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ABSTRACT
Min-SEIS-Cluster is an optimization problem which aims at mini-
mizing the infection spreading in networks. In this problem, nodes
can be susceptible to an infection, exposed to an infection, or in-
fectious. One of the main features of this problem is the fact that
nodes have different dynamics when interacting with other nodes
from the same community. Thus, the problem is characterized by
distinct probabilities of infecting nodes from both the same and from
different communities. This paper presents a new genetic algorithm
that solves the Min-SEIS-Cluster problem. This genetic algorithm
surpassed the current heuristic of this problem significantly, reducing
the number of infected nodes during the simulation of the epidemics.
The results therefore suggest that our new genetic algorithm is the
state-of-the-art heuristic to solve this problem.
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1 INTRODUCTION
The infection spreading dynamics have long been the subject of
research. One of the first known mathematical models of infection
spreading was developed by Daniel Bernoulli in 1766. This first
model was based on the concepts of susceptible and immune states,
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the probability of surviving, death-rate, and force of the infection [4].
In 1906, Hamer analyzed the behavior of epidemic diseases such
as influenza, dengue and measles, concentrating on their regular
recurrence [7]. In 1910, Ross developed a system of differential
equations to model the transmission of malaria [20]; since then, his
contributions have played an important role in the study of epidemics.
An additional model that was highly influential in epidemiology is
the work of Kermack and McKendrick, published in 1927 [9]. Their
model considers that the individuals of the population can be either
susceptible, infected or recovered, and utilizes three interconnected
differential equations to specify the behavior of the epidemic.

Infection spreading models go beyond diseases. These models
can also be applied to culture, information, or behavior contagion
[18, 19]. For example, a model could be applied to maximize the
spread of an idea, like a preference, or to understand the mitigation
of a social behavior [19].

Epidemic models generally involve modeling the population as
complex networks, which are composed of individuals (also called
nodes or vertices) and the relationships between them, referred to
as connections, links or edges. Usually, the notation G = (V ,E)
is employed to represent a graph, where V is the set of vertices
(individuals) and E is the set of edges (connections) between them.
Infections can be transmitted from an infected individual to any
susceptible individual that is connected to it [15].

Mathematical models of infection spreading can be transformed
into search problems to maximize or minimize the contagion. In
network contexts, the optimization is commonly applied in the num-
ber of connections between individuals to be removed [14]. One of
these models is the Min-SEIS-Cluster, introduced in [3].

Min-SEIS-Cluster tries to minimize the spread of an infection
by removing a specified number of connections. In this model,
each node from the network can be susceptible (S), exposed (E), or
infected (I). The model also defines different infection dynamics
in subsets of individuals called clusters. For example, nodes from
the same family can affect each other with more intensity. In [3], a
heuristic based on successive probabilistic simulations of infection
dynamics over the instance is presented.

In this paper, we present a new genetic algorithm for the Min-
SEIS-Cluster optimization problem. The results show that this new
method found solutions with a smaller amount of infected nodes
than the previous heuristic.
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This paper is organized as following. Section 2 briefly analyzes
works related to the problem of mitigating the spread of infections
in an epidemic and defines the Min-SEIS-Cluster problem. Section
3 introduces our novel genetic algorithm, defining details such as
solution encoding and genetic operators. Section 4 discusses the
results of our genetic algorithm, comparing them with the current
heuristic of the Min-SEIS-Cluster problem. Finally, we present
concluding thoughts and suggestions for further research.

2 BACKGROUND
The analysis and control of epidemics is a vast topic of research, in-
volving multiple disciplines such as mathematics, computer science,
biology and the social sciences. Many epidemic models have been
proposed throughout recent history; an overview of these models
along with their properties is presented in [16]. Almost all epidemic
models consider that the individuals of a population can be in one
of many possible states, the most common being susceptible and
infected.

Generally, the mitigation of an epidemic is realized through the
modification of the structure of the network that represents the pop-
ulation in question. In [16], the authors claim that the larger the
maximum eigenvalue of the adjacency matrix of a network—the
more “tightly connected” the network is—, the easier it is for in-
fections to spread. They present two problems: finding the set of n
nodes and finding the set of n connections to be removed from a net-
work that best minimizes its maximum eigenvalue, thus improving
its resistance to an epidemic. Both problems are NP-hard [16].

Since these problems are computationally difficult, some studies
tried to solve them using relaxations or heuristics. Typical strategies
to solve the first problem include the usage of node metrics, such
as degree or centrality, to select them for removal [8, 12, 16]. The
problem of choosing connections from the network has also been
widely explored in the literature [2, 21, 24, 25]. The work presented
in this study and in the original Min-SEIS-Cluster paper focuses on
the second problem.

The removal of elements from a network has an impact on the
propagation of infections mostly in two known ways. Removing
nodes from the network is correspondent to immunizing individu-
als, making it impossible for them to become infected. Secondly,
removing links between nodes is akin to prohibiting them from inter-
acting; this approach is likely to prevent the contact of a non-infected
individual with an infected one [14].

In [10, 11], the authors have researched the behavior of influenza
infections along with methods that remove edges and nodes from
networks. They compared the results over different flight route
networks with 500 nodes (representing airports), and their results
demonstrated that the methods which removed edges from the net-
works were the most efficient. They also described that in practical
situations, removing nodes is comparable to shutting down an air-
port, while removing edges is similar to closing flight routes. The
latter is more feasible.

In [5], a method to remove links from a network based on a
quadratically constrained program is proposed. Their approach
involves the minimization of the number of susceptible nodes that
are connected to an infected node via any path, and considers a
constraint on the amount of links that can be removed. Experiments

executed over 15-node Erdős–Renyi and small-world graphs with 5
removed links indicated that optimal solutions were found in most
cases, and tests using scale-free networks with up to 200 nodes
demonstrated that their algorithm was superior to methods which
utilize statistics derived from the structure of the network, such as
edge centrality.

A comparison of four different heuristics for edge removal to
mitigate the spread of an infection is presented in [14]. The first
heuristic is called MinConnect, and minimizes the number of edges
between susceptible and infected nodes. The second heuristic is
called MinAtRisk and minimizes the number of nodes that have
one or more connections with infected nodes. The third one is
called MinPaths. This heuristic minimizes paths that can be used
by infected nodes to spread the infection. The last heuristic is
named MinWPaths, and it minimizes the weight of edges between
susceptible and infected nodes. Through computational experiments
using up to 200 nodes, the authors concluded that the most efficient
heuristic was MinAtRisk.

A study involving the utilization of evolutionary algorithms to
devise a strategy to immunize nodes in a network is presented in
[17]. The authors used the Susceptible-Infected-Removed (SIR)
epidemic model and a basic genetic algorithm to identify how many
nodes should be vaccinated in a network, considering a cost for each
immunized node. Their experiments, which used 500-node Erdős–
Renyi and Barabasi–Albert graphs, demonstrated that the amount
of vaccinated nodes was kept relatively low over the generations of
their algorithm.

In [3], the authors have proposed a computational problem called
Min-SEIS-Cluster that attempts to minimize the number of infected
nodes over time by removing a specific number of edges. This
problem also considers that the nodes can be infected with different
dynamics in their social groups, so the nodes inside of the same
community might have more probability of infecting each other. A
heuristic to select which edges should be removed is also reported
in the paper. This heuristic is detailed in the coming Section 2.1.

2.1 Previous Heuristic for Min-SEIS-Cluster
The method used to develop the original heuristic is based on the
Monte Carlo concept, and consists in repeatedly generating random
solutions and evaluating them until a sufficiently good solution is
found.

Algorithm 1 shows the original heuristic used to solve the Min-
SEIS-Cluster problem. The variables bestValue and bestSolution
store the best solution found during the search. At the start, the
bestValue is zero, and the bestSolution is defined as an empty set.
In line 3, a loop starts repeating attempts times. Each attempt
is a new random selected set of edges that are removed from the
original graph G. The set edдesRemoved is composed of the edges
removed from G, so at each iteration of this loop, a new solution
is tested. Inside this loop, simulations are performed replications
times over the solution. Before the start of each simulation, the sets
susceptibles, exposeds, in f ecteds are defined. Then for each time
t ∈ [T ], the method simulateInf ection is executed to simulate the
spreading. At the end of the simulation of an entire solution, the
value worstValue is updated if it the largest value of a summation
of the number of Infected individuals for all t ∈ [T ] is found.
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At the end of all replications assigned to a solution, theworstValue
is compared to the best-found worstValue of a solution tested in the
past (bestValue). So, this is considered as the best solution found
(the one that has presented the worst case better than the others) and
presents less infected nodes for all t ∈ [T ].

Algorithm 1: Min-SEIS-Cluster heuristic method
Input :G(V , E), r eplications , attempts , T , k ,

init ial Inf ected , clusters , χ , ϕ , ϵ , λ
1 bestV alue ←∞
2 bestSolution← {}
3 foreach attempt ∈ [attempts] do
4 edдesRemoved ← r emoveRandomEdдes(G, k )
5 E′ ← E\edдesRemoved
6 worstV alue ← −∞
7 foreach r ep ∈ [r eplications] do
8 inf ecteds ← init ial Inf ected
9 susceptibles ← V \init ial Inf ected

10 exposeds ← {}
11 value ← 0
12 foreach t ∈ [T ] do
13 simulateInf ect ion(G(V , E′), χ, ϕ, ϵ, λ, clusters,

inf ecteds, susceptibles, exposeds)
14 value ← value + |inf ecteds |
15 if value > worstV alue then
16 worstV alue ← value

17 if bestV alue > worstV alue then
18 bestV alue ← worstV alue
19 bestSolution← edдesRemoved

20 return {bestSolution, bestV alue }

The simulateInf ection method is explained in Algorithm 2. This
procedure is responsible for updating the states of the nodes in the
network, and is divided into two phases. The first phase iterates over
all Infected individuals. At each iteration of the loop that starts in
line 1, the infected individual is checked if it remains infected (at line
2). If it does not, the infected individual becomes Susceptible. If the
individual remains Infected, it tries to infect all adjacent Susceptible
nodes. If the targeted neighbor is in the same cluster of the Infected
individual, it is affected by a probability defined by function χ ,
otherwise by ϕ. If the target is Infected, it becomes exposed, and the
last period in the new status is stored (given by function ϵ). In the
second phase, the exposed individuals are checked if they become
Infected. If they become Infected, the period of this new status is
calculated by the function λ.

3 A NOVEL GENETIC ALGORITHM
Genetic algorithms consist in an optimization method that involves
the evolution of a population of chromosomes (solutions) through
the search space towards the global optimum, using the biologically-
inspired operators of crossover, selection, and mutation [13]. Chro-
mosomes are evaluated by a fitness function, which determines its
quality and consequently its probability of being selected for re-
production. Genetic algorithms are particularly efficient in finding
solutions for problems with large search spaces [23].

Algorithm 2: Simulate infection
Input :G , χ , ϕ , ϵ , λ, clusters , inf ecteds , susceptibles ,

exposeds , t
1 foreach inf ected ∈ inf ecteds do
2 if inf ected .t ime ≤ t then
3 inf ecteds ← inf ecteds\{inf ected }
4 susceptibles ← susceptibles ∪ {inf ected }
5 continue

6 foreach tarдet ∈ susceptibles ∩ N (inf ected ) do
7 chance ← 0
8 if Ctarдet = Cinf ected then
9 chance ← χCtarдet (t )

10 else
11 chance ← ϕ(t )
12 if random() < chance then
13 tarдet .t ime = t + ϵ (t )
14 susceptibles ← susceptibles\{tarдet }
15 exposeds ← exposeds ∪ {tarдet }

16 foreach exposed ∈ exposeds do
17 if exposed .t ime ≤ t then
18 exposed .t ime ← t + λ(t )
19 exposeds ← exposeds\{exposed }
20 inf ecteds ← inf ecteds ∪ {exposed }

With the intention of improving the rate of convergence of the
Min-SEIS-Cluster optimization problem, we developed a genetic
algorithm applied to the task of finding a set of connections to be
removed from the network which minimizes the number of infection
events over a period of time. The search space for this problem is
extremely large; its size can be calculated by the binomial coefficient(n
k
)
, where n is the number of connections of the network, and k

determines how many connections should be removed (the k con-
straint). As such, the random search presented in [3] can rarely find
good solutions.

This section describes the steps we took to develop a genetic algo-
rithm specialized to the Min-SEIS-Cluster problem, specifying two
genetic representations of the solution domain, the fitness function
and detailing the operators of crossover and mutation.

3.1 Solution Encoding
One of the main aspects of a genetic algorithm is how solutions are
encoded as chromosomes. The most common encoding is binary,
due to its simplicity and historical usage; in this type of encoding,
each chromosome is represented by a fixed-length string of bits,
whose values can be either 0 or 1 [13]. Binary encodings are also
popular because having a small range of possible values for each
gene—while still being able to represent the solution naturally—
tends to result in a more performant search [6]. However, alternative
types of encoding, such as those using integers or real numbers, have
also been shown to perform well in some problems [13].

We have developed two encodings to represent solutions of the
Min-SEIS-Cluster problem. The first encoding, referred to as GA-
Int, uses integer-valued genes to specify which connections should
be removed from the network, each chromosome having a length



GECCO ’17, July 15-19, 2017, Berlin, Germany F. Concatto, W. Zunino, L. A. Giancoli, R. Santiago, and L. C. Lamb

equal to k . In this encoding, the value of each gene ranges from 1 to
|E |, representing the unique identifier of the connection. The second
encoding is named GA-Bin and uses binary strings of length |E | to
represent the solution, where a gene having a value of 1 means that
the connection correspondent to that locus should be removed, and
0 indicates that the connection should be left intact. The number of
ones in the chromosome must be equal to k.

The fitness of a solution is calculated through the simulation
of the epidemic in the network, using the algorithms presented in
Section 2.1. The removeRandomEdдes procedure in the fourth line
of Algorithm 1 is replaced with the removal of the edges determined
by the solution being currently evaluated. The fitness of the solution
is equal to the multiplicative inverse of the replication with the
highest amount of infections (worstValue).

3.2 Crossover, Mutation and Chromosome Repair
Crossover is one of the main mechanisms through which genetic
algorithms derive their effectiveness in solving problems. The pur-
pose of the crossover operator is to combine characteristics from
two or more solutions to create new ones that tend to be closer to
the global optimum [13]. Typical methods to implement crossover
include single-point crossover, whereby one position from the chro-
mosome is chosen at random, and the genes of the parents before
or after the selected position are switched, forming two new solu-
tions. Another commonly used method is the parametrized uniform
crossover, which flips the genes at each position individually, based
on a predefined probability [13].

Mutation is a secondary but important operator that prevents cer-
tain values from being permanently lost in some particular positions
of the chromosomes [6, 13]. Mutation is accomplished by changing
the value of one or more randomly-chosen genes to a different value.
In the case of binary strings, the chosen bit is simply flipped; in
other representations, the value might be incremented, decremented
or replaced by another random value.

These operators pose some obstacles in the context of the Min-
SEIS-Cluster problem. In the case of GA-Int, multiple genes might
have the same value, violating the constraint k, since less than the
specified number of connections would be removed. For GA-Bin,
the number of genes possessing a value of 1 in the binary string
might be less or greater than k, also causing a violation.

To resolve these issues, we developed a procedure to repair the
chromosomes for both genetic representations. This process ensures
that the chromosomes respect the constraint k of the Min-SEIS-
Cluster problem. Both algorithms consist in removing or inserting
genes randomly, depending on the state of the chromosome in rela-
tion to k . For the GA-Int representation, the procedure first removes
the duplicated numbers and subsequently inserts randomly chosen
values between 1 and |E | that are not already on the chromosome,
until its size is equal to k. This corrective strategy is formalized in
Algorithm 3.

The procedure for the GA-Bin representation works in a similar
fashion. The algorithm acts by randomly replacing zeros with ones
if the binary string has less ones than k , and replaces ones with zeros
otherwise. If the chromosome is in accordance with the constraint,
the algorithm terminates. This procedure is presented in Algorithm
4.

Algorithm 3: Chromosome repairment procedure (GA-Int)
Input :chromosome, k, |E |

1 r emoveRepeatedGenes(chromosome)

2 while |chromosome | < k do
3 number ← random(1, |E |)
4 if number < chromosome then
5 chromosome ← chromosome ∪ {number }

6 return chromosome

Algorithm 4: Chromosome repairment procedure (GA-Bin)
Input :chromosome, k

1 while countOnes(chromosome) , k do
2 i ← random(1, lenдth(chromosome))
3 if countOnes(chromosome) > k then
4 chromosomei ← 0

5 else
6 chromosomei ← 1

7 return chromosome

4 RESULTS AND ANALYSIS
This section presents the results and analysis of the experiments
performed by using the classic heuristic proposed in [3] and the
two versions of our novel genetic algorithm. First, we describe the
real-life networks used in our experiments, detailing their source
and structure. Next, the parameters for the experiments are specified.
Finally, the data collected through the experiments is presented and
analyzed.

4.1 Datasets
The networks used in our experiments are detailed in Table 1, and
were obtained in [1]. In the following, the datasets and the commu-
nities used for each network are detailed. These communities were
obtained by the CM+LNM heuristic (Coarsening Merger + Local
Node Moving) from [22]. The applied exposition and infection times
were 2 and 4 respectively.

Strike and Sawmill are networks where the nodes represent the
employees of a sawmill. These employees are asked to describe in
which frequency they talk to other colleagues on a five-point scale
rating. The pair of employees that marked more than three points
are connected by an edge in the network. In both networks, there
are employees who speak only English or Spanish. Also, they might
work in different sections of the facility, resulting in a community
structure.

Karate is a network composed of the members of Zachary’s karate
club. The nodes represent each member of the karate club. Each
edge represents the friendship between two members. The club was
split due to a conflict between two members of the club, forming
two communities.

Korea 1 and 2 are networks where the nodes represent women of
two villages in the Republic of Korea. Two nodes are connected by
an edge if two women (two nodes) discussed their family planning.
In Korea 1, the family-planning program was successful, while in
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Korea 2 it was not widely adopted. Women who were members
of the Mother’s Club in their respective villages discussed more
family-planning methods.

Dolphins is a network where each node is a dolphin. The associa-
tion between two dolphins is represented with an edge. The group
of dolphins was observed for 7 years.

In the Polbooks instance, each node is a book about politics in the
United States, and an edge between two books represents frequent
co-purchasing in an online store.

Adjnoun is a network of common adjectives and nouns in David
Copperfield, a novel written by Charles Dickens. Football represents
the network of American football games between colleges during the
Fall of 2000, and Jazz is a collaboration network of jazz musicians,
compiled by a research group at the Universidad Rovira i Virgili, in
Spain.

Table 1: Details of the graphs used for the experiments, speci-
fying the number of nodes and edges. The instances were ob-
tained in [1].

Dataset Nodes Edges Communities

Strike 24 38 4
Karate 34 78 2
Korea1 35 69 10
Korea2 35 84 10
Sawmill 36 62 5
Dolphins 62 159 7
Polbooks 105 441 6
Adjnoun 112 425 9
Football 115 613 11
Jazz 198 2742 3

4.2 Specification of the experiments
To verify the effectiveness of our proposed genetic algorithm, we
performed extensive computational experiments using the original
Monte Carlo heuristic in comparison with the novel GA-Int and
GA-Bin techniques. For each network, a problem was defined as
10% of its nodes being initially infected, 100 time steps, replications
set to 20 and attempts to 300. For the constraint k , we experimented
with three different values: 0.1 · |E |, 0.3 · |E | and 0.5 · |E |. All tests
were performed considering internal infection with the probability of
15% and with probability of 5% between nodes of different clusters.

In the experiments employing our genetic algorithm, we used a
parametrized uniform crossover with a probability of exchange at
each position equal to 0.5 and a crossover rate of 0.7. The mutation
operator was slightly different for each genetic representation. In
GA-Int, a mutated gene had its value replaced by a random value
between 1 and |E |, while in GA-Bin the selected bit was flipped. In
both cases, the rate of mutation was set to 0.1. To select individuals
for reproduction, a binary tournament selection operator was used,
with a probability of selecting the fitter individual equal to 0.7.

Both GA-Int and GA-Bin were tested with 300 generations, a
value equal to the number of attempts of the original heuristic. To
obtain a better insight into their rates of convergence, two different
population sizes were specified: 10 and 100.

Since both the original heuristic and the two versions of the
genetic algorithm are stochastic search procedures, we collected 10
samples of each experiment to improve the confidence of the data.
The results gathered are presented in the next subsection, along with
their detailed analysis.

4.3 Analysis of results
The analysis of results is divided into two parts. The first part
describes the best results obtained by each heuristic. The second
part describes the evolution of the heuristic iterations. They are used
to compare the methods tested over the datasets reported in Section
4.1 (“Datasets”).

Tables 2, 3, and 4 show the average of the best solutions obtained
in each iteration/generation for each k ∈ {0.1 · |E |, 0.3 · |E |, 0.5 · |E |}
where E is the set of connections of the network. The standard error
is in the right-side of each average. Classic is the heuristic of [3]
(section 2.1), and GA-Int and GA-Bin are the genetic algorithms
proposed in this paper with integer and binary chromosomes re-
spectively (Section 3). The number on the right-side of the label of
genetic algorithm is the number of individuals in the population.

Our genetic algorithms surpassed the Classic heuristic for all
results. The genetic algorithm with binary chromosomes and 100
individuals (GA-Bin 100) obtained the best results. Between the
genetic algorithms that used 10 individuals in their population, GA-
Bin 10 obtained the best results. Two important parameters arose
in this comparison. The size of the population and the genetic
representation of the solution domain are important factors to obtain
solutions with minimal infection spreading.

Table 2: Average and standard error from the results of the
number of infected individuals by each heuristic when k = 0.1 ·
|E |.

Instance Classic GA-Int 10 GA-Int 100 GA-Bin 10 GA-Bin 100

strike 107.8±1.84 90.7±3.006 55.6±4.15 83.2±5.08 67.8±3.89
karate 294.9±0.81 278.3±4.08 260.4±1.07 278.6±3.57 259.2±0.86
korea1 184.7±1.61 167.1±1.91 147.1±15.53 151.6±15.92 146.7±15.48
korea2 246.4±2.58 220.0±2.32 193.7±20.01 220.0±2.98 190.4±19.98
sawmill 181.5±2.19 155.9±5.75 137.8±4.72 155.4±5.27 135.7±9.7
dolphins 514.2±1.48 495.9±1.41 490.7±1.59 493.2±2.42 482.5±1.65
football 1414.7±0.6 1407.9±0.92 1402.7±0.72 1405.5±0.45 1390.8±1.38
adjnoun 1015.8±2.07 989.9±1.67 972.6±2.18 983.0±3.78 946.7±1.25
polbooks 1190.4±2.3 1172.9±3.84 1163.7±2.49 1175.5±3.02 1129.5±1.91
jazz 2718.1±1.82 2688.7±2.23 2668.5±1.62 2707.0±3.06 2559.3±2.6

Table 3: Average and standard error from the results of the
number of infected individuals by each heuristic when k = 0.3 ·
|E |.

Instance Classic GA-Int 10 GA-Int 100 GA-Bin 10 GA-Bin 100

strike 30.4±3.98 3.1±0.78 2.1±0.65 3.7±1.52 .0±.0
karate 230.0±0.63 203.8±2.55 201.6±1.78 192.1±1.99 184.0±2.04
korea1 114.5±11.78 24.0±12.66 .0±.0 20.7±12.62 .0±.0
korea2 170.0±17.41 142.8±15.16 147.0±15.55 143.6±15.44 133.8±14.18
sawmill 80.6±6.83 14.4±5.78 9.6±3.48 14.3±4.18 5.2±2.23
dolphins 398.2±2.008 355.5±3.77 353.4±3.37 359.8±5.18 302.8±2.69
football 1283.8±1.34 1269.4±0.76 1259.8±1.57 1271.0±4.18 1182.3±3.74
adjnoun 838.8±2.32 798.4±2.68 796.5±1.77 795.2±5.48 700.9±3.6
polbooks 1058.0±2.15 1021.0±3.33 1015.5±1.54 1009.4±4.75 904.7±3.29
jazz 2603.8±2.25 2563.1±1.87 2554.5±2.28 2575.0±2.51 2366.9±3.45
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Figure 1: Average number of infected individuals for Strike, Dolphins, and Polbooks.

Table 4: Average and standard error from the results of the
number of infected individuals by each heuristic when k = 0.5 ·
|E |.

Instance Classic GA-Int 10 GA-Int 100 GA-Bin 10 GA-Bin 100

strike 4.2±1.07 .0±.0 .0±.0 .0±.0 .0±.0
karate 132.7±3.65 40.3±11.52 4.6±1.4 27.0±12.35 .0±.0
korea1 4.0±1.32 .0±.0 .0±.0 .0±.0 .0±.0
korea2 99.0±10.68 22.1±9.6 1.5±0.95 7.8±3.009 .0±.0
sawmill 11.1±2.21 1.6±1.31 .6±0.37 .9±0.85 .0±.0
dolphins 222.2±3.16 162.8±11.25 163.7±4.73 118.0±9.63 45.7±7.26
football 1050.1±2.91 1018.1±1.97 1010.0±1.66 1025.5±3.88 812.8±10.42
adjnoun 597.9±2.24 552.8±3.08 540.4±3.4 536.6±9.06 381.1±3.68
polbooks 858.4±2.32 821.6±2.06 818.2±2.53 792.9±5.92 652.5±25.92
jazz 2425.4±4.18 2393.0±2.2 2391.8±1.44 2382.4±6.62 2151.0±1.94

Figures 1 and 2 show the best solution found in each iteration
for each tested heuristic in six different instances. In every single
iteration, our genetic algorithms surpassed the best solution found
in the Classic heuristic. The size of the population and the genetic
representation are the most important parameters of the tested ge-
netic algorithms. The size of population equal to 100 and the binary
chromosome demonstrated a faster convergence than the other tested
methods.

When the network was small enough or when the number of con-
nections to be removed was sufficiently high, our genetic algorithm

was able to completely isolate the initially infected individuals, re-
sulting in total containment of the epidemic. Also, higher amounts
of removed connections (k) tend to result in a larger improvement
over the original heuristic in the majority of the networks tested.

In Figure 3, the scalability of the tested methods is shown. The av-
erage of the total number of infections is compared with the number
of edges from each tested instance. The axis “Prop. Infections” is
calculated dividing the number of infections by |V | · 300, where |V |
is the number of nodes from the network, and 300 is the number of
iterations/generations. Our genetic algorithms surpassed the Classic
heuristic in these results. It can be seen that the Classic heuristic
obtained the worst values, and our genetic algorithm GA-Bin 100
obtained the best values. These results suggest that this latter genetic
algorithm will find better solutions than the other tested heuristics
(especially the Classic method) if the network is larger than the
tested ones.

In Figure 4, one of the best solutions obtained by our genetic
algorithm (GA-Bin 100) when solving the instance Strike with k =
0.3 · |E | is shown. The red edges are the removed ones (solution),
while the red nodes represent the initially infected individuals. In
this solution, it is possible to see that the infection spreading was
completely contained by isolating the nodes infected in the first
period of the simulation time.
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Figure 2: Average number of infected individuals for Adjnoun, Football, and Jazz.

0.01

0.02

0.03

0.04

0 1000 2000
edges

P
ro

p.
 In

fe
ct

io
ns

Method
Classic

GA-Bin 10

GA-Bin 100

GA-Int 10

GA-Int 100

 (k 0.1)

0.00

0.01

0.02

0.03

0.04

0 1000 2000
edges

P
ro

p.
 In

fe
ct

io
ns

Method
Classic

GA-Bin 10

GA-Bin 100

GA-Int 10

GA-Int 100

 (k 0.3)

0.00

0.01

0.02

0.03

0.04

0 1000 2000
edges

P
ro

p.
 In

fe
ct

io
ns

Method
Classic

GA-Bin 10

GA-Bin 100

GA-Int 10

GA-Int 100

 (k 0.5)

Figure 3: The scalability of each method and for each k ∈ {0.1 · |E |, 0.3 · |E |, 0.5 · |E |}. The proportional number of infections is
compared with the number of edges of the tested graphs.

5 CONCLUSIONS
This paper presented a novel genetic algorithm with two different
genetic representations that finds solutions for the Min-SEIS-Cluster
optimization problem. The problem consists in finding the k edges
which minimize the spread of infections in an epidemic, taking into
consideration the fact that the chance of transmitting an infection to
a node outside of a community is different than if both belong to the
same community.

Originally, the Min-SEIS-Cluster optimization problem was solved
with a random search. However, the search space for the problem is
extremely large, having up to approximately 10149 possible solutions
for an instance with 500 edges. As such, we explored the possibility
of utilizing more sophisticated search procedures, with the goal of
finding better solutions more quickly. This paper investigated the ge-
netic algorithm metaheuristic, analyzing its effectiveness in solving
the Min-SEIS-Cluster problem.
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Figure 4: The best solution obtained for Strike when k = 0.3 · |E |.

All versions of the genetic algorithm proposed in this paper sur-
passed the heuristic of [3]. The best results are achieved when using
the size of the population equal to 100 and binary chromosomes. We
called this version “GA-Bin 100”. In some solutions, the epidemic
was completely contained, while in others, the number of infection
events along the duration of the epidemic was significantly reduced.

As further investigations, we suggest: (i) to create parallel ver-
sions of our genetic algorithms to test larger graphs; (ii) to test other
evolutionary strategies and compare them with our results; and (iii)
to intensify the search by using the properties of nodes and edges
(like centrality) to decide which edges to remove.
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