
The Evolution of Neural Network-Based Chart Patterns: A
Preliminary Study

Myoung Hoon Ha
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, Korea 155-744
mh.ha.soar@gmail.com

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, Korea 155-744
moon@snu.ac.kr

ABSTRACT
A neural network-based chart pattern represents adaptive para-
metric features, including non-linear transformations, and a tem-
plate that can be applied in the feature space. The search of neural
network-based chart patterns has been unexplored despite its po-
tential expressiveness.
In this paper, we formulate a general chart pattern search problem
to enable cross-representational quantitative comparison of various
search schemes. We suggest a HyperNEAT framework applying
state-of-the-art deep neural network techniques to find attractive
neural network-based chart patterns; These techniques enable a
fast evaluation and search of robust patterns, as well as bringing
a performance gain. The proposed framework successfully found
attractive patterns on the Korean stock market. We compared newly
found patterns with those found by different search schemes, show-
ing the proposed approach has potential.
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1 INTRODUCTION
According to the famous EMH (efficient market hypothesis [12]), all
relevant information is fully reflected in asset prices and the assets
are traded at fair values. It asserts that no one can consistently beat
the market, so any effort to find such a strategy is worthless. As
refutations of this, a considerable amount of empirical studies have
been conducted [4, 22]. In particular, technical analysis focuses
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mostly on the historical record of price movement, assuming that
the fluctuations of asset prices have useful information for invest-
ment.
This preliminary paper focuses on chart patterns in technical anal-
ysis. The significance of the analysis is that patterns often play a
key role in building a trading strategy.1 A templated-based chart
pattern matching is an approach to determine whether a reference
chart matches to a template [6, 7, 26–28, 38, 39]. This approach
has a strong limitation to detecting highly abstracted features. On
the other hand, a rule-based approach enables one to design pat-
terns with abstracted features, yet it has the disadvantage that
experts must manually define syntactic elements and their struc-
tures [3, 13, 17, 24, 29, 40, 41]. Kamijo and Tanigawa [21] attempted
to recognize the triangle chart pattern with a recurrent neural net-
work as a precedent study of a neural network-based matching.
Guo et al. [16] used a rival penalized competitive learning (RPCL)
neural network for clustering stock chart patterns. Unlike stock
chart pattern analysis, the use of a neural network for the control
chart pattern recognition has been actively studied in the field of
statistical process control (SPC) [2, 5, 8, 25].
Prior chart pattern studies have focused mostly on how to discrimi-
nate whether a chart matches to a chart pattern. They blindly used
well-known patterns, such as the head-and-shoulder, without suf-
ficient consideration on how to design a profitable chart pattern.
The well-known patterns are likely to have been generated by inef-
ficient searches on very limited regions of the pattern space since
they were designed by human intuition. Ha et al. [17] posed this
problem and applied a genetic algorithm (GA) to find rule-based
chart patterns automatically.
In this paper, we formulate a chart pattern search problem inde-
pendent of how chart patterns are designed. We propose a search
framework using Hypercube-based NeuroEvolution of Augmented
Topologies (HyperNEAT; [14, 34]) for template-based and neural
network-based chart pattern searches, which have not been studied
in the past. Neural networks are advantageous to approximate a
function in theoretical reason (see Section 2.1). On the other hand,
a chart pattern is a discriminant function itself that takes a chart
as input and outputs a match (see Section 2.2). Therefore, a neural
network is a suitable candidate to represent the chart pattern. Since
typical gradient-based learning techniques are not applicable for
the neural network-based chart pattern search, we solve it using

1Triggering actions using chart patterns is a common approach for trading strategy
in practice. Since the study of strategy is beyond the scope of our research, it is not
covered in this paper.
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the NeuroEvolution framework. We implement the proposed frame-
work applying the state-of-the-art deep neural network techniques:
a) the use of GPGPU allows handling the tremendous cost of a stock
chart pattern search; b) a simple but powerful regularizer, dropout
[31], helps find general patterns; c) the use of the Rectified Lin-
ear Unit (ReLU; [30]) brings performance gain, as well as enabling
fast operation, compared to the conventional activation function,
sigmoid. However, ReLU should be used with caution because the
variance of activations of a layer can be amplified or attenuated
over layers. Weight initialization tricks [15, 19] for gradient-based
learning provides insight for weight scaling of a phenotype network
using ReLU, allowing an efficient exploration of deeper networks
without suffering such a problem. We found some attractive stock
chart patterns in the Korean market with the framework. The sug-
gested framework found some profitable patterns, outperformed
the other patterns.
The remainder of this paper is organized as follows. In Section 2,
we introduce various chart pattern matchings and formulate a
chart pattern search problem. Section 3 describes the HyperNEAT
framework for neural network-based chart pattern search and its
implementation with state-of-the-art deep neural network tech-
niques. Section 4 presents the preprocess and the experimental
setup. In Section 5, we demonstrate the performance of the pro-
posed approach with the results and show the advantages of applied
neural network techniques. Finally, we draw conclusions in the last
section.

2 CHART PATTERN SEARCH
Section 2.1 provides an overview of various chart pattern matching
techniques. In Section 2.2, we formulate the chart pattern search
problem independent of a matching, which establishes a basis to
compare patterns represented by different matching techniques.

2.1 Chart Pattern Matching
In the applications of chart pattern analysis, a raw time series can
be preprocessed to either a one-dimensional sequence or a two-
dimensional image. Since either of them can be vectorized, a chart
can be written in the form of x = (x1,x2, ...,xD )T .
A template-based matching uses a templatew = (w0,w1, ...,wD )T
to discriminate whether a chart matches by the sign of a linear
combination with the chart. The discriminant function f can be
written as follows:

f (x) =
{
1, ifw0 +w1x1 + ... +wDxD > 0
0, otherwise.

(1)

We say that x matches to the corresponding chart pattern when
the value of f (x) is 1. A template-based pattern forms a linearly
separated area in the input space; the matched input lies in this area.
This linear model not only limits the representation of the chart
pattern, but also has a high bias. Nonetheless, it has the advantage
in the field of finance due to the robustness from low variances.
A feature-based matching, on the other hand, discriminates a chart
through a linear combination of fixed nonlinear functions that ex-
tract features from input. The nonlinear feature extraction function
maps the input to the feature space. Thus, the feature extraction
function is called the basis function because it generates the basis

of the feature space. Feature-based matching has a limitation that
feature extraction functions must be pre-defined by an expert. How-
ever, there are few known features in the chart pattern analysis
that induce profitability.
An alternative is to introduce adaptive parameters to the basis func-
tion so that the parameter can be adapted while searching chart
patterns. The neural network is one of the most widely studied mod-
els to handle adaptive parametric basis functions. Theoretically, a
two-layer neural network containing a sufficient finite number of
hidden nodes can approximate a continuous function defined on
a compact domain [10, 20], therefore, the neural network-based
chart pattern representation using adaptive parametric feature have
potential expressiveness. We use a neural network to represent a
chart pattern. Furthermore, a template-based chart pattern can be
represented by a neural network with no hidden neurons.
In rule-based chart pattern analysis, a rule indicates the order re-
lation of extrema extracted from a smoothen time series. A rule-
based chart pattern consists of a set of rules. If the chart satisfies
all the rules of the rule-based chart pattern, it is said to match.
Most manually designed well-known patterns are rule-based. The
head-and-shoulder, for example, is expressed in the order relations
of the extrema, the head, the two shoulders, and the two necks.

2.2 Problem Formulation
A chart pattern itself can be considered to be a function, which
discriminates whether a chart matches to the chart pattern. The
chart pattern matching describes how a discriminant function is
represented. The feasible functions from a chart pattern matching
span a discriminant function space. The chart pattern search is to
find an attractive chart pattern on the chart pattern space defined
by a matching. Equivalently, it is a problem of finding an attractive
discriminant function in the function space.
We define the profitability of a pattern by an expected value of
log returns2 after k days for all charts matched to the pattern. We
define a chart pattern search as a problem of finding a discriminant
function f of a pattern such that it maximizes the profitability of
the chart pattern. If the number of matches of a chart pattern is too
small, the pattern is not general enough as well as it is hard to be
used in the field. Thus, a penalty related to the number of matches
is applied. The penalty function д is defined as follows:

д(f ,X ) = exp
(
− 6
α

∑
x ∈X

f (x)
)
, (2)

where X is the set of all given charts,
∑
x ∈X f (x) is the number of

matches, and α is a hyperparameter that determines the degree of
penalty. When the number of matches is greater than α , the panalty
value is small enough to be ignored. For a given set of charts, the
chart pattern search problem can be represented by the following
optimization problem:

Chart_Pattern_Search(k,X ) = argmax
f

(∑
x ∈X r (x ,k )f (x )∑

x ∈X f (x ) д(f ,X )
)
,

(3)

2The losses and profits are likely to be distributed fairly evenly. In practice, losses
lie in the interval of (−1, 0) and profits in the interval of (0, ∞), which makes their
distribution skewed severely to the profit side. Thus, we use the log returns that are
more sensitive to losses.



Figure 1: proposed HyperNEAT

where r (x ,k) is the k-day log return after the last day of x . The
chart pattern search problem is defined independently of what
representation is used.

3 HYPERNEAT FOR CHART PATTERN
SEARCH

The discriminant function of a chart pattern can be expressed as
a neural network. This section describes how to generate neural
networks to represent a chart pattern. HyperNEAT is designed
to encode neural connectivity patterns with regularities such as
symmetry, repetition, and deformation of neural networks. In par-
ticular, these patterns arranged on the substrate are geometrically
interpreted and indirectly encoded by a Compositional Pattern
Producing Network (CPPN) [32, 33]. A CPPN receives a pair of
coordinates of two neurons in a phenotype neural network as in-
puts and outputs their connection weight, or takes one neuron’s
coordinate with a zero-filled null coordinate to determine the bias
through a separate output node. In addition, a CPPN recieves con-
stant one as bias of genotype network in our implementation. This
approach permits a relatively small genotype network to effectively
describe neural connectivity patterns of a much larger phenotype
network. The extension of HyperNEAT, called HyperNEAT with
Link Expression Output (HyperNEAT-LEO), was introduced to limit
connectivity with a bias towards modularity [37]. This creates a
separate output called LEO as well as the weight and bias output of
the genotype CPPN. LEO determines the expression of the link in
the phenotype network. HyperNEAT has shown to be effective for
a variety of problems [9, 11, 14, 36]. Nevertheless, to the best of our
knowledge, no research exists to find a stock chart pattern with
HyperNEAT. We present the HyperNEAT framework for the stock
chart pattern search. We use the HyperNEAT-LEO version except
for a few modifications. We adopt a multi-layer perceptron (MLP)
architecture for a discriminant function of the chart pattern. After
preprocessing, a chart input is represented by a 32×2 real-value ma-
trix. The substrate configuration of MLP for a template-based chart
pattern is composed of a 32 × 2 input layer and a 1 × 1 output layer,
and the one for a neural network-based chart pattern is composed

of 16 × 12 and 8 × 6 hidden layers between the input and output
layers. To encode the phenotype indirectly, the geometric layout of
MLP needs to be determined in advance. Figure 1 shows the actual
configuration of the neural network-based chart pattern. The x , y,
and z denote the time axis of input, the input channel axis, and the
layer axis, respectively. The layers are arranged equally dividing
the interval [−1.0, 1.0] and the endpoints. The nodes are placed in
the coordinates equally dividing the interval [−1.0, 1.0] for each
of x and y axes. When the value of the LEO output is not greater
than zero, the connection is not expressed, thereby the weight of
connection is set to zero. The MLP receives a chart and outputs 0 or
1 to determine chart matching. After obtaining candidate matches
of a pattern, it is evaluated based on the expected profitability.
We adopt the state-of-the-art deep neural network technique for
computationally efficient and effective implementation of a pheno-
type neural network of HyperNEAT.

GPGPU for fast evaluation. We use about one million input charts
of the training set for the experiments (see Section 4). Therefore,
a phenotype network should evaluate over one million charts to
evaluate one organism. Because these operations require signifi-
cant computational resources, efficient computational design will
determine the possibility of practical experiment.
In recent deep neural network studies, the use of GPGPU for deep
and complex neural networks using considerable amounts of data
has been applied to various problems and shows excellent perfor-
mance [18, 23]. We use GPGPU for fast evaluation of phenotype
networks. The feedforward operation of the MLP structure is com-
posed of simple matrix computation such as multiplication and
summation so that the gain of GPGPU can be fully exploited. Ten-
sorFlow is a library for numerical computation using stateful data
flow graphs [1]. It allows flexible CPU or GPU selection for numeri-
cal computation without consideration of low-level implementation.
We use TensorFlow to take advantage of GPGPU from fast pheno-
type network operations.

Dropout. Dropout [31] is a regularization technique to prevent
coadaptation of feature detectors by randomly and temporarily
omitting nodes of a neural network. We use it to prevent a neural
network from overfitting to training set. The probability of retaining
a neuron is set to 0.8 for evaluation using training set.

Rectified Linear Unit and weight scaling. ReLU [30] is an activa-
tion function defined by h(a) =max(0,a)where a is a preactivation
of neuron. It is known to be a practical solution of the vanishing
or exploding gradient problems of gradient-based learning, but it
also has the effect of reducing the computational cost compared
to the traditional activation function, i.e., sigmoid. We use ReLU
as an activation function in our experiments, which is more cost-
effective and provides a performance improvement. Because the
ReLU propagates the variance of positive valued activation to the
next layer, the variance can be amplified or attenuated over layers.
Careful weight initialization techniques [15, 19] for deep learning
were introduced to prevent this problem, so it became a key factor
for designing deep architectures. They carefully scale randomly
selected weights so that the variances of activation over layer are
kept constant. We scale the CPPN’s weight outputs from the same
insight. We refer to He et al.’s work [19] and scale the phenotype



neuron’s weight to
√
(2.0/Nin ) times where Nin is the number of

connected neurons from the preceding layer.

HyperNEAT evolves connective CPPN through NeuroEvolution
of Augmenting Topologies (NEAT) [35]. NEAT is a genetic algo-
rithm allowing the evolution of neural networks. A neural network
has a permutation problemwhichmakes difficult to define crossover,
but it overcomes the problem by using historical markers. Begin-
ning with a population of small and simple neural networks, this
algorithm makes them increasingly complex. It exploits and ex-
plores with evolutionary tinkerings, such as adding new nodes and
connections to a neural network. In addition, to preserve the topo-
logical innovation, speciation is applied by sharing fitness among
similar individuals. We set the population size to 1000; it is carried
out until reaching the 200th generation. A decay factor of 0.999 is
introduced to decrease the mutation rates gradually over genera-
tions. In addition, when the compatibility threshold is fixed, the
population speciate too much. Since it cannot take advantage of
niching, we raised the threshold to the rate of 1.001 per genera-
tion. For the same reason, if the number of species exceeded 100,
the degree of speciation is adjusted by raising the threshold by
1.1 times. We do not allow for a genotype CPPN to contain any
recursive connection since charts are assumed to be independent
and identically distributed in chart pattern analysis.

4 EXPERIMENTAL SETUP
This section describes preprocessing and experiments for the chart
pattern search problem.

4.1 Preprocessing
Figure 2 shows the preprocessing for the chart pattern analysis used
in this study. In the chart pattern analysis, smoothing techniques
such as moving average, linear Kalman filter, and kernel regression
are used [3] because raw financial time series data tend to have
unstable fluctuations in short term. We smoothed the time series
using a 24-day moving average as shown in Figure 2a. The sliding
window is shifted by one day in each time series and emits a sliced
time series. If a sliding window of size s is used in l-length time
series, then l−s+1 sliced time series are obtained. We used 128 days
for window size. Each sliced time series was processed into two
channels of chart as shown in Figure 2b: (1) the logarithmic rate of
daily price change; (2) the logarithmic rate of price change of a day
to the last day. We took logarithm to resolve the skewedness. In
addition, the preprocessed data were downsampled by a factor of 4
to reduce the size of the preprocessed data as shown in Figure 2c.
Finally, we reduced the magnitude of the second channel by a factor
of 1/32 to match the one of the first channel. Apart from this, we
computed the k-day return rate of the day after the last day of the
preprocessed data. In a template-based chart pattern analysis, two-
dimensional chart images are popularly used as input. However, the
height of the two-dimensional chart is determined in advance, so
the magnitude of the price or the change rate is adjusted according
to the height. We use the one-dimensional real-valued input to
maintain magnitude information.

Figure 2: Preprocessing

4.2 Experimental Setup and Parameters
We seek attractive patterns that operate on the stock market, rather
than on a particular stock or indicator. Therefore, we used the daily
closing prices of all stocks ever-listed in the Korean stock market
from January 2012 to December 2016. We divided the dataset into
three groups:

• training set: January 2012 through December 2014,
• validation set: January 2015 through December 2015,
• test set: January 2016 through December 2016.

The numbers of samples were 1018045, 294586, and 292141 for train-
ing, validation, and test sets, respectively. The training set is used
for optimizing chart patterns, the validation set for model selection,
and the test set for assessment of the approach. We refined the
datasets by excluding both preferred and fund stocks on the stock
market. Unlike the US stock market, the Korean stock market has
both upper and lower limits of daily price movement. If the price of
the item reaches the daily upper limit, it is extremely hard to buy
the item. Therefore, it is assumed that the chart is not matched in
that case.
We experimented theChart_Pattern_Search(k,X ) of genetic frame-
works for the various representations for quantitative comparisons.
Template-based and neural network-based chart pattern searches
were conducted with the proposed HyperNEAT framework. In ad-
dition, we re-implemented the GA [17] to search rule-based chart
patterns for the given datasets. The hyperparameter α was set to



100000. We tuned solutions for each objective function by varying
the parameter k in three ways: 20, 50, and 100. Our implementation
of Python and TensorFlow took about 33 hours to run on an i7-4770
CPU @ 3.40GHz machine with a GeForce GTX 980 GPU card.

5 EXPERIMENTAL RESULTS
This section provides a comparative analysis of the patterns found
and the benefits of the key technologies applied for a neural net-
work.

5.1 The Chart Patterns Found
We conducted a full-scale examination of well-known patterns3 and
the found patterns using genetic frameworks for the various match-
ings. All the well-known patterns were provided in a rule-based
representation [17]. We used GA [17] to find the profitable patterns
for rule-based representation. The patterns found in the previous
study are rp_20_50, rp_100, and rp_example, and the patterns found
in the updated dataset in this paper were rp2_20, rp2_50 and rp2_100.
We used the HyperNEAT framework proposed in this paper to find
attractive template-based and neural network-based chart patterns.
The names of the patterns found for each k are: tp_20, tp_50, and
tp_100 for template-based representation and nnp_20, nnp_50, and
nnp_100 for neural network-based representation.
Table 1 shows the performance of each pattern. The columns repre-
sent each dataset for each k value, and the rows represent patterns.
If no chart matches to a pattern, the fitness of the pattern is marked
as zero. Bold figures indicate the best column values for a given k
for each cluster of patterns. The values enclosed in square brackets
are the best patterns out of all the patterns for a given k in terms of
test sets. When k is 20, nnp_20 was the best, and when k is 50 or 100,
nnp_100 was the best. Overall, we observed that neural network-
based chart patterns outperformed the other clusters. In particular,
they showed consistently high profitability with an acceptable vari-
ance over all datasets. Templated-based patterns followed neural
network-based patterns in a comparable range. For the rule-based
patterns, it seems to be more difficult to find a general pattern with
k = 20, the lowest.
We visualized the chart patterns found for a closer look at. Figure 3
shows superimposed charts that match to the each found patterns
to see the actual images as well as the characteristics of the patterns.
Each of the two images of an input channel is separately piled up.
The logarithmic rate of daily price change is on the left side and
the logarithmic rate of price change of a day to the last day is on
the right side. The more overlay, the darker colored. The horizontal
axis indicates the day and the vertical axis indicates the magnitude.
As shown in Figure 3, we found similar patterns in template-based
and neural network-based chart patterns, which can be roughly
classified into two classes. One is a soaring pattern represented by
tp_20 (Figure 3a), tp_50 (Figure 3b), and nnp_20 (Figure 3d), and the

3Manually designed well-known 26 patterns are the following: double-bottom,
double-top, triangle-ascending, triangle-descending, triangle-symmetric-bottom,
triangle-symmetric-top, triple-bottom, triple-top, three-falling-peak, three-rising-valley,
head-and-shoulder-bottom, head-and-shoulder-top, broaden-bottom, broaden-top,
broaden-formation-ascending, broaden-formation-descending, broaden-wedge-ascending,
broaden-wedge-descending, rectangle-bottom, rectangle-top, bump-and-run-reversal-
bottom, bump-and-run-reversal-top, double-head-and-shoulder-bottom, double-head-
and-shoulder-top, diamond-bottom, diamond-top, head-and-double-shoulder-bottom,
and head-and-double-shoulder-top.

other is a falling pattern represented by tp_100 (Figure 3c), nnp_50
(Figure 3e), and nnp_100 (Figure 3f). The representative patterns
found were rather simple. We suspect that many attractive pat-
terns are hidden in the pattern space, considering our modelling is
preliminary.

5.2 Advantages of state-of-the-art neural
network techniques

We examined the benefits of each state-of-the-art deep neural net-
work technique.

GPGPU. The computational time reduction for MLP is important
given that most of the computational costs arise from the evaluation
of phenotype networks. We were able to take advantage of GPGPU
for evaluation of MLP. We compared the efficiency of GPGPU with
CPU computation on the same TensorFlow implementation of eval-
uation of nnp_50 100 times for each. It takes about 587 seconds to
evaluate by CPU operation, while about 21 seconds by the GPU
operation. This results in a computational gain of about 27 times. It
allows us to search chart patterns within tolerable amount of time.

Dropout. As shown in Figure 4, we compared the average perfor-
mance difference according to whether the dropout was applied or
not on 5 runs of neural network-based chart pattern search when
k is 100. The darker color is used when dropout is applied, and the
training set is represented by a dotted line to distinguish from test
set. In the case without dropout (dropout rate = 1.0), the average
performance in the training converged relatively faster and the final
performance is slightly better than the other case. However, the
average performance of the test set was not improved after about
20th generation, resulting in overfitting to training set. On the other
hand, in the case with dropout (dropout rate = 0.8), the average
performance of training set was improved relatively slowly until
about 160th generation. Furthermore, the average performance of
test set was also improved slowly, so it outperformed the other
case from around 80th generations. Therefore, dropout served as a
significant regularizer to prevent to overfit to training set.

ReLU and weight scaling. The use of ReLU as an activation func-
tion of the phenotype network has a slight benefit in computation
time compared to the sigmoid network. However, without properly
scaled weights, it is difficult to find attractive patterns using the
ReLU network due to the occurrence of amplification or attenu-
ation of the variance of activations over layers. We tested each
activation functions with deeper neural networks to observe the
amplication or attenuation; The substrate configuration of MLP
was composed of a 32 × 2 input layer, 16 × 12, 16 × 6, 8 × 6, 4 × 6,
and 4 × 3 hidden layers and 1 × 1 output layer. The population size
was set to 100 and ran 5 times for each. In the early generation of
the ReLU networks, the average variance of the weights was about
0.096 over the whole network and the variance of activation was
amplified to about 6.2 × 107 times from the input to preactivation
of output. The CPPN could not successfully suppress this ampli-
fication over 200 generations, so it did not significantly improve
the performance from the beginning. By introducing a scaling fac-
tor, following He et al.’s suggestion [19], we scaled the weights
and managed variances. It enabled us to bound the amplification
in a few thousand times, which is a comparable variance level of



Table 1: Comparative results (×10−2)

k = 20 k = 50 k = 100
Approach Pattern name Training Validation Test Training Validation Test Training Validation Test

doubleB -0.4135 0.1745 -0.713 0.0299 3.001 -0.1425 0.8759 6.3533 1.3904
doubleT -0.1833 0.0892 0.0562 0.1842 1.5489 0.6741 1.4297 4.4436 2.5205
triangleA 0.0077 -0.0138 -0.0361 0.0007 0.0201 0.0162 0.0222 0.0442 0.0502
triangleD 0.0142 -0.0079 -0.0296 0.0418 0.0937 -0.0818 0.0287 0.1796 -0.0414
triangleSB 0.0168 0.0154 0.0134 0.0411 0.0637 0.0051 0.0385 0.1354 0.1185
triangleST -0.0104 0.002 -0.0643 0.0284 0.0684 -0.019 0.0434 0.093 -0.0056
tripleB -0.1011 0.0444 -0.1613 -0.0113 0.8624 0.0138 0.2487 2.3948 0.903
tripleT -0.0262 -0.0075 -0.0375 -0.0349 0.1079 0.0674 0.1352 0.2817 -0.0999
threeFP -0.0139 0.5688 0.1183 1.5674 3.6929 0.8612 3.9923 8.997 2.439
threeRV -0.2771 0.2085 -0.8037 -0.1859 2.2642 -0.2382 0.2884 4.1644 1.2385
HnSB -0.0028 -0.0013 -0.0065 -0.0018 0.0276 -0.0203 0.0614 0.0612 0.0229

Manually designed HnST -0.0042 0.0102 -0.0249 0.0165 -0.0077 -0.0384 0.0248 0.1369 -0.0625
well-known broadenB -0.0068 0.0008 -0.0135 -0.0111 0.0142 -0.01 -0.0029 0.0006 -0.0071

stock chart patterns broadenT 0.0055 0.0022 -0.0059 0.0102 -0.0043 -0.0025 0.012 -0.0132 0.0044
broadenFA 0.0023 -0.0011 0.0031 0.0197 0.0233 -0.0069 0.1019 0.0968 0.0554
broadenFD -0.0051 0.005 -0.0117 -0.0073 0.0192 -0.0046 -0.0003 0.0567 -0.0081
broadenWA -0.0665 -0.0397 -0.0978 -0.0362 0.0819 -0.0696 0.0459 0.5141 0.1591
broadenWD 0.0358 0.1306 0.0189 0.2502 0.4267 0.1748 0.5445 0.9414 0.7562

rectB -0.002 -0.0159 -0.0071 -0.0043 0.0016 -0.0252 -0.0042 0.0034 -0.0206
rectT -0.0024 -0.0172 -0.0024 -0.0091 0.0098 -0.0116 -0.0063 0.0067 -0.0142
BnRB 0.0313 0.1773 0.0135 0.2508 0.6398 0.2824 0.6682 1.1413 0.9724
BnRT -0.0892 -0.0475 -0.1095 -0.0415 0.0705 -0.0556 0.079 0.2984 0.225
DHnSB -0.0011 -0.0006 0.0014 -0.0071 -0.006 -0.0175 -0.0015 0 -0.0223
DHnST 0.0006 0.0033 0.0011 0.0013 0.013 0 0.0004 0.018 0
diaB -0.0002 0.0042 -0.0046 0.0264 0.0145 0.0028 0.0146 0.0086 0.0153
diaT -0.0105 0.0123 0.0022 -0.0021 0.0236 0.0121 -0.006 0.0167 0.0195

HnDSB -0.0012 0 0 -0.0034 0 0 -0.0001 0 0

rp_20_50[17] -0.1657 0.6548 -0.8153 1.4888 6.4532 0.0863 3.2787 12.2918 1.9913
Rule-based rp_100[17] -0.1127 0.5155 -0.5296 0.3814 2.2943 -0.3843 1.0427 4.9562 0.7167

stock chart patterns rp_example[17] -0.2185 0.4883 -0.8412 0.9535 4.7315 -0.6867 2.3514 9.7325 0.9351
found by GA rp2_20 0.2112 1.4374 -0.3566 3.0874 6.1921 -0.4915 5.2878 9.9223 0.5566

rp2_50 0.3646 1.3335 -0.2888 3.2314 6.5954 -0.1334 6.5452 15.4184 2.3219
rp2_100 0.3277 0.0994 -0.4351 1.5327 4.6352 -0.0762 5.8328 16.3815 2.6038

Template-based tp_20 9.9308 4.151 2.2809 6.8905 2.6877 0.4456 4.7645 4.1592 -4.5077
stock chart patterns tp_50 14.8681 8.0650 6.1008 11.9267 7.2954 5.338 9.302 9.8671 -0.0063
found by HyperNEAT tp_100 -1.7451 0.8408 2.9105 0.9945 5.0631 7.0560 4.4891 15.8227 4.3086

Neural network-based nnp_20 14.9717 8.0733 [6.1778] 12.0797 7.0082 5.2648 9.5376 9.5248 -0.1256
stock chart patterns nnp_50 0.3281 1.2617 2.9870 3.5819 5.6478 7.1354 5.8694 14.5219 4.8035
found by HyperNEAT nnp_100 -0.6693 1.2977 3.002 2.0989 5.2279 [7.3442] 5.5765 15.4207 [5.5817]

the sigmoid networks. The best fitness of the ReLU network was
0.051. On the other hand, the amplification problem did not occur
when sigmoid was used in phenotype network, so the performance
did not deteriorate. Furthermore, we could not observe the perfor-
mance difference depending on the weight scaling for the sigmoid
networks. The best fitness of the sigmoid network was 0.049. The
use of ReLU with careful weight scaling provided better record with
reduction of the computation time by about 5.421%.

6 CONCLUSION
Attractive chart patterns can provide crucial information formaking
trading decisions, but the chart pattern search has been relatively
unexplored so far. In this paper, we defined and formulated the

problem of chart pattern search which is not limited by matching
techniques, and proposed HyperNEAT framework to cope with the
problem. We used various deep neural network techniques to over-
come problem-specific difficulties. Although the neural network-
based patterns were better than the others, they were fairly simple.
We think that our model is still not mature enough, hoping to find
more complex patterns hidden in the pattern space.
In the future, we expect to increase profitability by injecting con-
textual information such as time or the stock item into the chart.
We also plan to devise a method to speed up the computation of
CPPN using GPGPU, and design a new CPPN so that NEAT can
adaptively determine the weight scale using information about
incoming connections.



(a) tp_20 (b) tp_50 (c) tp_100

(d) nnp_20 (e) nnp_50 (f) nnp_100

Figure 3: Examples of patterns found

Figure 4: Average performance according to dropout rate
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