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ABSTRACT
�e allocation of university sta� to teaching exhibits a range of
o�en competing objectives. We illustrate the use of an augmented
version of NSGA-III to undertake the seven-objective optimisation
of this problem, to �nd a trade-o� front for a university department
using real world data. We highlight its use in decision-making, and
compare solutions identi�ed to an actual allocation made prior to
the availability of the optimisation tool. �e criteria we consider
include minimising the imbalance in workload distribution among
sta�; minimising the average load; minimising the maximum peak
load; minimising the sta� per module; minimising sta� dissatisfac-
tion with teaching allocations; and minimising the variation from
the previous year’s allocation (allocation churn). We derive mathe-
matical forms for these various criteria, and showwe can determine
the maximum possible values for all criteria and the minimum val-
ues for most exactly (with lower bounds on the remaining criteria).
For many of the objectives, when considered in isolation, an optimal
solution may be obtained rapidly. We demonstrate the advantage of
utilising such extreme solutions to drastically improve the optimi-
sation e�ciency in this many-objective optimisation problem. We
also identify issues that NSGA-III can experience due to selection
between generations.

CCS CONCEPTS
•Computingmethodologies→Genetic algorithms; •Applied
computing → Multi-criterion optimization and decision-
making; •Social and professional topics→ Computational sci-
ence and engineering education;
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1 INTRODUCTION
Optimisation approaches have been exploited for a number of years
in the university sector for timetabling exams and other module
components1, e.g. lectures, workshops, etc. [3]. With the growth
in the higher education sector in many countries, e�cient use of
human resources (as opposed to just capital resources) has become
imperative — due to, for instance, the lag time on new buildings
increasing capacity. �e optimal allocation of sta� to teaching activ-
ities has however been far less explored than that of timetabling in
the university sector. Sta� allocation nevertheless is an important
topic. Sta� who are regularly overloaded, degrading their work/life
balance, will be more likely to su�er from stress. �is will a�ect
the quality of the teaching they deliver, their general health, and
the likelihood of them seeking employment in another institution
or outside the sector.

Academic sta� have a number of activities they are required or
expected to undertake, depending on their particular role. Tasks re-
quired of sta� can include running grants and supervising postdoc-
toral researchers; writing research papers; supervising/mentoring
research students; writing grants; professional activity (review-
ing, conference organisation, conference presentation, etc.); con-
tract research for companies, charities or the public sector; scholar-
ship/personal development training; administrative roles (Head of
Department, Director of Education, Admissions Tutor, Programme
Lead, etc.); general administrative duties (departmental meetings,
open days, outreach activities); student project supervision; tuto-
rials; teaching — including lectures, seminars, workshops, project
supervision on taught programmes, marking, preparation, etc.

Many workload items can be ‘locked in’ for signi�cant periods
of time (e.g. grants o�en run over multiple years), and the non-
teaching load for an academic can be substantial, especially at
research intensive universities. Some items can be redistributed on
occasion with su�cient planning (e.g. administrative roles).

In many universities there exist the departmental role of Director
of Education (or similarly titled), part of whose job is to help the
Head of Department by proposing and advising on the allocation
of teaching responsibilities to sta�, in order as much as possible to
ensure fairness regarding the total load each sta� member experi-
ences (given their contractual hours). At the author’s institution for
instance, the Head of Department needs to agree with sta� when
their total workload exceeds ±10% of their nominal contract.

A parallel concern is the maximisation of student satisfaction
with their experience on the modules they are taught. Allocation
of teaching needs to be done su�ciently early to allow sta� time to

1In many universities a degree programme comprises multiple di�erent modules —
these may alternatively be referred to as courses.
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prepare, especially if their allocated teaching has changed from the
previous year.

O�en multiple di�erent criteria have been considered for other
resource allocation problems, e.g. nurse scheduling. An overview
of some of the widely used criteria in human resource allocation is
provided in [2].

2 COMPETING CRITERIA WHEN
ALLOCATING TEACHING LOAD TO STAFF

A natural objective when deciding upon a teaching allocation is to
ensure no member of sta� is signi�cantly more overburdened with
workload compared to others (fair distribution). I.e. where w j is
the assigned workload hours (including teaching and non-teaching
components) of the jth member of sta� and hj is their contractual
hours, the problem is

minmax
j

(
w j

hj

)
. (1)

At the same time the average total workload should be minimised,
i.e.

min
∑
j w j∑
j hj
. (2)

Depending on the processes in the institution, the two objectives
can actually end up being in competition, as (2) may vary with the
teaching allocation. �is is because sta� who have not taught a
module previously are typically provided additional ‘�rst-time’ load
due to the extra preparation needed to develop module materials
from scratch, as opposed to the yearly reinvigoration of materials
required for a module previously taught. Relieving one or more
overburdened sta� to optimise (1) may increase the total teaching
hours (and therefore the average workload) distributed across all
sta�.2 �ere are however further criteria to consider.

Sta� may have preferences to teach (or not teach) certain mod-
ules, this also needs to be considered. Sta� made to teach on mod-
ules they do not want to (e.g., because they do not have the nec-
essary background to teach it con�dently) may result in module
delivery that is less well-received by students, thus a�ecting their
satisfaction and general educational experience, as well as poten-
tially inducing stress in the sta� concerned.

Historical data at the author’s department suggests that modules
with greater numbers of sta� tend to perform worse on average
(in terms of student satisfaction) than those with fewer members
of sta�. �is may be due, for instance, to increased di�culties in
projecting a coherent module across multiple sta�. It is generally
preferable to minimise ‘peak load’ for sta� to prevent burnout and
potentially delays in marking turnaround, etc. �is means trying to
distribute teaching relatively evenly across terms. Finally, change
itself is disruptive — so the last criterion is to minimise variation
from the previous year’s teaching allocation.

Given the above, the following (potentially competing) crite-
ria would appear appropriate to consider when allocating sta� to
deliver modules:

i Minimise the average workload across sta�
2Note, we do not usemin∑

j
wj
hj

for (2), as the optimum for this is the perverse result
that all teaching is allocated to the sta� with the largest contractual hours and none to
sta� with fewer hours.

ii Minimise the imbalance of workload among sta�, as a
proportion of their contracted hours

iii Minimise the maximum sta� dissatisfaction with teaching
allocation

iv Minimise the average number of sta� teaching on a module
v Minimising the maximum peak load for sta�
vi Minimise variation from the previous year’s teaching allo-

cation

We now formally describe the problem. Let us have n sta� and
m modules, with each sta� member having the (pre-allocated) non-
teaching workload ofw∗j . Each module has three distinct chunks of
time associated with it: ci , the number of module leader hours re-
quired to coordinate the ith module – this is indivisible and assigned
to a single member of sta�; di , the time spent delivering lectures,
seminars, surgeries, workshops and marking by sta� involved with
the module; and pi , the time spent preparing the various materials
required for the module by sta�. If sta� are allocated to a module
they have not previously taught on at any point, there is o�en
additional load for preparation — at the author’s institution this is
subject to a multiplication factor of 2.

To undertake an evaluation of a teaching allocation, we require
the following. �e n-dimensional vector w∗ containing the non-
teaching workloads of all sta� who may be assigned teaching; the
n-dimensional vector h containing the contractual hours of each
sta� member; them-dimensional vectors c, d and p containing the
time costs associated with each module; am × n matrix T , whose
element Ti j indicates if the jth sta� member has taught the ith
module previously (represented respectively by a 1 if they haven’t
and a 0 if they have); am ×n matrix R whose element Ri j indicates
the proportion of the ith module the jth sta� member taught in
the year immediately before the current year being optimised; a
m × n matrix of teaching preferences P . Here an element Pi j = 0
indicates the jth sta� member prefers to teach module i , Pi j = 1
indicates the jth sta� member could teach module i , but would
prefer not to and Pi j = 2 indicates that the jth sta� feels they do
not have the background necessary to deliver module i . (Note, fur-
ther granularity on preferences could be provided with additional
categories, though eliciting a consistent continuous value from sta�
to represent their preference is likely to be problematic.) Where
particular teaching must be allocated to particular sta�, this can
be represented in w∗, with the corresponding reduction in c, d and
p prior to optimisation, or alternatively a mask used to �x these
items in teaching allocations (which would be preferable in terms
of some of the criteria calculations, e.g. peak load).

Beyond the integer value constraints mentioned above, addi-
tional constraints on valid problem de�nition vectors and matrices
are as follows:

w∗j ≥ 0, ∀j, (3)

as sta� should not have negative non-teaching workload,

hj > 0, ∀j, (4)

all sta� being considered have contractual hours,

ci > 0, ∀i, (5)
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all modules should have a coordinator load,
pi > 0, ∀i, (6)

all modules should have preparation load, and
di > 0, ∀i, (7)

all modules should have delivery/marking load. Additionally

0 ≤
n∑
j=1

Ri j ≤ 1, ∀i, (8)

as no module should have had a larger than 100% provision in the
previous year. However, it may be less than 100% as represented
in R, due to e.g. sta� leaving (meaning they do not appear in R) or
there being brand new modules.

A teaching allocation solution is represented as two n ×m ma-
trices C and X . Ci j denotes if jth member of sta� coordinates the
ith module, therefore the matrix has the following constraints:

n∑
j=1

Ci j = 1, ∀i, (9)

as no module can have more than one leader, and
Ci j ∈ {0, 1}, ∀i, j . (10)

X is matrix of teaching proportions, and has the following con-
straints:

0 ≤ Xi j ≤ 1, (11)
as sta� members can deliver no more that 100% of a module (even if
it might feel otherwise when the module is running!), and no sta�
member can deliver a negative proportion of a module. Additionally

n∑
j=1

Xi j = 1, ∀i, (12)

as the total allocation across sta� to a module must be 100% (all
modules should be appropriately resourced in a legal allocation).

Usually one would not have a module leader who does not also
teach on it, so the search space may be further constrained with(

δ (Ci j = 1) + δ (Xi j = 0)
)
≤ 1 ∀i, j, (13)

where δ is the Kronecker delta (identity function).
Now we have described the necessary variables and constraints,

we can formally express the competing criteria we are concerned
with optimising, and highlight where we can quickly compute
allocations which return the minimum/maximum value for each
criterion given the system constraints. �is is useful, as it allows us
to judge trade-o� solutions in light of their relative performance
against these bounds. It also can provide good initial solutions to
consider in an optimisation as it allows us to e�ectively ‘pin down’
many of the corners of the Pareto front.

2.1 Discrete nature of problem
Although we have discussed the elements of X thus far in terms
of real values (representing the proportion of a module), from a
practical standpoint a module’s teaching load cannot be split into
arbitrary proportions. Realistically, teaching is partitioned into
substantial chunks, usually no smaller than 5% or 10%. We can
therefore view X as containing values which increment by 0.05.

For optimisation purposes we will use integers (and divide through
when quality calculations are required), making the optimisation
problem discrete.

2.2 Total workload
Minimising the average sta� workload is equivalent to minimising
the total workload across sta�. �is can be calculated for any given
solution s = {C,X } through the follow cost function:

f1 (s) =

∑n
j=1

(
w∗j +

∑m
i=1

(
ciCi j + (di + (1 + αTi j )pi )Xi j

))
∑n
j=1 hj

.

(14)

Due to the constraints, the minimum and maximum values possible
for (14) are entirely determined by the component multiplied by α .
If all modules have been taught at least once before by available
sta�, then it is possible to allocate teaching such that no module
is delivered for the �rst time, ensuring all αTi j elements in the
calculation are zero. �e minimum total workload is thus (∑j w

∗
j +∑

i (ci +di +pi ))/
∑
j hj . Correspondingly, if for each module there

is at least one sta� member that has not taught it the maximum is
(
∑
j w
∗
j +

∑
i (ci +di +αpi ))/

∑
j hj (corresponding to the allocation

of all sta� to modules they have not previously taught). In the
case where some modules have never been taught before by any
sta� available the lower bound is increase by αpi/

∑
j hj for each

of these particular modules, and likewise for modules which have
been taught by all sta� previously the upper bound decreases by
αpi/

∑
j hj for each.

2.3 Balanced workload
Maximum individual workload, as a proportion of contracted hours
can be calculated as:

д(s) = max
j

*
,

1
hj

*
,
w∗j +

m∑
i=1

(
ciCi j + (di + (1 + αTi j )pi )Xi j

)+
-

+
-
.

(15)

However, this criteria doesn’t adequately di�erentiate solutions in
situations where one (or more) sta� have a high w∗j , as this can
determine the maximum (without any teaching being allocated
to them) thus unbalanced and balanced workload distributions
are assigned the same quality value. Instead we use the balanced
assignment problem (see e.g. [2]), which aims to minimise the
spread of workloads:

f2 (s) = max
j

*
,

1
hj

*
,
w∗j +

m∑
i=1

(
ciCi j + (di + (1 + αTi j )pi )Xi j

)+
-

+
-

−min
j

*
,

1
hj

*
,
w∗j +

m∑
i=1

(
ciCi j + (di + (1 + αTi j )pi )Xi j

)+
-

+
-
. (16)

Determining the lower and upper bounds for (16) is more prob-
lematic than for (14). Although determining the upper bound may
seem trivial — by e.g. allocating all teaching to the sta� member
with the highest w∗j , this does not necessarily result in the maxi-
mum, as a sta� member with a lowerw∗j may have taught fewer of
the modules previously, and therefore experience a higher prepa-
ration cost for the same teaching allocation (and a higher total
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imbalance). As such the upper limit requires in general n evalua-
tions of (16). Allocating all teaching to each sta� member in turn, to
determine which results in the highest overall individual workload.
Unfortunately the minimum value for (16), and the corresponding
s, cannot be determined a priori, and requires an active search.
However a lower bound can be determined. �is is

max *
,
0,max

j
(w∗j /hj ) −

∑
w∗j +

∑
(ci + di + (1 + α )pi )∑

hj
+
-
, (17)

which captures the degree to which it is possible to allocate teaching
to result in a perfectly balanced workload, if teaching hours could
be distributed with arbitrary precision.

2.4 Sta� dissatisfaction
We could calculate maximum individual sta� dissatisfaction as
maxi

∑
j Xi jPi j . �is e�ectively makes a linear sum of allocations

weighted by the preferences. However, deciding how much worse
it is to have teaching assigned from one category than another is
di�cult (and is likely to vary between individuals). Instead we pull
these apart and minimise the maximum number in each category
and above that an individual must deliver (excluding from consid-
eration the �rst ‘preferred’ category) – scaled by the amount of
the module being delivered (as it is worse to have to teach all of a
module that you would prefer not to, rather than just a part of it).
�ese cost functions are therefore

f3 (s) = max
i

∑
j
Xi jδ (Pi j ≥ 1), (18)

f4 (s) = max
i

∑
j
Xi jδ (Pi j = 2). (19)

Wherev is the number of rows in P which only have entries equal to
1 or 2, the minimum value for (18) is dvkn e/k , where k is maximum
number of indivisible parts a module can be broken down into (e.g.,
if the smallest chunk is 5%, k = 20). �is corresponds to distributing
all modules which are not preferred by any sta� equally as possible
across all sta�. �e maximum value for (18) is the number of rows
where any element is 1 or 2. �e bounds for (19) may be determined
in a similar fashion, with reference solely to elements with value 2.

2.5 Average number of sta�
Minimising the average number of sta� teaching on each module
may be calculated by counting the non-zero elements of X :3

f5 (s) =
∑
i
∑
j δ (Xi j , 0)
m

. (20)

�en minimum value this can take is 1 — which corresponds to all
sta� being allocated solely to deliver dn/me or bn/mc modules. �e
maximum value it can take is min(m,k ).

2.6 Peak load
�e peak load is indirectly optimised by minimising the maximum
imbalance in teaching allocation across terms. For this we need
an additional m-dimensional vector, t, which holds the delivery
term for each module. At the University of Exeter there are two
3If you would want to assign module lead to a sta� member who does not otherwise
deliver on the module, (20) should be replaced with

∑
i
∑
j δ ((Ci j + Xi j ) , 0).

teaching terms and a shorter examination term. Here we use ti = 1
to indicate the ith module is delivered only in term 1, ti = 2 to
indicate it is delivered only in term 2, and ti = 0 to indicate it is
delivered across terms. �e �nal criteria to minimise is thus

f6 (s) =max
j

*
,

������

1
hi

(
∑
i
(Ci jci + Xi j (di + pi + αpiTi j ))δ (ti = 1)

−
∑
i
(Ci jci + Xi j (di + pi + αpiTi j ))δ (ti = 2))

������
+
-
. (21)

�e maximum value this criterion can take can be computed in
2n calculations, by calculating the e�ect of allocating each sta�
member in turn all the term 1 teaching or all the term 2 teaching, and
computing the resultant unbalanced teaching load. If the elements
of X were not limited in resolution, then the minimum would be
0. However, in the case where the elements of X can only vary in
�xed increments, we cannot determine the optimal value a priori
(though the lower bound is 0).

2.7 Variation from previous year
An allocation which minimises the average load does not guarantee
by itself that the allocation is the minimum change from the pre-
vious year. �is is because a number of sta� may have experience
teaching on a module previously, but one or more of themmight not
have taught it in the immediately previous year, furthermore the
distribution of teaching within a module may also have changed.

�is criterion aim to minimises the “churn” of sta� on a module
between years. Given R, the allocations of current sta� to modules
in the previous year, we may calculate

f7 (s) =
∑
i

∑
j
|Xi j − Ri j |, (22)

which measures the di�erence in module teaching allocation. Note,
the construction of R needs to deal with situations where new
modules have been introduced (in which case a corresponding row
of zeros will be in R), where a module is discontinued (in which
case it should be omi�ed from R). Also, when sta� leave/retire
columns will be omi�ed from R, and new sta� will have columns
of 0, to ensure both matrices are the same size.

�e minimum of f7 can be obtained by ensuring the non-zero
elements of R are duplicated inX , the maximumwhen the non-zero
elements of R are zeros in X for all locations.4

2.8 Criteria summary
Table 1 summarises the properties of the various criteria we are
interested in here. As discussed above, for many of the individual
criteria we can rapidly determine an optimal allocation, however
for (16) and (21) this is not possible. �ey may be cast as integer
linear programming problems, however this problem type is NP-
complete ([10], page 3). One approach in such a situation is to relax
the integer constraint on the elements ofX , solve the corresponding
linear programming problem, and then convert the real-valued ele-
ments of solutions to their nearest corresponding integer. However
4If this is not possible, for instance due to a module being delivered previously by all
current sta�, that the maximum is ensured by allocating all the load for that module
to the least loaded sta� member on it the previous year.
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Table 1: Table of criteria properties

Can rapidly calculate [evaluations of fi (s) required]:
# min Lower Bound max Minimising s
f1 3 [1] 3 [1] 3 [1] 3 [1]
f2 7 [−] 3 [n] 3 [n] 7 [−]
f3 3 [1] 3 [1] 3 [1] 3 [1]
f4 3 [1] 3 [1] 3 [1] 3 [1]
f5 3 [1] 3 [1] 3 [1] 3 [1]
f6 7 [−] 3 [1] 3 [2n] 7 [−]
f7 3 [1] 3 [1] 3 [1] 3 [1]

solutions using such an approach may not be optimal, or indeed
even feasible — in this problem domain the la�er is especially likely
given constraints (9) and (12). Instead, for both (16) and (21) we
exploit a rapid downhill search to a local optimum. �e point based
local optimisers proceed as follows, given an initial solution:

Balanced load.
1. Identify the two sta� allocated teaching with the highest

(u) and lowest (v) proportionate loads overall.
2. Transfer a unit of teaching load from u to v. If u is the

coordinator for the chosen module, pass this responsibility
toowith a 50% probability (100% if the reduction in teaching
means u will no longer teach on the module).

3. Return to 1, unless stopping criteria are met.

Peak load.
1. Identify the sta� allocated teachingwith the highest (u) and

lowest (v) load di�erential between their teaching terms.
2. Transfer a unit of teaching load from u, from their most

intense term to v. If u is the coordinator for the chosen
module, pass this responsibility too with a 50% probability
(100% if the reduction in teaching means u will no longer
teach on the module).

3. Return to 1, unless stopping criteria are met.

3 MANY-OBJECTIVE OPTIMISATION
Without loss of generality, when optimising a multi-objective
problem we seek to simultaneously minimise D objectives: fd (s),
d = 1, . . . ,D where each objective depends upon design solutions s
which are made up of K parameters or decision variables. �ese pa-
rameters may also be subject to equality and inequality constraints,
which together de�ne S, the feasible search space. Related to this
is Y , the objective space image of S (also referred to as the feasi-
ble objective space). When faced with only a single objective an
optimal solution s∗ is one which minimises the objective, subject
to s∗ ∈ S. However, when there is more than one objective to
be minimised, solutions may exist for which performance on one
objective cannot be improved without reducing performance on at
least one other. Such solutions are said to be Pareto optimal. �e set
of all Pareto optimal solutions is said to form the Pareto set, whose
image in objective space is known as the Pareto front.

A solution s is said to dominate another s′ i�
fd (s) ≤ fd (s

′) ∀d = 1, . . . ,D and f (s) , f (s′) (23)

�is is o�en simply denoted as s ≺ s′.

Many-objective evolutionary algorithms (MaOEAs), evolution-
ary optimisers designed speci�cally for four or more competing
criteria, typically rely on comparison measures in addition to, or
as a replacement for, Pareto dominance to order putative solutions.
�is is due to dominance providing a lesser discriminatory ability
as D increases [4]. Decomposition-based MaOEA approaches have
proved successful and popular in the last few years since the early
work in their development [9] and we employ the recent NSGA-III
algorithm [6] for our problem here. NSGA-III a�empts to opti-
mise multiple scalarisations of the problem, which are optimised in
parallel by a single search population.

4 OPERATOR DEFINITIONS
Due to the nature of our representation and constraints, we do
not employ an ‘o�-the-shelf’ implementation of NSGA-III, as we
need to incorporate domain-speci�c evolutionary operators into the
optimiser. Here we de�ne these operators, which ensure domain
constraints are always adhered to.

Initialisation: In the initialisation of a random solution, each
module is processed in turn. �e teaching for a module is incre-
mentally allocated, 5% at a time, to a randomly selected member
of sta�. At the end of teaching assignment for a module, the sta�
member allocated the most teaching is assigned the corresponding
coordinator role.

Recombination: A form of uniform crossover is employed,
which is at the module level (thereby ensuring the legality of chil-
dren). On the selection of two parents, there is a 80% probability the
parents will be crossed over (otherwise they are copied directly for
subsequent mutation). On crossover each overall module allocation
has a 50% probability of being swapped between parents in the
resulting children.

Mutation: When a solution is mutated a module is selected
at random, and then a sta� member currently teaching on that
module is selected at random. With equal probability, either the
teaching allo�ed to that member of sta� is given to a di�erent
random member of sta�, or just 5% is moved from the selected
member of sta� to a random other sta� member.

5 EXPERIMENTS
We conduct experiments using real workload data for the Computer
Science group at the University of Exeter for the academic year 2016-
17. Solutions have to allocate the teaching of 42 modules across 16
sta�, making 672 binary decision variables and 672 discrete decision
variables that can take values in the range [0,20].

5.1 Initialisation and preservation of extremes
O�en a MaOEA is initialised with a population of well-distributed
random solutions (in design space). For this problem we can rapidly
compute solutions which will e�ectively ‘pin’ the Pareto front by
minimising each of the individual criteria either directly (see Table
1 for details), or for a couple of criteria using rapid downhill search
(see Section 2.8, we use 50 downhill evaluations here) and can
augment an initial random population with these solutions.5 �is

5It should be noted however that a solution that minimises a single criterion isn’t
guaranteed to be Pareto optimal, as the landscape on this criterion may have multiple
optimal, which may di�er in performance on the other ignored criteria.
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Figure 1: Median of minimum values of each criteria in non-dominated subset of search population. a) Random initial pop-
ulation, decomposition based on population properties. b) Seeded initial population, decomposition based on population
properties. Interquartile ranges denoted with dotted lines.

is likely to be advantageous, but the degree of advantage it delivers
is not known a priori. Furthermore, whereas NSGA-II [5] ensured
that solutions which minimised individual criteria are not discarded
from one generation to the next, this is not the case for NSGA-
III (where if the parent set is smaller than the current estimated
Pareto front, the la�er is truncated in terms of distance from, and
overcrowding of, the scalarisation rays used in the decomposition).
We thus also examine the e�ect on the population members over
generations in NSGA-III on our problem.

As a quality measure we estimate the hypervolume over time
over multiple runs. Exact calculation of the hypervolume scales
poorly with the number of dimensions, so it is infeasible to calculate
exactly here. Instead we approximate the value via Monte Carlo
(MC) sampling (as used in e.g. [7]). However, rather than taking a
new set of MC draws each generation in the search, we can leverage
past calculations to improved the �delity of the hypervolume esti-
mate as search progresses (as we maintain a passive unconstrained
archive, as recommended in [11]). To be precise, we initially sample
N random uniform points in the D-dimensional objective space,
and map the objective vectors of the estimated Pareto front into
the unit hypercube using the upper and lower criterion bounds we
can determine directly (as derived in Section 2). �e number of
MC samples dominated can be counted, and used to estimate the
volume dominated. �e dominated samples can then be discarded
(as they will always be dominated by subsequent updated passive
archive members), and additional random samples taken in the
unit hypercube to re�ll the samples to N points. �is complete set
is then used in the next generation and the process repeats (note
that the cumulative number of discarded dominated samples each
generation needs to be tracked). We use N = 10000 in our experi-
ments. We have the advantage in this application domain of being
able to derive the maximum values each criteria can take, with the
minima for most criteria and lower bound values for the remainder
(see Section 2). I.e. a good approximation to the coordinates of the
minimum containing axis-parallel hyper-rectangle containing Y –
the feasible objective space, which we sample for the hypervolume
calculation. We do not however have access to the true Pareto front

to determine what region in the minimum bounding box is unob-
tainable. As such, unless there exists a solution which minimises all
criteria simultaneously, a hypervolume value of 1.0 is unobtainable
in our experiments.

In all our experiments the probability of crossover is 0.8,pouter =
3 and pinner = 2, leading to a population size of 112 (please refer
to [6] for further details on NSGA-III parameters and how they
determine population size). 30 runs are taken for each experimental
set-up with a di�erent random seed, each run lasting 200 genera-
tions. We also generate an equivalent number of random solutions
as a baseline.

Figure 1 shows the minimum values for each criteria stored in
the active search population of NSGA-III (and ). �e le�-hand panel
shows the performance with a random initial population. �e right
panel using the same number of initial solutions, with seven of
them being solutions which optimise, exactly or approximately,
each of the individual criteria.

A number of interesting behaviours are apparent — the random
initialisation provides good values for some criteria, but not for
others (the y-axis of Figure 1 normalises each criteria between the
minimum and maximum values possible). Additionally the right
panel plainly show estimated front shrinkage as a number of the
extremes in the front degrade as search progressed (see earlier work
on this problem in multi-objective optimisers in e.g. [7, 8]). �ose
estimated initially with restart local search are also extremely close
to their respective hypothetical minimum values (though global
optimality is not assured).

�e le� panel of Figure 2 shows the median hypervolume over
time calculated on the passive archive maintained by each of the
NSGA-III con�gurations, and the random baseline. �is is split into
two panels as the random initialised runs (and random baseline)
performs substantially worse than the extreme seeded runs (by an
order of magnitude), with the distributions never overlapping. �is
underlines the positive impact of using the the extreme solutions
in the initialisation.

�e right panel of Figure 2 shows the proportion of the estimated
Pareto front maintained by the NSGA-III search population that is



University Sta� Teaching Allocation: Optimising a Many-Objective Problem GECCO ’17, July 15-19, 2017, Berlin, Germany

0 50 100 150 200
0.6

0.8

1
H

y
p

e
rv

o
lu

m
e

0 50 100 150 200

Generation

0

0.05

0.1

H
y
p

e
rv

o
lu

m
e

0 50 100 150 200

Generation

0

0.1

0.2

0.3

0.4

0.5

P
ro

p
. 
d
o
m

e
d
 b

y
 p

a
s
s
iv

e
 a

rc
h
iv

e

Figure 2: Le�: Estimated hypervolume, calculations onpassive archives. Right: Proportion of non-dominated subset of current
NSGA-III population which is dominated by its passive archive at the same generation. Red line shows median results for
unaltered NSGA-III (but with specialised crossover/mutation operators), blue line shows results when initial population is
seeded with extreme solutions. Black line shows baseline generation of eqivalent number of random legal solutions (random
search). Dotted lines denote inter-quartile ranges.

dominated by the corresponding passive archive, it therefore illus-
trates the degree of estimated front oscillation experienced during
the search. �is �gure is interesting for two reasons. First, decom-
position using scalarisation rays is generally considered to aid rapid
convergence to a point on the Pareto front, however oscillation will
impact on this. Figure 3 illustrates how this can occur using the
selection routines in NSGA-III. �e second point of interest is that
the con�guration which reports be�er hypervolume actually expe-
riences worse oscillation. �is may indicate the property worsens
in many-objective problems as you converge using scalarisation.
We also note that many MaOEAs have been developed and tested
on continuous problems, which have a connectedY . Where it may
be impossible to achieve the objective combinations which lie on
a scalarisation ray (as in this problem) such oscillation issues may
be increased. Recent analysis of the dynamics of decomposition-
based optimisation algorithms supports this, but also states that
the weighting used in decomposition-based approaches can lead
to an inferior solution being chosen over a superior solution (in a
Pareto sense) from one generation to the next [1]. However, we note
this observation is not a general property of decomposition-based
approaches. It is not possible when using the decomposition mech-
anism in NSGA-III to select a dominated solution over a solution
which dominates it, due to the initial ranking into non-dominated
fronts. Instead it is the movement to a mutually non-dominated
position which leads eventually to the quality deterioration in sub-
sequent generations in NSGA-III.

5.2 Extended run and comparison
Following the initial investigation on specialising NSGA-III for
the problem, we perform an extended run (10,000 generations).
Parallel coordinate plots of the optimised solutions are shown
in Figure 4. �e two top panels show the �nal search popula-
tion (raw values, and scaled by feasible range of criteria) and

Generation t Generation t + 1 Generation t + 2

Figure 3: Illustration of scalarisation degradation for NSGA-
III selection routine, e.g. identify non-dominated in search
population, truncate if necessary based on distance to scalar-
isation rays. Filled circle denotes selected solution, un-
�lled circle denoted solution selected in previous generation.
Grey circles denote selected solutions from earlier genera-
tions. At generation t + 2 the selected solution is dominated
by the solutions discarded at t and t + 1.

the bo�om panels shows the same for the passive archive. Gen-
eral run statistics are shown in Figure 5 (hypervolume and pro-
portion of search population dominated by the parallel passive
archive). �e current allocation for 2016–17 is close to optimal
(at least with respect to the passive archive), being dominated by
just 76 elements of the archive. Its objective values, as a propor-
tion of the range possible for each criteria (from the bounds), are
(0.309, 0.077, 0.012, 0.002, 0.043, 0.071, 0.397), where lower is be�er.
�e current allocation therefore prioritises the minimisation of sta�
dissatisfaction, at the cost mainly of overall load and churn. �e
root of this can be seen in the le� panel of Figure 6 which shows the
problem preference matrix, with sta� preferring very few modules.

�e archive had 27,847 elements (roughly 2.5% of the total num-
ber of many-objective evaluated solutions visited in the search).
�e right panel of Figure 6 shows how well the di�erent criteria
are correlated (based on the passive archive members of the single
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Figure 4: Parallel coordinate plots. Top pair: NSGA-III pop-
ulation, raw and normalised by criteria limits. Bottom pair:
Same with passive archive.
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Figure 5: Statistics of the single NSGA-III run (including ex-
tremal seeds).

run) — the only large correlation is between f1 and f7 (as reducing
churn will usually also reduce overall load).

6 CONCLUSIONS
We present the formulation and optimisation of the teaching alloca-
tion problem — a many-objective problem confronted by universi-
ties worldwide. We derive seven di�erent criteria plus a number of
constraints for this problem. As part of the process of identifying a
set of trade-o� solutions that may be of interest, we also highlight
problem-speci�c augmentations of the NSGA-III algorithm that
have been useful. We also raise some general points that would be
interesting to explore further beyond this speci�c problem: the use
of extreme solutions in seeding MaOEA runs, and the issue of front
oscillation in decomposition approaches.

�e optimisation of teaching allocation, as proposed here, re-
quires the elicitation of teaching preferences from sta� (albeit coarse
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Figure 6: Le�: Preference matrix. Black cells denote mod-
ules a sta� member is happy to teach, grey those they could
teach if required, and white those they feel they cannot de-
liver. Right: Correlation matrix (Pearson’s linear correla-
tion coe�cient between criteria). Calculated on �nal pas-
sive archive from the long run of 10,000 generations.

ones). From a decision making process, separate from the gener-
ation of trade-o� solutions, this can prove useful in identifying
modules and teaching areas in risk (where few sta� feel competent
to deliver the material), which may in�uence both hiring and future
course design. It also can highlight a wide disparity between sta�
in the range of modules they feel they can deliver.

�ere could well be other criteria and constraints which are faced
by other departments, e.g. minimum amounts of teaching required
of all sta�, which some institutions enforce, and strict adherence
to national maximum working time regulations. Embedding such
additional aspects into the developed framework (available at h�ps:
//github.com/�eldsend) is current work.
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