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ABSTRACT
Discovering relations between chemical reaction networks (CRNs)

is a relevant problem in computational systems biology for model

reduction, to explain if a given system can be seen as an abstraction

of another one; and formodel comparison, useful to establish an evo-

lutionary path from simpler networks to more complex ones. This

is also related to foundational issues in computer science regarding

program equivalence, in light of the established interpretation of a

CRN as a kernel programming language for concurrency. Criteria

for deciding if two CRNs can be formally related have been recently

developed, but these require that a candidate mapping be provided.

Automatically finding candidate mappings is very hard in general

since the search space essentially consists of all possible partitions

of a set. In this paper we tackle this problem by developing a genetic

algorithm for a class of CRNs called influence networks, which can

be used to model a variety of biological systems including cell-cycle

switches and gene networks. An extensive numerical evaluation

shows that our approach can successfully establish relations be-

tween influence networks from the literaturewhich cannot be found

by exact algorithms due to their large computational requirements.
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1 INTRODUCTION
A popular model in many natural sciences, chemical reaction net-

works (CRNs) have become popular in computer science in light of

the convergence between computational processes and molecular

systems [23]. In this paper we study the problem of comparing

CRNs: that is, to decide whether a given source CRN can be related

to a target one in some appropriate sense. This is mainly motivated

by applications in computational biochemistry. For example, one

may want to explain an evolutionary pathway from a simple system
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to a more complex one which still exhibits some of the original

behavior [4–6]. In DNA computing, one would like to compare

a specification CRN, representing the observable dynamics of in-

terest, against an implementation CRN which takes into account

constraints imposed by the materials and the technology used [24].

Seeing CRNs as a basic programming language for concurrency [3],

CRN comparison resembles the problem of program comparison

and minimization, a fundamental issue in computer science.

Notions of CRN comparison that do not consider quantitative

dynamics ([13, 18, 19]) do not allow answering questions regarding

important dynamical properties: for instance, whether two distinct

CRNs can achieve the same switch-like behavior under appropriate

conditions [6]. A kinetics-aware CRN comparison is presented

in [24], but this is specialized for DNA implementation.

A more general result based on the notion of emulation has

been recently proposed by Cardelli [4]. It is based on the well-

known interpretation of a CRN as a system of ordinary differential

equations (ODEs) whereby each species of the CRN is associated

with an ODE that governs the net change of its concentration as a

function of time (e.g. [26]). Roughly speaking, emulation describes

that the ODE solutions of a source CRN exactly overlap those of a

target CRN at all time points, for a given mapping of species of one

CRN onto the other. However, an algorithm to identify an emulation

(i.e., to synthesize a mapping of species) is not given in [4]. Recently,

emulation has been shown to be a stricter variant of backward
differential equivalence (BDE) [11], an equivalence relation over

the ODE variables. A partition-refinement algorithm computes the

coarsest BDE that refines a given initial partition of species, running

in polynomial time and space [8, 11]. On its own, however, it does

not directly give emulations because a coarsest BDE refinement

is not necessarily an emulation; however, an emulation must be a

refinement of the largest BDE.

Instead, finding all possible emulations between two CRNs is pos-

sible through an algorithm, CAGE, that computes all BDEs (which

thus will contain all emulations) [7]. However often emulations may

be a small fraction thereof. This may waste most of the computation

required by the algorithm. In practice, this means that networks no

larger than 30 species can currently be analyzed, beyond which the

large space complexity of CAGE starts to have an effect.

In this paper we present an approach to discovering relations be-

tween CRNs through emulations using a genetic algorithm, which

we name EGAC: Emulations through Genetic Algorithm Computa-
tions. We focus on a class of CRNs called influence networks [4],
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(a) MI (b) AM

Figure 1: Examples of influence networks.

which is relevant for the formal description of biomolecular in-

teractions such as inhibitions and activations; as such, influence

networks have been used to describe cell cycles and gene networks,

for instance [6]. Themain features of our approach are: (i) a compact

encoding of an individual, which exploits information about the

structure of an influence network and about necessary conditions

for the existence of an emulation; and (ii) the design of a fitness func-

tion that uses the BDE partition-refinement algorithm to measure

the distance between the individual and a possible emulation.

We apply our algorithm to the influence networks first intro-

duced in [4] and then algorithmically analyzed with CAGE [7].

With a prototype implementation, we find that EGAC recovers

previously found emulations. More important, it can successfully

discover relations in instances where CAGE fails, thus promoting

EGAC as an alternative for the analysis of larger scale networks.

Paper outline. Section 2 briefly reviews background material.

Section 3 discusses the design of EGAC. Section 4 presents its im-

plementation and the numerical results. Section 5 discusses related

work while Section 6 concludes.

2 BACKGROUND
To make the paper self-contained we review of CRNs, we discuss

the notions of emulation to compare CRNs, and BDE, the induced

equivalence relation over species.

2.1 Chemical Reaction Networks
Formally, a CRN is a pair (S,RS ) of a finite set of species S and a

finite set of reactions RS . A reaction is a triple written in the form

ρ
k
−−→ π , where ρ and π are multisets of species, called reactants and

products, respectively, and k > 0 is the reaction rate. The operator
+ denotes multiset union, e.g., X + Y + Y is the multiset {|X ,Y ,Y |}.
For example, the reaction

A + B
k
−−→ C (1)

indicates that species A and B are transformed into species C with

rate k . Throughout this paper we shall consider the well-known
interpretation of a CRN as a system of ODEs with mass-action

kinetics [26]. This associates each species X with a variable VX . Its

ODE describes the net change of the concentration as a function of

time. More specifically, a CRN (S,RS ) is associated with the ODE

system V̇ = f (V ), with f : RS → RS , where each component fX ,

with X ∈ S is defined as:

fX (V ) :=
∑

ρ
α
−−→π ∈S

(π (X ) − ρ (X )) · α ·
∏
Y ∈S

V
ρ (Y )
Y .

Here ρ (X ) and π (X ) denote the multiplicity of species X in the

multisets ρ and π , respectively. It satisfies a unique solutionV (t ) =
(VX (t ))X ∈S for any given initial conditionV (0). For example, in the

reaction (1), the ODEs are given by

V̇A = −kVAVB V̇B = −kVAVB V̇C = kVAVB

which can be solved using standard numerical techniques.

2.2 Influence Networks
Influence networks are a special class of CRNs that can be used to

describe a variety of biological processes [4]. An influence network

can be represented as a graph of (stateful) influence nodes connected
via influence edges that express activation or inhibition. Figure 1

shows two networks, MI and AM, which will be used throughout

the remainder of this paper. The AM network models a cell cycle

switch that is needed to avoid genetic instability during replication,

while MI is a mutual inhibition system [4].

Each influence node (e.g., X and Y ) is translated into a pattern

of three species (e.g., X0, X1, X2, and Y0, Y1, Y2) and four reactions.

The reactions realize the influence edges. Each node can have a

connection at each terminal: high output (solid line), representing

the species with subscript 0, low output (dashed line), representing

the species with subscript 2, activation input (circle) and inhibition
input (bar). Species with index 1 introduce nonlinearity in transi-

tions and are never otherwise connected to the network [4]. If i and
a are the inhibitor and activation input species for the influence

node X , respectively, then X is associated with the following four

reactions:

X0 + i
α01

−−−→ i + X1, X1 + i
α12

−−−→ i + X2,

X2 + a
α21

−−−→ a + X1, X1 + a
α10

−−−→ a + X0,

where α01,α12,α21,α10 are given rate coefficients.

Example 2.1. For a choice of rates useful in the forthcoming

examples, MI and AM have the following CRNs (left and right,

respectively):

Y0 + Z0
k1
−−→ Z0 + Y1

Y1 + Z0
k2
−−→ Z0 + Y2

Y2 + Y0
k3
−−→ Y0 + Y1

Y1 + Y0
k4
−−→ Y0 + Y0

Z2 + Z0
k1
−−→ Z0 + Z1

Z1 + Z0
k2
−−→ Z0 + Z0

Z0 + Y0
k3
−−→ Y0 + Z1

Z1 + Y0
k4
−−→ Y0 + Z2

x0 + x2
k1
−−→ x2 + x1

x1 + x2
k2
−−→ x2 + x2

x2 + x0
k3
−−→ x0 + x1

x1 + x0
k4
−−→ x0 + x0
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(a) MI (b) AM

Figure 2: ODE solutions of (a) MI and (b) AM. Trajectories of
MI overlap in pairs (i.e., Y0/Z2, Y1/Z1, Y2/Z0) thus they are not
visually distinguishable in the plot.

Hereafter, with the aim of distinguishing between source and

target CRN we will use upper-case and lower-case symbols, re-

spectively, for both influence nodes and their respective species

names.

2.3 Emulation
The notion of emulation has been introduced in [4] to compare

CRNs. Roughly speaking, a source network is said to emulate a

smaller target network if it is possible to find appropriate initial

conditions such that the ODE trajectories of the two networks

coincide. For instance, let us consider the ODE trajectories of MI

and AM shown in Figure 2. For that choice of initial conditions the

trajectories ofMI overlap in pairs,Y0/Z2,Y1/Z1,Y2/Z0, and each pair
does match one of AM, i.e., x0, x1, and x2, respectively. The intuitive
interpretation of emulation is that, while a more complex network

exhibits richer behavior than a simpler one, under appropriate

conditions it can reproduce the simple dynamics. This underlies

an evolutionary argument that the complex network may descend

from the simple one conservatively.

Formally, an emulation can be defined as a mapping µ from

species of the source network to species of the target network that

satisfies certain criteria. For instance, the overlappings in Figure 2

correspond to the emulation defined by the mapping:

µ (Z0) = x0 µ (Z1) = x1 µ (Z2) = x2 (2)

µ (Y0) = x2 µ (Y1) = x1 µ (Y2) = x0 (3)

Since nodes of influence networks correspond to triplet species,

one is interested in biologically meaningful emulations by means

of a node mapping that relates nodes with nodes, with the further

constraint that 1-indexed species are mapped to 1-indexed species

since those represent internal behavior. For instance, (2) and (3)

are such a node mapping. Given target and source nodes x and Y ,
respectively, we denote byY → x a mapping that does not swap the

indices 0 and 2. Else, the mapping is denoted by Y → ∼x . Therefore,
(2) and (3) can be equivalently represented as Z → x and Y → ∼x .
A node mapping which is an emulation is called node emulation.

We do not provide the original definition of emulation. Rather,

we state an alternative characterization that is based on BDE, which

relates ODE variables that have the same solution at all time points if

initializedwith the same initial conditions. This will be instrumental

to the development of EGAC.
An emulation µ from a source CRN (S,RS ) to a target CRN

(T ,RT ) is characterized by the following two properties:

i)

{
µ−1 (Xi ) : Xi ∈ S

}
is a BDE of (S,RS ).

ii) If S ∩ T = ∅, then
{
µ−1 (xi ) ∪ {xi } : xi ∈ T

}
is a BDE of the

union CRN (S ∪ T ,RS ∪ RT ).

In words, all source species mapped to the same target species are

BDE equivalent in the source CRN, as well as in the union CRN.

For instance, in our exampleHMI = {{Y1,Z1}, {Y0,Z2}, {Y2,Z0}} is
a BDE of MI, whileHAMI = {{Y1,Z1,x1}, {Y0,Z2,x2}, {Y2,Z0,x0}}
is a BDE of the CRN obtained by the union of MI and AM. The

requirement S ∩ T = ∅ is without loss of generality, as it is always

possible to rename the species in a CRN. In particular, this is the

case with the capitalization convention adopted in this paper.

Conditions i) and ii) are important because [4] describes criteria

to check if a given candidate mapping is an emulation but does not

provide an algorithm to search for emulations. The relationship

with BDE goes toward an algorithm treatment. However the possi-

bility of computing the largest BDE alone does not suffice because,

in general, the largest BDE does not satisfy the emulation criteria.

Also, there might be more than one emulation among two CRNs.

This is overcome in [7] where the authors provide an algorithm,

CAGE, that uses the largest-BDE computation as an inner step and

returns all possible emulations among two CRNs. This is done by

first computing all possible BDEs of the union CRN, filtered through

the above two characterizing properties.

CAGE is general: in fact, it can be used to compute all BDEs of

a large class of nonlinear ODE systems (including, for instance,

mass-action CRNs that are not induced by influence networks). The

algorithm is driven by purely geometric properties of the ODEs.

As a consequence, domain-specific information cannot be encoded

straightforwardly within CAGE, such as:

D1) only search biologically meaningful emulations between in-

fluence networks (i.e., node mappings);

D2) avoid searching for BDEs that are not emulations.

Because of this, in practiceCAGEmay not scale well with increas-

ing network sizes. In addition to the exact algorithm, a bounded

version (hereafter called bCAGE) is discussed in [7] which provides

an under-approximation of the set of all BDEs with the aim of

reducing memory consumption. With our domain-specific EGAC
we encode domain-specific knowledge directly in the algorithm,

showing its effectiveness with respect to both CAGE and bCAGE
when applied to discovering emulations for influence networks.

3 EGAC
In EGAC, we express the domain-specific knowledge D1 and D2

with the encoding of the individual and a specific design of the

fitness function, respectively.

Individual. To encode D1, we only consider partitions ofS∪T
that represent a node mapping from S to T . For this, we denote by

N (S) (resp., N (T )) the set of influence nodes of the source (resp.,
target) influence network, and equip N (S) with an order, denoted

by ⊑. Then, the individual consists of an array where each element

contains the image of the source node at that position, according
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(a) QI (b) CCR (c) GW (d) NCC

Figure 3: Further considered influence networks.

Algorithm 1 Routine computing the partition H underlying an

individual ind ; iX denotes the position in ind associated to X ∈
N (S) while ind[iX ] gives the element of the individual at iX .

function individualToPartition(ind)
for x in N (T ) do

Hx,0 ← {x0}
Hx,1 ← {x1}
Hx,2 ← {x2}

end for
for X in N (S) do

if ind[iX ] ∈ N (T ) then
let x ∈ N (T ) be such that x = ind[iX ]
Hx,0 ← Hx,0 ∪ {X0}

Hx,1 ← Hx,1 ∪ {X1}

Hx,2 ← Hx,2 ∪ {X2}

else
let x ∈ N (T ) be such that ∼x = ind[iX ]
Hx,0 ← Hx,0 ∪ {X2}

Hx,1 ← Hx,1 ∪ {X1}

Hx,2 ← Hx,2 ∪ {X0}

end if
end for
return {Hx, j | x ∈ N (T ), 0 ≤ j ≤ 2}

end function

to the given ordering. For instance, the node emulation given by

Y → ∼x and Z → x in our running example is represented with

the individual [∼x ,x] according to the lexicographical ordering.

More precisely, we have the following:

(1) The individual is a sequence of symbols [s1, . . . , sn] with
n = |N (S) | and si ∈ {x | x ∈ N (T )}∪̇{∼x | x ∈ N (T )}.

(2) An x , with x ∈ N (T ), at position 1 ≤ i ≤ n in the indi-

vidual induces the mapping X → x , where X is the i-th
symbol in the ordered sequence induced by ⊑.

(3) A ∼x , with x ∈ N (T ), at position 1 ≤ i ≤ n in the indi-

vidual induces the mapping X → ∼x , where X is the i-th
symbol in the ordered sequence induced by ⊑.

The partitionH of S ∪ T corresponding to an individual ind is

constructed in Algorithm 1. First, it generates the set of singletons

{{xi } | xi ∈ T }. Then it populates each singleton block with the

source species from S mapped to the corresponding target species.

Algorithm 2 The mutation function.

function mutate(ind)
pick randomly i, j ∈ {1, . . . , |N (S) |}
swap the nodes ind[i] and ind[j]
return ind

end function

Selection, Mutation and Fitness. Selection is done with a stan-
dard tournament scheme. At every generation a series of tourna-

ments determines which individuals are the most fit. Then it pro-

ceeds with the two-point cross-over and mutation operations on

the surviving individuals. Mutation was implemented using Algo-

rithm 2, performing a swap between two elements of an individual.

In experiments not reported here, using standard mutation func-

tions such as bit-flip led to less successful results.

The routine implementing the fitness function relies on the auxil-

iary function isNodeMapping (Algorithm 3), which verifies whether

a given individual does encode a node mapping. Such a check is

necessary because, in contrast to mutation, cross-over does not

transform node mappings to node mappings in general.

Algorithm 4 shows the overall computation of the fitness func-

tion. In case an individual does not encode a node mapping, it

is associated with a constant penalty P . Otherwise, the auxiliary
routine individualToPartition computesH , the partition of S ∪ T

representing the individual ind . ThenH ′ is obtained as the coarsest
BDE partition of S ∪ T which refines H . This is done using the

partition-refinement algorithm from [8] whose time complexity

is polynomial in the number of species and reactions of the input

CRN. If H ′ = H , then the input partition H is a BDE, hence an

emulation. Instead, ifH ′ , H , then partitionH ′ has more blocks

than H . Since |N (T ) | ≤ |H ′ | because H encodes a node map-

ping,H ′ encodes an emulation if and only if |N (T ) | = |H ′ |. This
motivates to set the fitness of a node-mapping partition to |H ′ |.

In other words, with the objective of minimizing the fitness func-

tion, EGAC favors individuals such that the number of equivalence

classes of their largest BDE refinement is closer to that of an em-

ulation, |N (T ) |. In the worst case, refineBDE returns a partition

with singleton blocks, of size |S| + |T |. Thus, it suffices to set

P ≥ |S| + |T | in order to further penalize individuals which do not

represent a node mapping.
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Algorithm 3 Auxiliary routine verifying whether a given individ-

ual encodes a node mapping.

function isNodeMapping(ind)
H ← ∅
for X in N (S) do

if ind[iX ] ∈ N (T ) then
let x ∈ N (T ) be such that x = ind[iX ]

else
let x ∈ N (T ) be such that ∼x = ind[iX ]

end if
H ← H ∪ {x }

end for
if H = N (T ) then

return true
else

return false
end if

end function

Algorithm 4 The fitness function.

function fitnessFunction(ind)
if not isNodeMappinд(ind ) then

return P
end if
H ← individualToPartition(ind )
H ′ ← re f ineBDE (H )
return |H ′ |

end function

Table 1: Influence networks used for the experiments.

Network AM MI CCR GW QI NCC

Size (number of species) 3 6 9 12 12 18

Table 2: EGAC settings

Initial Population Randomly generated

Selection Tournament size 3

Cross-over probability 0.50

Cross-over function Two-point

Mutation Probability 0.25

Mutation Function Custom Mutation (Alg. 2)

Fitness Function Custom Fitness Function (Alg. 4)

Type of optimization Minimization

Stopping criterion Max number of generations

4 EXPERIMENTAL RESULTS
Set-up. In this section we evaluate EGAC on influence networks

from the literature, as collectively studied in [4]. These are depicted

in Figure 1 and Figure 3, and summarized in Table 1. We performed

three kinds of experiments. First, we studied the soundness of EGAC
by comparing it against the exact CAGE algorithm of [7]. Then,

we performed scalability experiments by considering networks of

larger size which could not be handled by CAGE. Finally, we studied
the sensitivity of the performance of EGAC on its parameters (i.e.,

cross-over and mutation probabilities, population and maximum

number of generations).

For the scalability analysis, we compared EGAC against bCAGE,
the bounded version of CAGE discussed in Section 2 that under-

approximates the set of emulations. The set-up of bCAGE was such

that it ran with the best possible settings to increase the likelihood

of finding emulations: For every model that could not be covered

by CAGE, the memory bound of bCAGE was set to 75% of the

memory requirement that made CAGE issue an out of memory

exception. This was possible because CAGE reports on its memory

consumption during execution.

We chose representative instances of source/target CRNs so as

to explore increasingly larger search spaces. The cardinality of the

search space can be computed using the following.

Proposition 4.1. For a given source network (S,RS ) and target
network (T ,RT ), the search space size is (2 · |N (T ) |) |N (S) | .

The networks for assessing scalability were synthesized by cre-

ating multiple independent copies (via appropriate renaming) of

networks from Table 1. Thus, for example, NCC2 is formed by two

copies of the original network NCC. This choice of set-up has a

twofold motivation. First, it affords a biological interpretation in

terms of an evolutionary pathway from smaller to larger networks,

driven for instance by gene duplication [6]. Second, although for

all of the as-constructed instances CAGE ran out of memory, we

can provide an estimation for the number of node emulations there

exist based on the knowledge of the number of node emulations

between the same networks with a single replica.

Proposition 4.2. Fix an influence source network (S,RS ), an
influence target network (T ,RT ) and assume that there arem ≥ 1

node emulations from S to T . Let (S⊗n ,RS⊗n ) and (T ⊗ν ,RT ⊗ν )
denote the corresponding CRNs with n and ν independent replicas of
species and reactions, respectively. In the case n ≥ ν , the number of
node emulations from (S⊗n ,RS⊗n ) to (T ⊗ν ,RT ⊗ν ) is at least

mn ·
∑

k1+...+kν=n,
k1, ...,kν ≥1

(
n

k1, . . . ,kν

)
,

where
( n
k1, ...,kν

)
denotes the multinomial coefficient. The above ex-

pression simplifies to ν ! ·mn in the case of ν ∈ {1,n} and provides
the actual number of node emulations for ν = 1.

As a consequence, this set-up allowed us to study instances

which guarantee the existence of at least one emulation (since EGAC
cannot clearly prove the absence of emulations between networks),

and to have a measure of the relative frequency of occurrence of

emulations with respect to the overall search space.

To study the effectiveness of the genetic algorithm, we addition-

ally performed a comparison against a random sampler (RS) that
generated a number of randomly generated individuals equal to

the total number of individuals explored by EGAC. In particular,
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Table 3: Numerical results

Soundness Experiments

Setting EGAC CAGE RS

Source Target Search space Pop. Gen. Avg Best Runtime Found Runtime Found

CCR AM 8 100 10 1.0 1 6 s 2 1 s 2

QI AM 16 100 10 1.0 1 8 s 2 14 s 2

GW AM 16 100 5 1.7 2 4 s 2 1 s 2

NCC AM 64 100 20 0.7 1 17 s 2 1 523 s 2

QI MI 256 100 5 0.7 2 5 s 2 15 s 2

GW MI 256 100 5 0.2 2 5 s 2 1 s 2

QI CCR 1 296 500 5 2.0 3 27 s 4 15 s 4

NCC CCR 46 656 1 000 5 0.2 1 70 s 4 1 564 s 0

NCC QI 262 144 2 000 30 0.2 1 885 s 4 1 556 s 1

Scalability Experiments

Setting EGAC bCAGE RS

Source Target Search space Pop. Gen. Avg Best Runtime Found Prop. 4.2 Runtime Found

NCC2 AM 4.0E+03 200 10 1.8 2 35 s 0 4 4 024 s 3

NCC2 AM2 1.6E+07 500 20 1.1 2 174 s 0 ≥ 8 4 117 s 0

NCC2 CCR 2.0E+09 1 000 20 7.1 12 367 s 0 16 4 037 s 0

NCC6 AM 6.8E+10 1 000 20 5.9 9 918 s 0 64 2 576 s 0

NCC3 CCR 1.0E+14 1 000 20 3.9 12 512 s 0 64 17 611 s 0

NCC3 QI 1.8E+16 10 000 20 0.1 1 5 249 s 0 64 19 973 s 0

NCC4 CCR 4.0E+18 10 000 20 1.2 8 6 588 s 0 256 15 835 s 0

NCC4 AM4 4.7E+21 10 000 30 1.1 3 9 610 s 0 ≥ 384 15 598 s 0

Table 4: Sensitivity results: soundness

Source Target
Cross-over and Mutation

0.30, 0.15 0.50, 0.25 0.70, 0.35

CCR AM 2 1 1

QI AM 2 1 2

GW AM 2 1 2

NCC AM 1 1 1

QI MI 1 1 2

GW MI 2 1 2

QI CCR 4 1 4

NCC CCR 1 1 1

NCC QI 0 1 1

the stopping criterion was set as a limit on the number of genera-

tions. This allowed EGAC to search possibly multiple emulations

rather than stopping after the minimum fitness is reached. Instead,

population sizes and maximum number of iterations were varied

depending on the total search space of a specific problem instance.

Otherwise, the experiments were run using the settings presented

in Table 2. These parameters were obtained after preliminary ex-

perimental tests with the goal of reducing runtimes.

Implementation. A prototype of EGAC was implemented in

Python, using the DEAP package for genetic algorithms [12]. EGAC

Table 5: Sensitivity results: scalability.

Source Target
Cross-over and Mutation

0.30, 0.15 0.50, 0.25 0.70, 0.35

NCC2 AM 4 4 4

NCC2 AM2 8 7 7

NCC2 CCR 4 3 4

NCC6 AM 63 58 51

NCC3 CCR 2 6 9

NCC3 QI 7 4 5

NCC4 CCR 9 18 11

NCC4 AM4 0 1 0

relies on the Eclipse-based tool ERODE [9], in order to execute the

refineBDE function of Algorithm 4. ERODE implements a recently

proposed polynomial-time algorithm to compute the coarsest BDE

refinement of a partition of species for CRNs with mass action kinet-

ics [8, 10]. CAGE and bCAGE were taken from the supplementary

material accompanying [7], developed as Matlab scripts interfaced

with ERODE. Runtimes were taken on a laptop machine equipped

with a 2.20GHz Intel Core i5-5200U and 8GB RAM.

Results. The results are presented in Table 3. For each problem

instance, we show the source and target CRN, the search space com-

puted using Proposition 4.1, and the model-specific EGAC settings
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concerning the population size and maximum number of gener-

ations. For EGAC we report the average and the best number of

distinct emulations found over 10 runs. For CAGE, and bCAGE we

report the number of distinct emulations found at the end of one

execution as well as its overall runtime. For RS we only report the

number of emulations, since the runtime is comparable to EGAC.
For the soundness tests, the first main observation is that the en-

coding of the individual yielded a dramatic reduction of the search

space, such that emulations can be feasibly found by enumerating

all possible candidates. This shows the effectiveness of the encod-

ing provided. Nevertheless we ran EGAC for completeness, always

returning at least one emulation in all cases. Instead emulations

were not found in the instances with the largest search spaces. We

remark that with those settings the EGAC runtimes were consider-

ably smaller than CAGE. The results of RS confirm that the smaller

instances are not challenging due to the compact representation,

but no emulations are found already between NCC and CCR.

As discussed above, CAGE issued out-of-memory errors in all

scalability experiments. This is because its major bottleneck is in the

computation of all BDE partitions of the source network, which has

at least twice as many species as in the previous batch of instances.

Running bCAGE with its best memory settings on the scalability

instances did not find any emulation; for comparison, alongside we

also report the estimations on the number of emulations computed

using Proposition 4.2. By contrast, EGAC was able to find at least

one emulation in all cases, running at most within 3 h; Except for

the smallest instance, in all cases RS found no emulation. This can

be justified by the fact that the fraction of emulations with respect

to the total search space becomes increasingly smaller, thus defying

a random sampling.

In Tables 4 and 5 we report the experiments regarding the sen-

sibility of EGAC on both batches of networks. We experimented

with three different configurations. The middle case is the same as

in the experiments reported in Table 3. However, here we changed

the initial population and the maximum number of generations. In

particular, for the soundness experiments we considered a popu-

lation of 1000 and a generation limit of 25. Instead, given the fact

that the search space of the scalability experiments is significantly

larger than the networks used in the soundness experiments, here

we used a population formed by 20 000 individuals and a generation

limit of 25. Throughout all the sensitivity experiments we used the

same random seed in order to start with the same initial population

for every experiment.

Unexpectedly, with the same crossover and mutation parameters

used in Table 3 EGAC returns a different number of emulations

because of the different population size and generation limit. In

general, however, EGAC is robust to parametric changes in that

it was able to find at least one emulation in almost all cases. It is

worth noticing that with this setup EGAC explored up to 500 000

different individuals, which, in most of the scalability experiments,

is a very small percentage of the whole search space.

Summary. In summary, we highlight the major strengths and

weaknesses of our approach.

• EGAC is capable of discovering emulations between in-

fluence networks that can neither be handled by exact

algorithms nor be approximated by heuristic variants.

• Being based on a genetic algorithm, it can be trivially par-

allelized, unlike CAGE. By tuning its parameters larger

explorations of the search space are possible, to discover

further emulations than those found with our parameter

set-ups.

• On the other hand, unlike CAGE, EGAC cannot prove the

absence of an emulation, an equally biologically interesting

question that may help rule out certain evolutionary paths

between networks.

• Finally, EGAC is designed specifically for influence net-

works with mass-action kinetics. CAGE instead, is more

general because it allows finding all BDEs of a given system

of ordinary differential equations.

5 RELATEDWORK
Genetic algorithms and programming [15, 22] have been used in

the past to compute analytical ODE solutions [1, 2], to simplify the

optimal control of continuous systems [17], and to solve partial

differential equations [21]. However, to our knowledge they have

not been used for comparing systems.

Formally, a CRN can be understood as a labeled directed hyper-

graph, hence an equivalence relation over the species such as BDE

corresponds to a specific (hyper-)graph partitioning. In this respect,

our present work can be related to an established line of research

on graph partitioning via genetic programming (see, e.g., the re-

view [14]). The optimization goal in the graph partitioning problem

is to find a minimal-cost edge cut such that the graph obtained after

the cut is splitted in k balanced blocks. The blocks are balanced if

and only if the difference in size between any two blocks of the par-

tition is at most one. On the other hand, in the emulation problem

our minimization goal is different. It does not consider the cost of

splitting the partition, but the focus is on the fitness of the partition

based on the notion of BDE.

However, our approach shares various concerns with graph par-

titioning techniques. For instance, in [14] a comparison is made

between encodings of individuals based on group numbers or edge
encoding. In group-number encoding each node is assigned a num-

ber that identifies the block of the partition to which the node

belongs. In edge encoding every chromosome of a genome is bound

to an edge, and the encoding expresses how the cut will be made.

Different techniques such as node-clustering and gene reordering

are presented in [14] but they hold no relationship with our prob-

lem. Our approach is based on group-number encoding. However,

differently from the group-number encoding technique presented

in [14], our encoding does not suffer the problem of redundancy

(i.e. different individuals representing the same partition).

In the graph partitioning problem, the main constraint is balance.
In EGAC, individuals are constrained to represent a node mapping.

Two main techniques are proposed to solve the problem of indi-

viduals violating the constraint [14]. One suggests to repair the

individual immediately after crossover and mutation. The other

is based on giving a penalty to violating individuals, which is the

scheme also adopted in EGAC with the idea that individuals that

violate the constraint can become fit after a series of cross-overs or

mutations. This justifies the choice of the penalty scheme rather

than the immediate repair scheme.
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6 CONCLUSIONS AND FUTUREWORK
In this paper we presented EGAC, an approach based on a genetic

algorithm to formally relate influence networks. Future work will

aim at generalizations to other types of chemical reaction networks.

Extensions that account for different kinetic mechanisms (such

as Hill’s kinetics) can already be accommodated. Indeed, this es-

sentially amounts to using a fitness-function evaluation that in-

vokes a more general partition-refinement algorithm for ordinary

differential equations with rational derivatives [11]. Another in-

teresting direction is to explore how to embed prior knowledge

or assumptions within the genetic algorithm; for instance, the re-

use of computations in new comparisons where the source or the

target network share some structure with previously computed

ones. Since parameters are often not known precisely due to finite

precision measurements, stochastic noise or lack of information, it

would be also interesting to extend CAGE and EGAC to CRNs with

uncertain parameters [16, 20, 25].

Finally the relative strengths and weaknesses of EGAC with

respect to the exact algorithm ofCAGE call for a combined approach.

Here, future work will investigate the development of an exact

oracle that can effectively decide the absence of emulations, leaving

it to the genetic algorithm to find them if there is at least one.
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A PROOFS
Proof of Proposition 4.1. Note that |N (S) | is the length of

individuals, while 2|N (T ) | = |{x | x ∈ N (T )}∪̇{∼x | x ∈ N (T )}|
accounts for the number of possible values any entry in an individ-

ual can attain. This yields the claim. □

Proof of Proposition 4.2. Define Si = S × {i}, T j = T × {j},
S⊗n =

⋃n
i=1 S

i
, T ⊗ν =

⋃ν
j=1 T

j
, let µ1, . . . , µm denote all node

emulations from S to T and let µ
i, j
k : Si → T j

arise from µk by

replacing the source and target species X and x with their copies

X × {i} and x × {j}, respectively. Noting that any µ
1, j1
k1
∪ . . .∪ µ

n, jn
kn

,

where 1 ≤ kl ≤ m and {j1, . . . , jn } = {1, . . . ,ν }, is a node emulation

from S⊗n to T ⊗ν , we infer that there are at least

mn · ν ! · ���
{
H

���H is partition of {1, . . . ,n} with ν blocks

}���
node emulations from S⊗n to T ⊗ν because ν ! corresponds to the

number of ways ν blocks can be mapped to ν target networks. Using
elementary combinatorics, the above formula can be rewritten to

mn ·
∑

k1+...+kν=n,
k1, ...,kν ≥1

(
n

k1, . . . ,kν

)

In the case of ν = 1, the lower bound can be seen to coincide with

the actual number of node emulations. To this end, let us assume

that µ : S⊗n → T 1
is a node emulation. Since S1, . . . ,Sn are

pairwise disjoint sets, the ODEs of Si do not depend on the species

in Si
′

whenever i ′ , i . Hence, µ |Si : Si → T 1
must be a node

emulation, where µ |Si denotes the restriction of µ to the set Si .

This, in turn, implies that µ |Si = µi,1k for some 1 ≤ k ≤ m, thus

showing the claim. □
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