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ABSTRACT
Machine learning has been gaining traction in recent years to meet
the demand for tools that can e�ciently analyze and make sense
of the ever-growing databases of biomedical data in health care
systems around the world. However, e�ectively using machine
learning methods requires considerable domain expertise, which
can be a barrier of entry for bioinformaticians new to computa-
tional data science methods. �erefore, o�-the-shelf tools that make
machine learning more accessible can prove invaluable for bioinfor-
maticians. To this end, we have developed an open source pipeline
optimization tool (TPOT-MDR) that uses genetic programming to
automatically design machine learning pipelines for bioinformatics
studies. In TPOT-MDR, we implement Multifactor Dimensionality
Reduction (MDR) as a feature construction method for modeling
higher-order feature interactions, and combine it with a new ex-
pert knowledge-guided feature selector for large biomedical data
sets. We demonstrate TPOT-MDR’s capabilities using a combina-
tion of simulated and real world data sets from human genetics
and �nd that TPOT-MDR signi�cantly outperforms modern ma-
chine learning methods such as logistic regression and eXtreme
Gradient Boosting (XGBoost). We further analyze the best pipeline
discovered by TPOT-MDR for a real world problem and highlight
TPOT-MDR’s ability to produce a high-accuracy solution that is
also easily interpretable.
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1 INTRODUCTION
We are currently witnessing the explosive growth of technologies
that focus on processing the large amounts of data available in
the biomedical sciences. Closely, in parallel, machine learning has
been gaining traction in an e�ort toward analyzing and making
sense of said biomedical data. However, e�ectively using machine
learning tools o�en requires deep knowledge of both machine
learning techniques as well as the application domain. For example,
to e�ectively apply machine learning to a genome-wide association
study (GWAS) [3, 5], the practitioner must understand the complex
trait being studied (e.g., a particular disease such as prostate cancer),
the research surrounding the underlying genetics of the trait, as
well as the numerous steps in the machine learning process that are
necessary for a successful analysis (e.g., feature engineering, model
selection, etc.). If we can provide o�-the-shelf tools that reduce
the barrier to entry for using machine learning by non-experts,
then such tools could prove bene�cial to researchers working in
the biomedical sciences. Mapping statistical inferences and models
from genetic data analysis to underlying biological processes is an
important goal to the �eld of computational genomics [23].

In recent years, evolutionary computation (EC) has been proven
successful in automating a variety of tasks, and even outperformed
several hand-designed solutions in human vs. machine compe-
titions [9, 12, 18, 37]. As such, we believe there is considerable
promise in using EC to automate the analysis of biomedical data.
Last year, we introduced the Tree-Based Pipeline Optimization Tool
(TPOT) [31, 33], which seeks to automate the process of designing
machine learning pipelines using genetic programming (GP) [1].
We found that TPOT o�en outperforms a standard machine learn-
ing analysis, all the while requiring no a priori knowledge about
the problem it is solving [30, 32]. Here, we report on our a�empts
to specialize TPOT for human genetics research.

Human genetics research poses a unique data analysis challenge
due to the e�ects of non-additive gene-gene interactions (i.e., epis-
tasis) and the large number of genes that must be simultaneously
considered as possible predictors of a complex trait [26]. As a result,
linear models of complex traits o�en predict li�le about the trait,
and it is typically impossible to perform an exhaustive combinato-
rial search of every possible genetic model including two or more
genes. For this reason, many researchers leverage a priori expert
knowledge to intelligently reduce and guide the search space when
performing a combinatorial search of possible genetic models [28].
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In this paper we introduce TPOT-MDR, which uses GP to auto-
mate the study of complex diseases in GWAS. TPOT-MDR auto-
matically designs sequences of common operations from genetic
analysis studies, such as data �ltering and Multifactor Dimensional-
ity Reduction (MDR) [16, 24, 25, 29, 35], with the goal of producing
a model that best predicts the outcome of a complex trait based
solely on their genetics. Furthermore, we enable TPOT-MDR to
leverage a priori expert knowledge through an Expert Knowledge
Filter (EKF), which performs feature selection on the GWAS datasets
using information from the expert knowledge source.

To demonstrate TPOT-MDR’s capabilities, we compare TPOT-
MDR to state-of-the-art machine learning methods on a combina-
tion of simulated and real-world GWAS datasets. �ese datasets are
all supervised classi�cation datasets with a focus on human disease
as the outcome. We �nd that TPOT-MDR performs signi�cantly
be�er than the state-of-the-art machine learning methods on the
GWAS datasets, especially when it is provided the EKF as an op-
tional feature selector. We further analyze the resulting TPOT-MDR
model on a real-world GWAS dataset to highlight the interpretabil-
ity of TPOT-MDR models, which is a feature that is typically lacking
in machine learning models. Finally, we release TPOT-MDR as an
open source Python so�ware package to be freely used in human
genetics research.

2 RELATEDWORK
For automated machine learning (AutoML) in general, approaches
have mainly focused on optimizing subsets of a machine learning
pipeline [19], which is otherwise known as hyperparameter opti-
mization. One readily accessible approach is grid search, which
applies brute force search within a search space of all possible model
parameters to �nd the best model con�guration. Relatively recently,
randomized search [2] and Bayesian optimization (BO) [36] tech-
niques have entered into the foray and have o�ered more intelli-
gently derived solutions—by adaptively choosing new con�gura-
tions to train—to the hyperparameter optimization task.

BO has also been applied to the domain of AutoML [8]. Here,
the BO iteratively �ts a probabilistic model to a set of hyperpa-
rameters of a pipeline and their measured performance, chooses
and evaluates the most promising hyperparameter, and updates
the probabilistic model. GP approaches to AutoML have also been
proposed, such as RECIPE [6] and GTMOEP [42], and the aforemen-
tioned TPOT [32]. RECIPE uses a grammar-based GP framework,
in which a grammar de�nes a speci�cation for initial population
generation as well as for crossover and mutation operations. GT-
MOEP is similar in spirit to TPOT, but utilizes signal processing
functions for its feature construction and selection methods.

Another approach to AutoML has been proposed in [20]. Here,
the author computed several meta-features from existing datasets
and tied those meta-features to the performance of numerous ML
algorithms on those datasets in a “Meta-Learning Space.” When a
new dataset was encountered, the author computed the same meta-
features from the dataset and recommended the ML algorithm
con�gurations that worked best on datasets with similar meta-
features. �is technique was shown to work be�er than using
default models and parameters, but was limited by the existing
corpus of datasets from which to meta-learn.

Narrowing the focus to AutoML in bioinformatics, the literature
is far more sparse. One such example is [11], in which they ana-
lyze metabolomics data using a modi�ed Bayesian optimization
algorithm integrated with the classi�cation algorithms provided in
WEKA, a suite of machine learning so�ware wri�en in Java. �e
Bayesian optimization provided feature subset selection, which �l-
tered irrelevant and redundant features from the datasets to achieve
dimensionality reduction. �ese techniques lead to an improvement
of classi�cation accuracy.

Genetic programming and evolutionary computation methods
have also been successfully applied to bioinformatics studies, such
as [27, 38], but they do not focus on designing and tuning a series
of standard data analysis operations for a speci�c dataset. As such,
although they are related techniques, they do not fall into the
automated machine learning domain. In this work, we seek to
specialize TPOT-MDR as an AutoML tool for bioinformatics studies.

3 METHODS
In this section, we brie�y review TPOT [30–33] and describe the
new pipeline operators that were implemented for TPOT-MDR.
A�erwards, we describe the datasets used to evaluate TPOT-MDR
and compare it to the state-of-the-art machine learning methods.

3.1 TPOT Review
TPOT uses an evolutionary algorithm to automatically design and
optimize a series of standard machine learning operations (i.e., a
pipeline) that maximize the �nal classi�er’s accuracy on a super-
vised classi�cation dataset. It achieves this task using a combination
of genetic programming (GP) [1] and Pareto optimization (speci�-
cally, NSGA2 [7]), which optimizes over the trade-o� between the
number of operations in the pipeline and the accuracy achieved by
the pipeline.

TPOT implements four main types of pipeline operators: (1) pre-
processors, (2) decomposition, (3) feature selection, and �nally (4)
models. All the pipeline operators make use of existing implemen-
tations in the Python scikit-learn library [34]. Preprocessors consist
of two scaling operators to scale the features and an operator that
generates new features via polynomial combinations of numerical
features. Decomposition consists of a variant of the principal com-
ponent analysis (RandomizedPCA). Feature selection implements
various strategies that serve to �lter down the features by some
criteria, such as the linear correlation between the feature and the
outcome. Models consist of supervised machine learning models,
such as tree-based methods, probabilistic and non-probabilistic
models, and k-nearest neighbors.

TPOT combines all the operators described above and assembles
machine learning pipelines from them. When a pipeline is evalu-
ated, the entire dataset is passed through the pipeline operations
in a sequential manner—scaling the data, performing feature selec-
tion, generating predictions from the features, etc.—until the �nal
pipeline operation is reached. Once the dataset has fully traversed
the pipeline, the �nal predictions are used to evaluate the overall
classi�cation accuracy of the pipeline. �is accuracy score is used
as part of the pipeline’s �tness criteria in the GP algorithm.

To automatically generate and optimize these machine learning
pipelines, TPOT uses a GP algorithm as implemented in DEAP [10],
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which is a Python package for evolutionary algorithms. O�en, GP
algorithms build trees of mathematical functions that seek to opti-
mize toward a speci�ed criteria. In TPOT, GP is used to optimize
the number and order of pipeline operators as well as each oper-
ator’s parameters. TPOT follows a standard GP process for 100
generations: random initialization of the initial population (default
population size of 100), evaluation of the population on a supervised
classi�cation dataset, selection of the most �t individuals on the
Pareto front via NSGA2, and variation through uniform mutation
(90% of all individuals per generation) and one-point crossover (5%
of all individuals per generation). For more information on the
TPOT optimization process, see [30].

3.2 TPOT-MDR
TPOT-MDR is a specialized version of TPOT that focuses on genetic
analysis studies. It features two new operators that are commonly
used genetic analyses of human disease: (1) Multifactor Dimension-
ality Reduction (MDR) and (2) an Expert Knowledge Filter (EKF).

MDR is a machine learning method for detecting statistical pat-
terns of epistasis by manipulating the feature space of the dataset
to more easily identify interactions within the data [16, 24, 25, 35].
To summarize, MDR is a constructive induction algorithm that com-
bines two or more features to create a single feature that captures
the interaction a�ects among the features. �is constructed created
feature can be fed back into the dataset as a new feature or used as
the �nal prediction on the dataset.

�e motivation behind adding the EKF operator was that, o�en
times, a priori expert knowledge about a biomedical dataset exists:
Perhaps the dataset has been analyzed and annotated in previous
studies, a database exists with relevant information about the genes
in a dataset, or statistical expert knowledge can be derived from the
dataset before the study [26]. �is a priori expert knowledge can
be leveraged to guide the TPOT-MDR search algorithm in deciding
what genes to include in the �nal genetic model.

�e EKF operator selects an expert knowledge source from the
sources provided and selects the N best features according to the
expert knowledge source (where N is constrained to [1, 5]). Since
the EKF operator is parameterized to select both the expert knowl-
edge source and the number of top features to retain, TPOT-MDR
optimizes (1) whether and where in the pipeline to include the EKF
and (2) the parameters of the EKF. Multiple EKF operators can be
included in a TPOT-MDR pipeline, as shown in Figure 1.

Other than the MDR and EKF operators, the only other operators
included in TPOT-MDR are a standard univariate feature selection
method (SelectKBest in scikit-learn [34], with an evolvable num-
ber of features to retain, N, where N is constrained to [1, 5]) and a
CombineDFs operator that combines two feature sets together into
a single feature set. �ese operators can be chained together to
form a series of operations acting on a GWAS dataset, as depicted
in Figure 1. Except for di�erent operator set, the TPOT-MDR opti-
mization process works the same as the original TPOT algorithm
as described in Section 3.1, and was run with a population size of
300 for 300 generations with a per-individual mutation rate of 90%
and per-individual crossover rate of 5%.

3.3 Datasets
We performed an analysis of TPOT-MDR on both simulated datasets
and a real world GWAS dataset. �e simulated datasets were gen-
erated using GAMETES [39], an open source so�ware package de-
signed to generate GWAS datasets with pure epistatic interactions
between the features. We simulated 16 di�erent datasets with spe-
ci�c properties to test the scalability of TPOT-MDR. �e simulated
datasets included 10, 100, 1,000, or 5,000 single-nucleotide poly-
morphism (SNP) features, each with 2 predictive features and the
remaining features generated randomly using an allele frequency
between 0.05 and 0.5. Further, we generated datasets with heri-
tabilities (i.e., noise) of 0.05, 0.1, 0.2, or 0.4, where lower heritability
entails more noise in the dataset. Notably, all of the GAMETES
datasets had a sample size of 2,000 to ensure a reasonably large
dataset size.

By scaling the GAMETES dataset feature spaces from 10 to 5,000,
we sought to evaluate how well TPOT-MDR could handle increas-
ingly large numbers of non-predictive features. Similarly, by sim-
ulating increasing amounts of noise in the dataset, we sought to
evaluate how much noise TPOT-MDR could handle before it failed
to detect and model the predictive features. As such, this simu-
lated benchmark provides a detailed view of of the strengths and
limitations of TPOT-MDR in the GWAS domain.

To validate TPOT-MDR on a real-world dataset, we used a nation-
ally available genetic dataset of 2,286 men of European descent (488
non-aggressive and 687 aggressive cases, 1,111 controls) collected
through the Prostate, Lung, Colon, and Ovarian (PLCO) Cancer
Screening Trial, a randomized, well-designed, multi-center investi-
gation sponsored and coordinated by the National Cancer Institute
(NCI) and their Cancer Genetic Markers of Susceptibility (CGEMS)
program. In this study, we focus on prostate cancer aggressiveness
as the endpoint, where the prostate cancer is considered aggressive
if it was assigned a Gleason score ≥ 7 and was in tumor stages III/IV.
Between 1993 and 2001, the PLCO Trial recruited men ages 55–74
years to evaluate the e�ect of screening on disease speci�c mor-
tality, relative to standard care. All participants signed informed
consent documents approved by both the NCI and local institutional
review boards. Access to clinical and background data collected
through examinations and questionnaires was approved for use by
the PLCO. Men were included in the current analysis if they had
a baseline PSA measurement before October 1, 2003, completed a
baseline questionnaire, returned at least one Annual Study Update
(ASU), and had available SNP pro�le data through the CGEMS data
portal1. Prior to this study, the CGEMS dataset was �ltered to the
219 SNPs associated with biological pathways relevant to aggres-
sive prostate cancer [22]. We call this dataset the “CGEMS Prostate
Cancer GWAS dataset.”

For all experiments, we used four di�erent statistical expert
knowledge sources as input to the EKF operator: the ReliefF [21],
SURF [15], SURF* [14], and MultiSURF [13] algorithms. �ese
algorithms evaluated the entire dataset prior to the experiments
and assigned numerical feature importance scores to each feature,
which is an indication of how predictive each feature is of the
outcome. �ese numerical scores were provided to the TPOT-MDR
EKF operator, and were used to rank the features when �ltering the

1h�p://cgems.cancer.gov
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Figure 1: Example TPOT-MDR pipeline. Each circle represents an operation on the dataset, and each arrow represents the
passing of the processed dataset to another operation.

datasets. We computed the statistical expert knowledge sources for
all 16 GAMETES datasets and the CGEMS Prostate Cancer GWAS
dataset, resulting in 68 unique expert knowledge sources (4 for each
experiment).

3.4 Evaluating TPOT-MDR
We ran four di�erent sets of experiments on the datasets: (1)
Extreme Gradient Boosting (XGBoost)2 [4], (2) Logistic Regres-
sion3 [17], (3) TPOT-MDR without the EKF, and (4) TPOT-MDR
with the EKF. In Section 4, we refer to these experiments as XGBoost,
Logistic Regression, TPOT (MDR only), and TPOT (MDR +
EKF), respectively. For the GAMETES datasets, we additionally
compared the four experiments to the baseline of a MDR model
constructed with the two known predictive SNP features (called
MDR (Predictive SNPs)), which will achieve the maximum pos-
sible classi�cation accuracy for the GAMETES datasets without
over��ing on the noisy features.

We chose to compare TPOT-MDR to the XGBoost classi�er be-
cause XGBoost has been established as a widely popular and suc-
cessful tree-based classi�er in the machine learning community,
particularly in the Kaggle4 machine learning competitions. Further,
we compared TPOT-MDR to a logistic regression to demonstrate
the capabilities of a standard linear model on GWAS datasets, which
will essentially detect only linear associations between the features
and the outcome. Finally, we ran TPOT-MDR without the EKF to
demonstrate whether the EKF was important for the TPOT-MDR
optimization process.

2XGBoost parameters: 500 trees, learning rate 0.0001, and 10 maximum tree depth
3�e logistic regression regularization parameter was tuned via 10-fold cross validation
4h�p://www.kaggle.com

For every dataset and experiment, we performed 30 replicate runs
with unique random number seeds (where applicable). �is allowed
us to evaluate and explore the limits of TPOT-MDR’s modeling
capabilities on a broad range of GWAS datasets, and demonstrate
how it performs in comparison to state-of-the-art machine learning
methods. In all cases, the accuracy scores reported are averaged
balanced accuracy scores from 10-fold cross-validation, where the
balanced accuracy metric is a normalized version of accuracy that
accounts for class imbalance by calculating accuracy on a per-
class basis then averaging the per-class accuracies [40, 41]. With
balanced accuracy, a score of 50% is equivalent to random guessing,
even with imbalanced datasets.

4 RESULTS
4.1 GAMETES Simulated GWAS Datasets
As shown in Figure 2, TPOT-MDR without the EKF rarely �nds
the best genetic model because it only has a univariate feature
selector at its disposal. In contrast, TPOT-MDR with the EKF always
discovers the best genetic model except when there are thousands
of features and high noise. Even in the cases where TPOT-MDR
with the EKF fails to �nd the best genetic model, it still discovers
be�er genetic models than the other methods in this study.

For a baseline, we compared TPOT-MDR to a tuned logistic re-
gression and XGBoost, as described in Section 3.4. Figure 2 shows
that logistic regression consistently fails to �nd a good model and
barely performs be�er than chance in even the easiest GAMETES
datasets. �is �nding demonstrates a key �aw in using linear mod-
els for GWAS: Linear models will not detect higher-order inter-
actions within the dataset unless the interactions are explicitly
modeled. Similarly, XGBoost can sometimes �nd a good model for
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Figure 2: Comparison of results on the simulated GAMETES GWAS datasets. Each box plot shows the distribution of averaged
10-fold balanced accuracies for each experiment, where the notches indicate the 95% con�dence interval. A 50% balanced
accuracy is equivalent to random guessing. Each panel within the �gure corresponds to di�ering levels of heritability (i.e.,
dataset noise) and numbers of features in the simulated datasets, ranging from the easiest dataset on the top right (high
heritability, small numbers of features) to the hardest dataset bottom le� (low heritability, large numbers of features).

Since some of the experiments had little variance in scores, some box plots are too small to determine their color. For
clarity, the box plots represent the following experiments, in order from le� to right: TPOT (MDR only), XGBoost, Logistic
Regression, TPOT (MDR + EKF), and MDR (Predictive SNPs). �ese experiments are described in Section 3.4.
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GWAS datasets if the dataset is heavily �ltered beforehand (e.g., to
10s of features), but rapidly degrades in performance as more noisy
features are added to the dataset.

4.2 CGEMS Prostate Cancer GWAS Dataset
�e CGEMS prostate cancer GWAS dataset has 219 SNPs, 1,175
samples, and likely falls into the “lower heritability” spectrum of the
GAMETES datasets. �us, we would expect to see roughly similar
performance on the CGEMS dataset as we saw in the GAMETES
datasets with 100 features and 0.1 or 0.05 heritability in Figure 2.

As predicted, Figure 3 shows that XGBoost and logistic regres-
sion fail to discover the higher-order interactions within the real-
world CGEMS dataset. In contrast, TPOT-MDR with and without
the EKF managed to consistently �nd predictive genetic models
for the CGEMS dataset. In particular, TPOT-MDR with the EKF
found the best genetic models, largely because the expert knowl-
edge sources (ReliefF, SURF, etc.) contained information about the
higher-order interactions between the SNPs that TPOT-MDR was
able to harness.

To be�er understand the genetic models that TPOT-MDR dis-
covered, we analyzed the �nal model from the highest-scoring
TPOT-MDR experiment and visualized the pa�ern of interactions
from the MDR model in Figure 4. We see pa�erns suggestive of sta-
tistical epistasis within the model, for example, in the le�most grid
a patient’s aggressive (dark grey cells) or non-aggressive (light
grey cells) status can only be determined by a combination of
AKT3 rs12031994 and DIABLO rs12870. Similarly, the pa�ern of
aggressive vs. non-aggressive status between AKT3 rs12031994
and DIABLO rs12870 varies depending on the state of the third SNP,
PRKCQ rs574512, which suggests a statistical three-way epistatic
interaction between the SNPs. If there were no higher-order in-
teractions between the SNPs, then we would expect a patient’s
aggressive vs. non-aggressive status to vary independently be-
tween the SNPs, i.e., we would expect to see horizontal and vertical
bands of aggressive or non-aggressive status within the grids. As
previous studies have suggested links between these SNPs and
aggressive prostate cancer [22], we can use these TPOT-MDR �nd-
ings to further elucidate the SNPs’ higher-order interactions and
involvement in the development of aggressive prostate cancer in
men of European descent.

5 DISCUSSION
In this paper, we introduced a new method and tool, TPOT-MDR,
for automating the analysis of complex diseases in genome-wide
association studies (GWAS). We developed this tool to aid bioinfor-
maticians so they can more e�ciently process and analyze the ever-
growing databases of biomedical data. To that end, TPOT-MDR
is designed to optimize a series of machine learning operations
that are commonly used in biomedical studies, such as �ltering the
features using expert knowledge sources, combining information
from di�erent expert knowledge sources, and modeling the higher-
order interactions of the features using Multifactor Dimensionality
Reduction (MDR) to predict a patient’s outcome. Before, bioinfor-
maticians would typically perform and re�ne these operations by
hand, whereas now TPOT-MDR can relieve the bioinformatician of
these tedious duties so they can focus on more challenging tasks.

Even though this paper focuses on the application of TPOT-MDR
to GWAS datasets, we note that TPOT-MDR is a general machine
learning tool that will work with any dataset that has categorical
features and a binary outcome. TPOT-MDR has been released as a
free, open source Python tool and is available on GitHub5.

In Section 4, we evaluated TPOT-MDR on a series of simulated
and real-world GWAS datasets and found that TPOT-MDR outper-
forms linear models and XGBoost across all of the datasets (Figures 2
and 3). �ese �ndings are important for several reasons. For one, we
demonstrated that simple linear models are ill-suited for the analy-
sis of GWAS datasets owing to their inability to model higher-order
interactions within the dataset. We also demonstrated that state-of-
the-art tree-based machine learning methods—typically thought to
be e�ective at modeling higher-order feature interactions—are sim-
ilarly ill-suited for modeling GWAS datasets with large numbers of
features. Finally, we highlighted the importance of harnessing a pri-
ori expert knowledge to �lter GWAS datasets prior to the modeling
step, which could aid state-of-the-art machine learning algorithms
such as XGBoost in eliminating extraneous features.

Although the results in Section 4 suggest that TPOT-MDR is
superior to the compared methods on every dataset we used, there
are some drawbacks to TPOT-MDR that must be considered. For
one, linear models and XGBoost are orders of magnitude faster to
train and evaluate than TPOT-MDR. As TPOT-MDR uses genetic
programming to optimize the series of �ltering and modeling oper-
ations on the dataset, a single TPOT-MDR run took roughly 3 hours
on the CGEMS dataset, whereas XGBoost and logistic regression
each took less than a minute. Given that many GWAS datasets
o�en have thousands to hundreds of thousands of SNP features
(compared to the 219 in CGEMS), TPOT-MDR will require more
work to improve its run time scalability to larger GWAS datasets.
Furthermore, TPOT-MDR is highly dependent on its expert knowl-
edge sources. In these experiments, we used expert knowledge
sources that specialize in detecting higher-order epistatic interac-
tions, which proved to be critical in both the simulated and real
world datasets. If TPOT-MDR is provided with less informative
expert knowledge sources, then it will likely perform worse, which
we can observe in Figures 2 and 3 (TPOT-MDR without EKF vs.
TPOT-MDR with EKF).

As shown in Figure 2, XGBoost can sometimes model higher-
order interactions when the dataset is heavily �ltered beforehand.
However, the resulting XGBoost model is not nearly as interpretable
as with TPOT-MDR. TPOT-MDR produces a model that we can in-
spect to study the pa�ern of feature interactions within the dataset
(Figure 4), whereas XGBoost provides only a complex ensemble of
decision trees. �is is an important consideration when building
machine learning tools for bioinformatics: More o�en than not,
bioinformaticians do not need a black box model that achieves high
prediction accuracy on a real-world dataset. Instead, bioinformati-
cians seek to build a model that can be used as a microscope for
understanding the underlying biology of the system they are mod-
eling. In this regard, the models generated by TPOT-MDR can be
invaluable for elucidating the higher-order interactions that are
o�en present in complex biological systems.

5h�ps://github.com/rhiever/tpot/tree/tpot-mdr
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Figure 3: Comparison of results on the CGEMS prostate cancer GWAS dataset. Each box plot shows the distribution of averaged
10-fold balanced accuracies for each experiment, where the notches indicate the 95% con�dence interval. A 50% balanced
accuracy is equivalent to random guessing.

Figure 4: Classi�cation grid for the best MDRmodel that TPOT-MDR discovered for the CGEMS prostate cancer GWAS dataset.
Each of the three grids correspond to one state of the PRKCQ rs574512 SNP, whereas the cells within each grid correspond to
one combination of states between the AKT3 rs12031994 and DIABLO rs12870 SNPs. �us, for example, the light grey upper
right cell in the le�most grid corresponds to PRKCQ rs574512 = 0, AKT3 rs12031994 = 2, and DIABLO rs12870 = 0.

Dark grey bars and cells indicate aggressive cases (i.e., at risk of aggressive prostate cancer), whereas light grey bars
and cells indicate non-aggressive cases (i.e., lower risk of aggressive prostate cancer). �e numbers at the top of each bar
indicate the number of aggressive and non-aggressive cases that fall within each cell when the entire CGEMS dataset is sorted
into the MDR classi�cation grid. If no data points fall into a cell, the cell is le� blank.
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In conclusion, TPOT-MDR is a promising step forward in us-
ing evolutionary algorithms to automate the design of machine
learning work�ows for bioinformaticians. We believe that evo-
lutionary algorithms (EAs) are poised to excel in the automated
machine learning domain, and specialized tools such as TPOT-MDR
highlight the strengths of EAs by showing how easily EA solution
representations can be adapted to a particular domain.
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