augmenting algorithm will yield a perfect matching that corresponds to a β-approximate
allocation. We remark that for the purposes of our algorithm, any partial matching we consider
contains the maximum number of fat resources possible. In order to enforce this condition, we find
a maximum matching between fat resources and players; this will be our initial partial matching.
Starting from this partial matching, we proceed to iteratively extend it, by matching one more
player at a time while never decreasing the number of fat items in our allocation.

We proceed to define the concepts of Disjoint Path Networks and Canonical Decompositions, that
are necessary to state our combinatorial algorithm. These concepts will be used to implement the
idea of updating our partial matching using vertex-disjoint alternating paths, that we mentioned
in Section 4.1. We then state our algorithm formally, and we analyze its running time in the
subsequent sections.

Disjoint Path Networks. As we discussed in the overview of our combinatorial algorithm, we
need a way to ensure that the alternating paths we use to update our partial matching are disjoint.
We say that two paths are disjoint if they are vertex-disjoint. To do so, we employ a structure called
Disjoint Path Networks.

Given a partial matching M, let HM = (P ∪ R f ,EM) be the directed graph defined as follows:
there is a vertex for each player in P and each fat resource in R f ; and, there is an arc from a player
in p ∈ P to a fat resource f ∈ R f if p is interested in f unless the arc (p, { f }) appears in M in which
case there is an arc ({ f }, p). Note that the graph HM depends only on the assignment of fat resources
to players in M.

Now, let S,T ⊆ P be a set of sources and sinks respectively that are not necessarily disjoint.
Let FM(S,T) denote the flow network we get if we place unit capacities on the vertices of HM, and
use S and T as sources and sinks respectively. Furthermore, let DPM(S,T) denote the value of an
optimal solution, i.e., the maximum number of disjoint paths from the sources S to the sinks T in
the graph HM.

In our algorithm, S and T will contain only vertices in HM corresponding to players inP. How-
ever, to specify a sink we sometimes abuse notation and specify an edge since the corresponding
sink vertex can be deduced from it. For example, if we write DPM(X,Y), for some set of players
X and some set of edges Y, then we mean the maximum number of disjoint paths that start at a
player in X and end in a player that appears in some edge in Y.

For basic concepts related to flows, such as flow networks and augmenting paths, we refer the
reader to the textbook by Cormen, Leiserson, Rivest and Stein [CLRS09].

State of the Algorithm. The state of the algorithm is described by a dynamic tuple (M, ℓ,L, I),
where M is the current partial matching, L = ((A0,B0, d0), (A1,B1, d1), · · · , (Aℓ,Bℓ, dℓ)) is a list of ℓ
layers and I is a set of "immediately addable" edges. Each layer Li = (Ai,Bi, di) consists of a set of
"added" edges Ai, a set of "blocking" edges Bi, and a positive integer di. We note that di is redundant
for the formal statement of our algorithm, but will be handy in our analysis.

Canonical Decompositions. We proceed to define the last concept necessary to describe our
combinatorial algorithm. Recall that we denote ∪i6tSi by S6t, for some sequence of sets S0, . . . St,
and that Pi denotes the players that appear in Bi. Moreover, for a set S of edges we use P(S) to
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denote the set of players that appear in an edge in S and we use R(S) to denote the set of resources
that appear in an edge in S.

Definition 4.1 (Canonical Decomposition of I). Given a state (M, ℓ,L, I) of the algorithm, we call
a collection of disjoint subsets {I0, I1, . . . , Iℓ} of I a canonical decomposition if it satisfies the following
conditions:

1. For i = 0, 1, . . . , ℓ, |I6i| = DPM(P6i, I6i) = DPM(P6i, I).

2. There exists an optimal solution W to FM(P6ℓ, I) such that, for i = 0, 1 . . . , ℓ, |Ii| paths in W go
from players Qi ⊆ Pi to the sinks in Ii. We denote these paths by Wi. We also refer to W as
the canonical solution corresponding to the decomposition.

As we will see in Section 4.4, canonical decompositions and their corresponding canonical
solutions can be computed in polynomial time.

Algorithm Statement. The combinatorial algorithm behind the proof of Theorem 1.1 is stated as
Algorithm 2. We remark that the computation of canonical decompositions and solutions to flow
networks that are carried out in Steps 3 and 3.b respectively can be carried out in polynomial time;
this fact is proved in Section 4.4.

Similar to Algorithm 1, Algorithm 2 preserves the following invariants:

1. For i = 0, . . . , ℓ, Ai is a set of thin α-edges and each α-edge (p,R) ∈ Ai has R ∩ R(A6i ∪ B6i−1 ∪
I \ {(p,R)}) = ∅ (its resources are not shared with edges from earlier iterations, edges in Ai, or
edges in I).

2. For any edge (p,R) ∈ I, it holds that R ∩ R(A6ℓ ∪ I \ {(p,R)}) = ∅ and vp(R \ R(M)) > τ/β.3

3. Given a canonical decomposition {I0, . . . , Iℓ} of I, for i = 0, . . . , ℓ it holds that |Ii| < µ|Pi|.

The similarities between these invariants and those of the simpler algorithm follow from
the same basic ideas. However, since Algorithm 2 is more involved, its analysis requires more
invariants that we present in the subsequent sections.

Before proceeding with analyzing Algorithm 2, we explain its steps in more detail and why
the algorithm satisfies the above invariants. The algorithm begins with a partial matching M and
a player p0 that we wish to include in our partial matching. Furthermore, as pointed out earlier,
we make sure that M contains a maximum matching between fat resources and players. Every
iteration of our algorithm involves two main phases: the build phase, and the collapse phase.

During the build phase of layer ℓ + 1, the algorithm finds thin α-edges for the players in Pℓ
that we then insert into either I (if the α-edge contains sufficient resources that do not appear in
M) or to Aℓ+1. By the design of Algorithm 2, any edge that is inserted into Aℓ+1 will be disjoint
from edges in A6ℓ+1 ∪ B6ℓ ∪ I; the same holds for any edge (p,R) that is inserted into I, while in
addition we have vp(R \ R(M)) > τ/β. Therefore, the first two invariants are preserved during the
build phase.

Furthermore, edges inserted into Aℓ+1 or I need to either contain a player from P6ℓ, or to be
the final edge in an alternating path that includes fat edges originating at a player in P6ℓ. Even
though we will not store such alternating paths explicitly, it is required that after we insert any
such thin α-edge into Aℓ+1 and I, the value of the flow network DPM(P6ℓ,A6ℓ+1 ∪ I) increases; this

3We note that this invariant says that each edge (p,R) ∈ I has a subset R′ ⊆ R so that vp(R′) > τ/β and R′ ∩ R(A6ℓ ∪
B6ℓ ∪ I \ {(p,R)}) = ∅ since B6ℓ ⊆M. In other words, the resources of (p,R′) are disjoint from all other resources in L.
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Input: A partial matching M and an unmatched player p0.
Output: A matching M′ that matches all players matched by M and also matches p0.

1. (Initialization) Set A0 = ∅,B0 = {(p0, ∅)}, ℓ = 0, d0 = 0 and L = (A0,B0, d0).

(Iterative step) Repeat the following until p0 is matched by M:

2. (Build phase) Initialize Aℓ+1 = ∅. While there exists a thin α-edge (p,R) such that R ∩ R(A6ℓ+1 ∪
B6ℓ ∪ I) = ∅ and DPM(P6ℓ,A6ℓ+1 ∪ I ∪ {(p,R)}) > DPM(P6ℓ,A6ℓ+1 ∪ I):

– If vp(R \ R(M)) < τ/β, then set Aℓ+1 = Aℓ+1 ∪ {(p,R)}, else set I = I ∪ {(p,R)}.

At the end of the build phase, let Bℓ+1 be the edges of M that are blocking the edges in Aℓ+1. Set
dℓ+1 ← DPM(P6l,A6l+1∪ I); then update the state of the algorithm by appending (Aℓ+1,Bℓ+1, dℓ+1)
to L and by incrementing ℓ by one.

3. (Collapse phase) Compute the canonical decomposition {I0, . . . , Iℓ} of I, and the corresponding
canonical solution W.

While ∃t : |It| > µ|Pt|:

(a) Choose the smallest such t.
//We refer to the following steps as collapsing layer t.

(b) Compute optimal solution X to FM(P6t−1,A6t ∪ I6t−1) whose paths are disjoint from Wt.
//We refer to the following step as alternating along the paths of Wt.

(c) For each pathΠ in Wt that ends at a player pe with an edge (pe,R) ∈ It

i. Set M←M \ {(p, { f }) | ( f , p) ∈ Π} ∪ {(p, { f }) | (p, f ) ∈ Π}.
ii. Remove from M and Bt the edge containing the source of the path Π.

iii. Add to M some β-edge (pe,R
′), where R′ ⊆ R and R′ ∩ R(M) = ∅.

(d) Set I = I0 ∪ . . . ∪ It−1. For every edge (p,R) ∈ At, if vp(R \ R(M)) > τ/β, then:

– Remove (p,R) from At and remove those edges from Bt that only block (p,R) in At.
– If X contains a path that ends in p, insert (p,R) in I.

(e) Discard (Ai,Bi, di) from Lwith i > t and set ℓ = t.

Output the matching M that also matches p0.

Algorithm 2: CombinatorialAugmenting Algorithm

will ensure that there are enough disjoint paths of fat edges to permit the inclusion of all such thin
edges into our partial matching M.

After the algorithm has finished the build phase, it proceeds to the collapse phase. The
condition ∃t : |It| > µ|Pt| of the while-loop guarantees that the third invariant is satisfied once
the collapse phase terminates (since the cardinality of Ii always equals DPM(P6i, I) no matter the
chosen canonical decomposition). We now describe this phase in more detail and show that it
maintains a valid matching and that it does not introduce any violations of the first two invariants.

The first step of the collapse phase is to compute a canonical decomposition of I, and a cor-
responding canonical solution W. Now suppose that we have It > µ|Pt| and that the algorithm
collapses layer t. We refer to the edges of It as "immediately addable" as they have enough free
resources (by Invariant 2) to be added to the matching. Indeed, these are the edges we will
insert into our partial matching, using the paths of Wt. Specifically, for each path Π of Wt, the
algorithm proceeds as follows. By definition of the sources and the sinks, Π is a path that starts
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with a player ps ∈ Pt and ends with a player pe such that (pe,R) ∈ It. Between ps and pe, the
path alternates between fat edges that belong to M and fat edges we want to insert into M, i.e.,
Π = (ps = p1, f1, p2, f2, . . . , pk, fk, pk+1 = pe) where ps is interested in f1, pk+1 is currently assigned fk,
and pi is currently assigned fi−1 and interested in fi for i = 2, . . . , k. To update the matching, we find
a β-edge (pe,R

′) with R′ ⊆ R that is disjoint from the resources of matching M (guaranteed to exist
by the second invariant) and we let (ps,Rs) denote the edge in Bt ⊆ M incident to player ps. Step
3.c now updates the matching by inserting (pe,R

′) and (ps, f1), (p2, f2), . . . , (pk, fk) to the matching
while removing (ps,Rs) and (p2, f1), (p3, f2), . . . , (pt, fk). This process is called alternating along path
Π.

As a result, some of the resources of edges in At are freed up, and we move those edges of At

that now have τ/β free resources to I (Step 3.d). Finally, we discard all layers above the one we
collapsed. Let us now see why our first invariant is upheld after the collapse phase. When we
collapse layer t, we might remove edges from At, we discard all At′ for t′ > t and we preserve At′

for t′ < t. Since the first invariant was upheld before the collapse phase, for any t′ 6 t there were
no edges in At′ that intersected any edge in A6t′ , B6t′−1 or I0 ∪ . . . It−1. Furthermore, since any edge
that was inserted into I during Step 3.d previously belonged to At, no edge inserted into I will
intersect any edge in A6t ∪ B6t−1 ∪ I0 ∪ . . . It−1. Therefore, after the collapse phase, for any t′ 6 t
every edge in At′ is disjoint from edges in A6t′ ∪ B6t′−1 ∪ I, and the first invariant holds.

After the collapse phase, I contains the edges that belonged to I0 ∪ . . . It−1 (call them old edges),
plus the edges that were inserted during Step 3.d (call them new edges). Concerning any old edge
e, since the second invariant held before the collapse phase, and since during the collapse phase
for any t′ 6 t we introduce no new edges into At′ , the resources of e continue to be disjoint from the
resources of A6t and the old edges. Moreover, vp(R(e) \R(M)) is still at least τ/β since the resources
of the edges added to the matching during the collapse phase are disjoint from R(e), where we
use that the second invariant held before this iteration, i.e., that the resources of edges in I are
disjoint. Hence, to verify the second invariant it remains to verify that any new edge (p,R) has
vp(R \ R(M)) > τ/β (follows immediately from Step 3.d) and that its resources are disjoint from the
resources of all old and other new edges and edges in A6t; but this follows directly from the fact
that any new edge belonged to At before the collapse phase and the fact that the first invariant
held before the collapse phase. Hence, the second invariant is satisfied after the collapse phase.

Now, let us see why the output of Algorithm 2 is a partial matching that matches player p0.
Observe that we only update our partial matching during Step 3.c and, as explained above, we
alternate along all paths in Wt during this step. As these paths are vertex-disjoint and the edges
in I have disjoint resources (by the second invariant), these updates do not interfere with each
other. Moreover, note that when we alternate along a path all previously matched players remain
matched (albeit to new edges) and, in addition, all fat resources remain matched. This means that
our algorithm maintains a matching of the players that were matched by the input and that our
matching remains one that maximizes the number of assigned fat resources. By iterating until an
edge that contains p0 is inserted into M, it follows that when Algorithm 2 terminates, the output
will be a valid matching that also matches p0 in addition to the players that were matched by the
original matching that was given as input.

Our running time analysis of Algorithm 2 is carried out in the following sections. Specifically,
we begin by analyzing the running time of a single iteration of our augmenting algorithm in Section
4.4. Then, we proceed to state certain additional invariants, and prove that they are upheld by
Algorithm 2 in Section 4.5. Finally, using these invariants, we will prove that the total number of
iterations executed by Algorithm 2 is polynomial in Section 4.6.
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4.4 Running Time Analysis of a Single Iteration

In this section, we prove that the running time of a single iteration is polynomial. We begin by
studying the build phase. In this phase, in each iteration of the while-loop, we consider those
players p and resources R such that (p,R) is a thin α-edge satisfying R ∩ R(A6ℓ+1 ∪ B6ℓ ∪ I) = ∅.
We then check whether adding p as a sink to our flow network strictly increases its value, i.e., the
number of disjoint paths from the sources in P6ℓ to the sinks in A6ℓ+1 ∪ I ∪ {(p,R)}. Both these
operations can be done in polynomial time as (1) verifying whether such a set R exists for a player
p just amounts to calculating the total value of the resources p is interested in that currently are
not in the other relevant edges, and as (2) verifying whether the flow network increases its value
reduces to a standard maximum flow problem.

Next, we study the collapse operation. Here, we have two non-trivial operations: computing
a canonical decomposition (Step 3 of Algorithm 2) and Step 3.b of Algorithm 2.

Lemma 4.2. Given a state (M, ℓ,L, I) of the algorithm, we can find a canonical decomposition of I and the
corresponding canonical solution in polynomial time.

Proof. We shall construct an optimal solution W to the flow network FM(P6ℓ, I) with sources P6ℓ
and sinks I iteratively. Compute the maximum flow X(0) in the network FM(P60, I). Let Q0 ⊆ P0 be
the set of sources appearing in the flow solution X(0). Now observe that this solution X(0) is also a
valid flow in the network FM(P61, I). Therefore, by using an augmenting flow algorithm, we can
augment the flow X(0) to a maximum flow X(1) in the network FM(P61, I). Let Q1 ⊆ P1 be the set
of additional sources appearing in the flow solution X(1). We use here an important property of
the flow augmentation process, which states that the set of sources in X(1) is precisely the disjoint
union Q0 ∪Q1 (see, for example, [Sch02]). In other words, a vertex appearing as a source of a flow
path in a solution continues to be present as a source of a flow path after an augmentation step.
Continuing this process, we end up with a flow solution X(ℓ) in the network FM(P6ℓ, I). Define Wi

to be the flow paths in X(ℓ) that serve the sources Qi ⊆ Pi for each i = 0, . . . , ℓ. Additionally, let
Ii ⊆ I denote the sinks of Wi.

By construction, |I6i| = DPM(P6i, I6i). Further, if DPM(P6i, I6i) < DPM(P6i, I) then this implies
that X(i) is not a maximum flow in FM(P6i, I), and therefore can be augmented by one, contradicting
the definition of X(i).

The flow paths W0,W1, . . . ,Wℓ collectively form the flow solution X(ℓ) which is an optimal
solution to FM(P6ℓ, I). Thus, {I0, . . . , Iℓ} forms a canonical decomposition (with the corresponding
canonical solution W0, . . . ,Wℓ). It is also clear that the process outlined above to realize this
decomposition runs in polynomial time as the encountered flow networks have unit capacities. �

Next, we prove that Step 3.b can be executed in polynomial time:

Lemma 4.3. Consider a state (M, ℓ,L, I) of the algorithm and a canonical decomposition {I0, I1, . . . , Iℓ} of I
together with the canonical solution W. For i = 0, . . . , ℓ, let Wi be the |Ii| paths that go from the players in
Qi ⊆ Pi to sinks in Ii. Then, for i = 0, 1, . . . , ℓ − 1, we can find in polynomial time an optimal solution X to
FM(P6i,A6i+1 ∪ I6i) that is also an optimal solution to FM(P6i,A6i+1 ∪ I) whose paths are disjoint from the
paths in Wi+1 and additionally uses all the sinks in I6i.

Proof. Consider a fixed i. We shall form an optimal solution X to FM(P6i,A6i+1 ∪ I6i) that is also
an optimal solution to FM(P6i,A6i+1 ∪ I) and its paths are disjoint from the paths in Wi+1 and uses
all the sinks in I6i. The initial solution will be the set of unit flow paths W6i from the canonical
solution W which has cardinality |I6i|. We now augment this solution using augmenting paths
to the set of sinks A6i+1. Note that throughout this execution each vertex in I6i will be used as a
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sink by some path and therefore X will use all these sinks. Further, the procedure to calculate X
clearly runs in polynomial time. We shall now verify the remaining properties of X. First, suppose
towards contradiction that some iteration used an augmenting path P intersecting a path in Wi+1.
However, this would imply that there exists an augmenting path that uses a sink in Ii+1. We could
then increase the set of disjoint paths from players in P6i to sinks in I to be greater than I6i which
contradicts the property DPM(P6i, I6i) = DPM(P6i, I) of the canonical decomposition. Similarly,
suppose X is not an optimal solution to FM(P6i,A6i+1 ∪ I). Then there exists an augmenting path to
an edge in I \ I6i which again contradicts the property DPM(P6i, I6i) = DPM(P6i, I) of the canonical
decomposition. �

Finally, since during a collapse operation we can collapse at most |P| layers, it follows that any
iteration of Algorithm 2 terminates in polynomial time.

4.5 Additional Invariants of Combinatorial Algorithm

In Section 4.3, we listed three invariants Algorithm 2 preserves that are similar to the simpler
algorithm. We argued why they hold, and how these invariants imply that the output of our
algorithm is an extended partial matching. In this section, we list two new invariants that will
facilitate our polynomial running time proof.

Lemma 4.4. At the beginning of each iteration:

(a) DPM(P6ℓ, I) = |I|.

(b) DPM(P6i−1,A6i ∪ I) > di for each i = 1, . . . , ℓ.

Proof. We prove the lemma by induction on the number of times the iterative step has been
executed. We observe that both invariants trivially hold before the first execution of the iterative
step. Assume that they are true before the r-th execution of the iterative step. We now verify them
before the r + 1-th iterative step. We actually prove the stronger statement that they hold after the
build phase and after each iteration of the collapse phase.

(a) and (b) hold after the build phase. Let Lℓ+1 denote the layer that was constructed during
the build phase. We start by verifying (a). If no edge is added to I during this phase then
|I| > DPM(P6ℓ+1, I) > DPM(P6ℓ, I) = |I|. Suppose that a1, . . . , ak were the edges added to the set I in
that order. When edge ai was added to the set I, from the definition of Step 2 of Algorithm 2 we
have that

DPM(P6ℓ,A6ℓ ∪ I ∪ {a1, . . . , ai−1} ∪ {ai}) > DPM(P6ℓ,A6ℓ ∪ I ∪ {a1, . . . , ai−1}),

which then implies that

DPM(P6ℓ, I ∪ {a1, . . . , ai−1} ∪ {ai}) > DPM(P6ℓ, I ∪ {a1, . . . , ai−1})

To see this implication, observe that the first inequality implies that, for any flow in FM(P6ℓ,A6ℓ ∪
I ∪ {a1, . . . , ai−1}) (and hence, for any flow in FM(P6ℓ, I ∪ {a1, . . . , ai−1})), there exists an augmenting
path towards sink ai. Along with the induction hypothesis, these inequalities imply that

DPM(P6ℓ+1, I ∪ {a1, . . . , ak}) > DPM(P6ℓ, I ∪ {a1, . . . , ak}) = |I| + k = |I ∪ {a1, . . . , ak}|.

For (b), the inequality for i = ℓ + 1 holds by the definition of dℓ+1 during this phase. The
remaining inequalities follow from the induction hypothesis since none of M,P6ℓ and A6ℓ were
altered during this phase and no elements from I were discarded.
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(a) and (b) hold after each iteration of the collapse phase. If no layer is collapsed (i.e., there
is no It satisfying the condition of the while-loop) then there is nothing to prove. Now let t denote
the index of the layer that is collapsed. Let (M, ℓ, {L0, . . . , Lt′}, I) denote the state of the algorithm
before collapsing layer t that satisfy (a) and (b) (t′ > t and t′ = ℓ + 1 if this is the first iteration of
Step 3). Let I′ denote I0 ∪ · · · ∪ It−1 ∪ {a1, . . . , ak}where a1, . . . , ak are the edges added to I in Step 3.d
of the collapse phase and let M′ denote the partial matching after Step 3.c of the collapse phase.
We have that (a), DPM′(P6t, I

′) = |I′|, now follows from Lemma 4.3. Indeed, the solution X used all
the sinks in I0 ∪ . . . It−1 ∪ {a1, . . . , ak}which equals I′; and these paths form a solution to FM′(P6t, I

′)
as they are disjoint from the paths in Wt. Notice that we do not use the induction hypothesis in
this case, i.e., that (M, ℓ, {L0, . . . , Lt′}, I) satisfied (a) and (b).

For (b), we need to verify inequalities for i = 1, . . . , t. When i < t, none of the sets Ai were
altered during this iterative step. Further, although M and I changes during the collapse phase, by
Lemma 4.3 and the definition of Step 3 this change cannot reduce the number of disjoint paths from
P6i−1 to A6i ∪ I and therefore (b) remains true by the induction hypothesis. Indeed, the selection
of X in Step 3.b is done so as to make sure that the update of the matching along the alternating
paths in Wt does not interfere with an optimal solution to the flow network with sources P6i−1 and
sinks A6i ∪ I. For i = t, the claim again follows since the number of disjoint paths from P6t−1 to
A6t ∪ I cannot reduce because of Step 3.d in the algorithm that maintains X as a feasible solution
by the same arguments as for (a). �

4.6 Bound on the Total Number of Iterations

In this final section, we will use the above invariants to show that our augmenting algorithm
performs a polynomial number of iterations, assuming CLP(τ) is feasible. We start with two
lemmas that show that di cannot be too small. The first holds in general and the second holds if
CLP(τ) is feasible.

Lemma 4.5. At the beginning of each iteration, we have di > |A6i| for every i = 0, . . . , ℓ.

Proof. We prove this by induction on the variable r > 0 that counts the number of times the iterative
step has been executed. For r = 0 the statement is trivial. Suppose that it is true for r > 0. We shall
show that it holds before the r + 1-th iterative step. If the iteration collapses a layer, then no new
layer was added, and since di’s remain unchanged and A6i may only decrease, the statement is
true in this case.

Now, suppose that no layer was collapsed in this iteration and let Lℓ+1 = (Aℓ+1,Bℓ+1, dℓ+1) be the
newly constructed layer in this phase. Again, we have di > |Ai| for i = 0, . . . , ℓ since none of these
quantities are changed by the build phase. Let us now verify that dℓ+1 > Aℓ+1. Let Aℓ+1 = {a1, . . . , ak}
denote the set of edges added to Aℓ+1 indexed by the order in which they were added. When edge
ai was added to the set Aℓ+1, according to Step 2 of Algorithm 2, we have that

DPM(P6ℓ,A6ℓ ∪ I ∪ {a1, . . . , ai−1} ∪ {ai}) > DPM(P6ℓ,A6ℓ ∪ I ∪ {a1, . . . , ai−1}).

Using (b) of Lemma 4.4 and the induction hypothesis,

DPM(P6ℓ−1,A6ℓ ∪ I) > dℓ > |A6ℓ|.

Using the previous inequalities,

dℓ+1 = DPM(P6ℓ,A6ℓ+1 ∪ I) > |A6ℓ | + k > |A6ℓ+1|.

�
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Lemma 4.6. Assuming CLP(τ) is feasible, at the beginning of each iteration

DPM(P6i−1,A6i ∪ I) > di > γ|P6i−1|, where γ =
1
3

(
√

10 − 2),

for every i = 1, . . . , ℓ.

Remark 4.7. The above condition is the only one that needs to be satisfied for the algorithm to run
in polynomial time. Therefore, in a binary search, the algorithm can abort if the above condition
is violated at some time, since that violation would imply that the Configuration-LP is infeasible;
otherwise it will terminate in polynomial time.

Proof. We will prove that di > γ|P6i−1| for i = 1, . . . , ℓ as Lemma 4.4(b) then implies the claim.
Notice that di is defined only at the time when layer Li is created and not altered thereafter. So it
suffices to verify that: Assuming di > γ|P6i−1| for i = 1, . . . , ℓ, then for the newly constructed layer
Lℓ+1, dℓ+1 > γ|P6ℓ| also.

Suppose towards contradiction that Lℓ+1 is a newly constructed layer (and that no layer was
collapsed), such that

dℓ+1 = DPM(P6ℓ,A6ℓ+1 ∪ I) < γ|P6ℓ|.
Then, since no layer was collapsed at Step 3 of Algorithm 2, we have that |Ii| < µ|Pi| for

i = 0, . . . , ℓ, where {I0, . . . , Iℓ} is the canonical decomposition of I considered by the algorithm.
Together with Lemma 4.4(a), this implies

|I| = DPM(P6ℓ, I) < µ|P6ℓ|.

Moreover, by Lemma 4.5 we have

|A6ℓ+1| 6 dℓ+1 = DPM(P6ℓ,A6ℓ+1 ∪ I) < γ|P6ℓ|.

Hence, we have that |A6ℓ+1 ∪ I| < (µ + γ)|P6ℓ |.
The rest of the proof is devoted to showing that this causes the dual of the CLP(τ) to become

unbounded which leads to the required contradiction by weak duality. That is, we can then
conclude that if CLP(τ) is feasible then dℓ+1 > γ|P6ℓ|.

Consider the flow network FM(P6ℓ,A6ℓ+1∪ I∪Z) with P6ℓ as the set of sources and A6ℓ+1∪ I∪Z
as the collection of sinks where,

Z := {p ∈ P | ∃R ⊆ R : R ∩ R(A6ℓ+1 ∪ I ∪ B6ℓ) = ∅ and vp(R) > τ/α}.

Since, during the construction of layer ℓ + 1 we could not insert any more edges into Aℓ+1 and
I, the maximum number of vertex disjoint paths from P6ℓ to the sinks equals DPM(P6ℓ,A6ℓ+1 ∪ I)
which, by assumption, is less than γ|P6ℓ|. Therefore, by Menger’s theorem there exists a set K ⊆ V
of vertices of cardinality less than γ|P6ℓ| such that, if we remove K from HM, the sources P6ℓ \ K
and the sinks are disconnected, i.e., no sink is reachable from any source in P6ℓ \K. We now claim
that we can always choose such a vertex cut so that it is a subset of the players.

Claim 4.8. There exists a vertex cut K ⊆ P separating P6ℓ \K from the sinks of cardinality less than
γ|P6ℓ|.

Proof. Take any minimum cardinality vertex cut K separating P6ℓ \ K from the sinks. We already
saw that |K| < γ|P6ℓ |. Observe that every fat resource that is reachable from P6ℓ \ K must have
outdegree exactly one in HM. It cannot be more than one since M is a collection of disjoint edges,
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and it cannot be zero since we could then increase the number of fat edges in M which contradicts
that we started with a partial matching that maximized the number of fat edges. Therefore in the
vertex cut K, if there are vertices corresponding to fat resources, we can replace each fat resource
with the unique player to which it has an outgoing arc to, to obtain another vertex cut also of the
same cardinality that contains only vertices corresponding to players. �

Now call the induced subgraph of HM −K on the vertices that are reachable from P6ℓ \K as H′.
Note that by the definition of K, H′ will not contain any sinks. Using H′ we define the assignment
of values to the dual variables in the dual of CLP(τ) as follows:

yi :=















(1 − 1/α) if player i is in H′,

0 otherwise,

z j :=























v j/τ if j is a thin resource that appears in A6ℓ+1 ∪ I ∪ B6ℓ,
(1 − 1/α) if j is a fat resource in H′,
0 otherwise.

We first verify that the above assignment is feasible. Since all the dual variables are non-
negative we only need to verify that yi 6

∑

j∈C z j for every i ∈ P and C ∈ C(i, τ). Consider a player
i that is given a positive yi value by the above assignment. Let C ∈ C(i, τ) be a configuration for
player i of value at least τ; we will call C thin if it only contains thin resources, and fat otherwise.
There are two cases we need to consider.

Case 1. C is a thin configuration. Suppose that
∑

j∈C z j < (1 − 1/α). Then, by our assignment of z j

values, this implies that there exists a set R ⊆ C such that R is disjoint from the resources in
A6ℓ+1 ∪ I∪B6ℓ and

∑

j∈R v j > τ/α. Together this contradicts the fact that H′ has no sinks since
i is then a sink (it is in Z).

Case 2. C is a fat configuration. Let j be a fat resource in C. Since i was reachable in H′, all the
sources in H′ are assigned thin edges in M (which implies they have no incoming arcs), and
K is a subset of the players, it follows that j is also present in H′. Thus, by our assignment,
z j = 1 − 1/α.

Having proved that our assignment of yi and z j values constitutes a feasible solution to the
dual of CLP(τ), we now compute the objective function value

∑

i yi−
∑

j z j of the above assignment.
To do so we adopt the following charging scheme: for each fat resource j in H′, charge its z j value
against the unique player i such that the outgoing arc ( j, i) belongs to H′. The charging scheme
accounts for the z j values of all the fat resources except for the fat resources that are leaves in H′.
There are at most |K1| such fat resources, where K1 ⊆ K is the set of players to which the uncharged
fat items have an outgoing arc to. Moreover, note that K1 only consists of players that are matched
in M by fat edges. Since P6ℓ does not have any players matched by fat edges in M, no player in
K2 := P6ℓ ∩K is present in K1, i.e., K1 ∩K2 = ∅. Finally, note that no player in P6ℓ \K = P6ℓ −K2 has
been charged. Thus, considering all players in P but only fat configurations, we have

∑

i∈P
yi −

∑

j∈R f

z j > (1 − 1/α)(|P6ℓ | − |K2|) − (1 − 1/α)|K1|

= (1 − 1/α)
(

|P6ℓ| − (|K1| + |K2|)
)

> (1 − 1/α)(1 − γ)|P6ℓ|.
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We now compute the total contribution of thin resources, i.e.,
∑

j∈Rt
z j. The total value of thin

resources from the edges A6ℓ+1 and the edges I is at most (1/α+1/β)|A6ℓ+1∪I|, due to the minimality
of thin α-edges. Besides the resources appearing in A6ℓ+1∪ I, the total value of resources appearing
only in edges B6ℓ is at most (1/β)(|B6ℓ |) < (1/β)(|P6ℓ |), by the minimality of β-edges. Indeed, if an
edge in Bℓ has more than τ/β resources not appearing in an edge in A6ℓ+1 ∪ I then those resources
would form a thin β-edge which contradicts its minimality.

Using |A6ℓ+1 ∪ I| < (µ + γ)|P6ℓ | we have

∑

i∈P
yi −

∑

j∈R
z j > (1 − γ)

(

1 − 1
α

)

|P6ℓ | − (µ + γ)
(

1
α
+

1
β

)

|P6ℓ| −
1
β
|P6ℓ |.

Recall that, given any feasible solution to the dual of CLP(τ), we can scale it by any positive number,
and it will remain feasible; this will imply that if the optimum of the dual of CLP(τ) is positive,
then the dual of CLP(τ) is unbounded. So, the dual of CLP(τ) is unbounded when

(1 − γ)
(

1 − 1
α

)

− (µ + γ)
(

1
α
+

1
β

)

− 1
β
> 0⇔ γ 6

αβ − (1 + µ)(α + β)
αβ + α

.

Recall that β = 2(3 +
√

10) + ε, α = 2, and µ = ε/100. For ε > 0 the last inequality is equivalent
to 206

√
10 + 3ε 6 676, which is valid for ε 6 1. �

We now use the previous lemma to show that if we create a new layer then the number of
players in that layer will increase rapidly. This will allow us to bound the number of layers to be
logarithmic and also to bound the running time.

Lemma 4.9 (Exponential growth). At each execution of the iterative step of the algorithm, we have

|Pi| > δ|P6i−1 |, where δ := ε/100,

for each i = 1, . . . , ℓ.

Proof. Suppose towards contradiction that the statement is false and let t be the smallest index that
violates it, i.e., |Pt| < δ|P6t−1 |. Due to Invariant 3, |Ii| < µ|Pi| for 0 6 i 6 t. Hence,

|I6t | < µ|P6t| < µ(1 + δ)|P6t−1 |.

Further,
|A6t| + |I6t| > DPM(P6t−1,A6t ∪ I6t) = DPM(P6t−1,A6t ∪ I) > γ|P6t−1|,

where the first inequality is trivial, the equality follows from the definition of canonical decompo-
sitions (Definition 4.1), and the last inequality follows from Lemma 4.6. This gives us

|A6t| >
(

γ − µ(1 + δ)
) |P6t−1|.

We now obtain an upper bound on the total number of edges in A6t by counting the value of
resources in each Ai and Bi; observe that any thin β-edge has resources of total value at most 2τ/β
due to minimality, while any thin α-edge in A6t has resources of value at least τ/α − τ/β that are
blocked, i.e., appear in some edge in B6t (since otherwise this edge would be in I instead of A6t)4.

4We remark that just as in the simpler algorithm, the set Bi contains those edges that are blocking the edges in Ai. This
follows from the definition of the build phase and Steps 3.c and 3.d that remove edges from Bi when the matching has
changed or when Ai has changed. Furthermore, all edges in Ai have all but at most τ/β resources blocked. Otherwise,
the edge is added to I in the build phase and if resources have been freed up later, the edge is removed from Ai (and it
may be added to I) during Step 3.c.
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Hence,

|Ai|
(

τ/α − τ/β) 6 |Bi|
(

2τ/β
) summing over i and rearranging

=⇒ |A6t| 6 |B6t|
2α
β − α.

Since |B6t| < |P6t| and |P6t| < (1 + δ)|P6t−1| we have the bound

|A6t| <
2α
β − α (1 + δ)|P6t−1 |.

Therefore we will have a contradiction when

2α
β − α (1 + δ) 6 γ − (1 + δ)µ.

It can be verified that for any ε > 0 the above inequality is equivalent to

22400 + 6
(

52 +
√

10
)

ε + 3ε2
6 9400

√
10,

which is true for ε ∈ [0, 1] leading to the required contradiction. �

We are now ready to prove that our algorithm executes a polynomial number of iterations. To
do this, we define the signature vector s := (s0, . . . , sℓ,∞), where

si := ⌊log1/(1−µ)
|Pi|
δi+1
⌋

corresponding to the state (M, ℓ,L, I) of the algorithm. The signature vector changes as the algo-
rithm executes; in fact, we prove that its lexicographic value always decreases:

Lemma 4.10. Across each iterative step, the lexicographic value of the signature vector decreases. Further-
more, the coordinates of the signature vector are always non-decreasing.

Proof. We show this by induction as usual on the variable r that counts the number of times the
iterative step has been executed. The statement for r = 0 is immediate. Suppose it is true for r > 0.
Let s = (s0, . . . , sℓ,∞) and s′ = (s′0, . . . , s

′
ℓ′ ,∞) denote the signature vector at the beginning and at the

end of the (r + 1)-th iterative step. We consider two cases:

No layer was collapsed. Let Lℓ+1 be the newly constructed layer. In this case, ℓ′ = ℓ + 1. By
Lemma 4.9, |Pℓ+1| > δ|P6ℓ | > δ|Pℓ|. Clearly, s′ = (s0, . . . , sℓ, s

′
ℓ+1,∞) where ∞ > s′

ℓ+1 > s′
ℓ
= sℓ. Thus,

the signature vector s′ also has increasing coordinates and smaller lexicographic value compared
to s.

At least one layer was collapsed. Let 0 6 t 6 ℓ be the index of the last layer that was collapsed
during the r-th iterative step. As a result of the collapse operation suppose the layer Pt changed
to P′t. Then we know that |P′t | < (1 − µ)|Pt|. Indeed, during Step 3 of Algorithm 2, at least a
µ-fraction of the edges in Bt are replaced with edges from I. Since none of the layers with indices

less than t were affected during this procedure, s′ = (s0, . . . , st−1, s
′
t,∞) where s′t = ⌊log1/(1−µ)

|P′t |
δt+1 ⌋ 6

⌊log1/(1−µ)
(1−µ)|Pt |
δt+1 ⌋ 6 ⌊log1/(1−µ)

|Pt|
δt+1 ⌋ − 1 = st − 1. This shows that the lexicographic value of the

signature vector decreases. That the coordinates of s′ are non-decreasing follows from Lemma 4.9.
�
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Finally, due to the above lemma, any upper bound on the number of possible signature vectors
is an upper bound on the number of iterations Algorithm 2 will execute; we prove there is such a
bound of polynomial size:

Lemma 4.11. The number of signature vectors is at most |P|O(1/µ·1/δ·log(1/δ)).

Proof. By Lemma 4.9, |P| > P6ℓ > (1 + δ)P6ℓ−1 > . . . > (1 + δ)ℓ |P0|. This implies that ℓ 6 log1+δ |P| 6
1
δ log |P|, where the last inequality is obtained by using Taylor series and that δ ∈ [0, 1/100].

Now consider the i-th coordinate of the signature vector si. It can be no larger than log1/(1−µ)
|P|
δi+1 .

Using the bound on the index i and after some manipulations, we get

si 6

(

log |P| + (i + 1) log
1
δ

) 1

log 1
1−µ

6

(

log |P| + (
1
δ

log |P| + 1) log
1
δ

) 1

log 1
1−µ

= log |P| ·O
(

1
µδ

log
1
δ

)

,

where the final bound is obtained by again expanding using Taylor series around 0. Thus, if we
let U = log |P| · O

(

1
µδ log 1

δ

)

be an upper bound on the number of layers and the value of each
coordinate of the signature vector, then the sum of coordinates of the signature vector is always
upper bounded by U2.

Now, as in the simpler algorithm, we apply the bound on the number of partitions of an integer.
Recall that the number of partitions of an integer N can be upper bounded by eO(

√
N) [HR18]. Since

each signature vector corresponds to some partition of an integer at most U2, we can upper bound
the total number of signature vectors by

∑

i6U2 eO(
√

i).
Now using the bound of U, we have that the number of signatures is at most |P|O(1/µ·1/δ·log(1/δ)).

�

Since the number of possible signature vectors is polynomial, the number of iterations Algo-
rithm 2 will execute is also polynomial. Furthermore, as the running time of each iteration is also
polynomial, this completes the proof of Theorem 1.1.

5 Conclusion

In this paper we have presented new ideas for local search algorithms leading to an improved
approximation algorithm for the restricted max-min fair allocation problem. The obtained
algorithm is also combinatorial and therefore bypasses the need of solving the exponentially large
Configuration-LP.

Apart from further improving the approximation guarantee, we believe that an interesting
future direction is to consider our techniques in the more abstract setting of matchings in hy-
pergraphs. For example, Haxell [Hax95] proved, using an alternating tree algorithm, a sufficient
condition for a bipartite hypergraph to admit a perfect matching.

Theorem 5.1 (Haxell’s Condition). Consider an (r + 1)-uniform bipartite hypergraph H = (P ∪ R,E)
such that for every edge e ∈ E, |e ∩ P| = 1 and |e ∩ R| = r. For C ⊆ P let H(EC) denote the size of the
smallest set R ⊆ R that hits all the edges in H that are incident to some vertex in C. If for every C ⊆ P,
H(EC) > (2r − 1)(|C| − 1) then there exists a perfect matching inH .
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Note that Theorem 5.1 generalizes Hall’s theorem for graphs. However, the proof of the
statement does not lead to a polynomial time algorithm. In the conference version of this paper
we had posed the question of whether a constructive analog of Theorem 5.1 can be obtained.

With the techniques presented here, we could prove the following weaker statement: there is
a constant C0 > 0 for which, given some 0 < ε 6 1 and assuming H(EC) > C0(1/ε)r(|C| − 1), there
exists a polynomial time algorithm which assigns one edge ep ∈ E for every player p ∈ P such that
it is possible to choose disjoint subsets {Sp ⊆ ep ∩ R}p∈P of size at least (1 − ε)r.

Recently, the first author obtained such a constructivization answering our open question
affirmatively [Ann16]. For some fixed ε > 0 and r he proved that, for (r + 1)-uniform hypergraphs
satisfying H(EC) > (2r − 1 + ε)(|C| − 1) a polynomial time algorithm exists for finding the perfect
matching guaranteed by Theorem 5.1. However, the running time of this algorithm is exponential
in both r and 1/ε. It remains an open problem to find such an algorithm whose running time
dependence on r is polynomial.
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