
Evolving Parsimonious Networks by Mixing Activation
Functions

∗

Alexander Hagg
Bonn-Rhein-Sieg University of

Applied Sciences
Grantham-Allee 20

Bonn, Germany 53757
alexander.hagg@h-brs.de

Maximilian Mensing
Bonn-Rhein-Sieg University of

Applied Sciences
Grantham-Allee 20

Bonn, Germany 53757
max.mensing@smail.inf.h-brs.de

Alexander Asteroth
Bonn-Rhein-Sieg University of

Applied Sciences
Grantham-Allee 20

Bonn, Germany 53757
alexander.asteroth@h-brs.de

ABSTRACT
Neuroevolution methods evolve the weights of a neural network,
and in some cases the topology, but li�le work has been done to
analyze the e�ect of evolving the activation functions of individual
nodes on network size, which is important when training networks
with a small number of samples. In this work we extend the neu-
roevolution algorithm NEAT to evolve the activation function of
neurons in addition to the topology and weights of the network. �e
size and performance of networks produced using NEAT with uni-
form activation in all nodes, or homogenous networks, is compared
to networks which contain a mixture of activation functions, or het-
erogenous networks. For a number of regression and classi�cation
benchmarks it is shown that, (1) qualitatively di�erent activation
functions lead to di�erent results in homogeneous networks, (2) the
heterogeneous version of NEAT is able to select well performing
activation functions, (3) producing heterogeneous networks that
are signi�cantly smaller than homogeneous networks.

CCS CONCEPTS
•Computing methodologies → Neural networks; Supervised
learning; Genetic algorithms;

KEYWORDS
neuroevolution; activation function; regression; heterogeneous
networks; bloat
ACM Reference format:
Alexander Hagg, Maximilian Mensing, and Alexander Asteroth. 2017. Evolv-
ing Parsimonious Networks by Mixing Activation Functions. In Proceedings
of the Genetic and Evolutionary Computation Conference 2017, Berlin, Ger-
many, July 15–19, 2017 (GECCO ’17), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
In many areas of interest for machine learning, sample sets are small
and noisy, for example in robotics where environments are prone to
∗�e full version of the author’s guide is available as acmart.pdf document

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

continuous changes and novelty or when using machine learning
models to replace expensive sampling methods in optimization.
�ese complex problems o�en require models with a high number
of degrees of freedom, which tend to over�t when presented with
only a small number of samples.

Neuroevolutionary (NE) methods represent a starkly di�erent
neural network training paradigm than backpropagation of error.
Morse and Stanley [19] point out that a number of advantages, like
the regularizing properties of topological evolution [26], diversity
maintenance and indirect encoding, allows NE to perform certain
tasks be�er. Especially when using NE for regression, where models
need to be created that are as general as possible, NE training
methods allow to �nd simple/minimal models, adhering to the
law of parsimony. Smaller networks have been shown to be less
prone to over��ing [21], and are easier to train, because less model
parameters have to be optimized.

To understand how we can improve NE methods further, a num-
ber of questions still needs to be answered. Taking advantage of
the strengths of NE, for example by increasing the expressiveness
of networks with a higher diversity of neural activation functions,
which is harder for classical methods, we could decrease the net-
work size and limit over��ing. NE could allow training neural
networks for small sample sets which are too small to train large
networks, by topology minimization and decrease over��ing for
problems that are hard to represent with small networks.

In this work, we try to answer the �rst question and look at the
evolution of the activation functions in a topology-evolving algo-
rithm and its e�ect on network size, convergence speed and error
approximation in a number of benchmark regression problems.

1.1 In�uence of Activation Function
Hornik showed that the Universal Approximation �eorem1 is valid
for neural networks using any continuous nonconstant function,
stating that for these activation functions, multilayer feedforward
neural networks are capable of arbitrarily accurate approximation
to any real-valued continuous function, as long as outputs are
bounded [8].

Although the choice of an activation function does not have an
in�uence on the theoretical expressiveness of neural networks, it
can a�ect the training behaviour of the network. �e number of
nodes needed to approximate a given function is highly dependent
on the activation function of the nodes. To approximate a Gaussian

1Based on Kolmogorov’s superposition theorem [12]

ar
X

iv
:1

70
3.

07
12

2v
1

 [
cs

.N
E

]
 2

1
M

ar
 2

01
7

GECCO ’17, July 15–19, 2017, Berlin, Germany Alexander Hagg, Maximilian Mensing, and Alexander Asteroth

x 2

x 4

targ
et

-1

0

1

input

targ
et

input

out
put

input

or

or

-1

0

1

-1

0

1
-1

0

1

out
put

input

Figure 1: Le�: target functions (Gaussian and sigmoid func-
tion). Middle: how many neurons are theoretically neces-
sary to represent the target with a Gaussian and sigmoid ac-
tivation function. Right: shows how these neurons need to
be positioned and scaled to approximate the target.

function two sigmoid functions are required, to approximate a
sigmoid function four Gaussian functions are needed (Figure 1).

Although this example is contrived, it is easy to see that the num-
ber of nodes needed is dependent on the used activation function.
As more nodes are required, the number of weights that need to be
trained also grows, this expands the search space of the training
algorithm, and extends convergence times. Several studies have
shown the signi�cant in�uence the choice of activation function
can have on the performance of neural networks. Kamruzzaman
and Aziz [11] show that activation functions in�uence convergence
speed, depending on the target function. In a large literature review
by Laudani et al [13] comparing many activation functions, the
authors �nd large di�erences in terms of convergence speed (in
epochs) and resulting network errors. An extensive comparison
was done by Efe [4], using 8 benchmark data sets, drawing the same
conclusion, that di�erent activation functions result in di�erent
convergence behavior and accuracy, with respect to the resulting
network errors.

1.2 Heterogeneous Networks
In contrast to backpropagation, the training method in NE is in-
dependent of function derivatives. Since the best non-linearity
is unknown beforehand, we can easily use NE training to create
networks containing a heterogeneous set of activation functions.
Figure 2 shows an example where it makes sense to use such net-
works. In this case, combining a Gaussian and a sigmoidal activated
neuron leads to a good approximation, whereas a homogeneous
network, which uses only one activation function, would need more
neurons and weights, increasing the size of the topology-weight
search space.

�e outputs in multi-target problems are o�en correlated. When
we try to approximate the vibration frequency and temperature
response in a motor to the amount of acceleration in a car, both tar-
gets are likely to be correlated by the response of the valves in the
motor. �ese valves will contain a dampening e�ect, which depends
on the input (the gas pedal), which will a�ect both targets. Models
that approximate and predict these target values bene�t when they
are able to describe this global e�ect for all targets. Figure 3 shows
an example of a heterogeneous neural network approximating two

input-1

0

1

targ
et

input-1

0

1

out
put

input-1

0

1

out
put

input-1

0

1

out
put

x 5

x 3+

Figure 2: Target function combined from aGaussian and sig-
moid. In this case, two neurons (bottom le�), one with a
Gaussian and one with a sigmoid activation, would su�ce
to accurately predict the target function. Homogeneous net-
works that only use a single activation function (right) need
more neurons to approximate the same target.

such correlated target functions. �e sine function in the �rst neu-
ron describes a part of both targets. �e second layer of neurons
can then specialize into learning decorrelated signals. �is modu-
larity is something we expect to see even in small heterogeneous
networks and is another reason why the use of heterogeneous
networks can lead to more parsimonous models.

-10 -5 0 5 10

input

-1

0

1

g
a
u
ss
(1
0
*s
in
(x
))

-10 -5 0 5 10

input

-1

0

1

ta
n
h
(1
0
*s
in
(x
))

x

target 1

target 1

Figure 3: Multiple activation functions allow for correlated
targets to be learned with less nodes. Here, a sine function
is used in the �rst layer, a�er which a Gaussian and sigmoid
kernel are applied to produce two di�erent output targets,
σ (10*sin(x)) and tanh(10*sin(x)).

Not using a �xed activation function and instead developing it
with the network’s topology allows for compact networks to be
more expressive and decrease the size of the parameter space. Not
only are smaller networks more easily trained, but that training
can be performed with fewer samples, and the resulting networks
are less prone to over��ing of the training data [21]. Especially
in cases where samples are very noisy or the number of available
is not su�cient to train large networks, this can be an advantage
compared to classical training methods.

Evolving Parsimonious Networks by Mixing Activation Functions GECCO ’17, July 15–19, 2017, Berlin, Germany

�ere is no analytical way to adapt the activation function in on-
line backpropagation learning and o�en, model selection methods
like the Akaike Information Criterion [2] need to be used to select
the appropriate model. Neuroevolution o�ers methods that allow
coevolution of activation functions in an on-line manner. We extend
the NEAT [26] algorithm and refer to it as Heterogeneous Activa-
tion NEAT (HA-NEAT), allowing it to evolve the activation function
as well, using a similar idea as was applied in HyperNEAT [25], but
producing directly encoded networks. We then compare the per-
formance of the original implementation, producing homogeneous
neural topologies, to HA-NEAT.

2 RELATEDWORK
2.1 Evolving Topologies
While some neuroevolutionary algorithms like SANE [18] or ESP [6]
evolve only �xed networks, others like NEAT evolve the network’s
topology as well. �e NEAT algorithm was introduced by Stanley
and Miikkulainen in 2002 [26]. To keep the produced topologies as
small as possible, NEAT follows a bo�om up approach, initialising
minimal networks in which inputs are connected directly to outputs.
�en, slowly, neurons and connections are added by mutation
operators, gradually complexifying the networks. While most parts
of a neural network are evolved, a �xed activation function is used
for all hidden neurons. NEAT does not su�er from bloat, growing
network size with li�le improvement to �tness. �is would slow the
evolutionary process, increasing the algorithm’s memory footprint
and hampering breeding methods [28].

Stanley et al. extended NEAT to HyperNEAT seven years later [25].
�ey evolve Compositional Pa�ern Producing Networks (CPPN) [24]
that output a function which determines the weights in a precon-
�gured neural network which depends on the position of the con-
nection’s source and target neuron’s coordinates in a prede�ned
coordinate system, thus indirectly encoding the network’s weight
matrix. CPPNs are evolved as a composite function, which includes
multiple activation functions. �e algorithm is mostly used to solve
control problems [27], where locality or symmetries in the neurons’
locations can be de�ned in a meaningful way.

Khan et al. introduce an extension to Cartesian Genetic Program-
ming (CGP) [14, 17], CGPANN, in which they de�ne neurons as
nodes in the cartesian genotype. CGP allows neuron connections
to ”jump” layers and thus allowing topologies to change during
evolution. �e algorithm does not use ”minimal initialization” like
NEAT and does not emphasize creating parsimonious networks
that generalize well.

2.2 Evolving Activation Functions
Neural networks usually utilise the same, non-linear �xed acti-
vation function for all neurons, but the activation function has a
signi�cant in�uence on the learning performance, topology and
�tness [4, 11, 13].

Mayer and Schwaiger evolve the activation function of general-
ized multi-layer perceptrons [16] within the netGEN framework,
which uses a genetic algorithm to evolve neural network topolo-
gies [9]. �e activation functions are described in the genome by
the coordinates of the control points of a cubic spline function. �is
also allows non-monotonic activation functions. �e authors show

that by evolving the activation function they are able to learn the
XOR problem with a single neuron as well as increase the accuracy
of the evolved networks on more complex target functions. �e
e�ect on the evolutionary process, on convergence times, is not
investigated. Yao gives an overview on the evolution of neural acti-
vation functions [30] and show that most work was done mixing
sigmoidal and Gaussian neurons, and thus selecting the transfer
functions from a prede�ned set.

In recent work, Turner and Miller [29] acknowledge that a lot of
work has been le� open on NE that includes evolving the transfer
function. �ey use a single scaling parameter that is learned during
training to evolve heterogeneous networks. �ey show that the
e�ectiveness of using NE with either a convential �xed-topology
NE algorithm or Cartesian Genetic Programming (CGP) to train
homogeneous ANNs is dependent on the selected activation func-
tion. �ey evaluate their approach using a number of classi�cation
benchmarks, reinforcement learning benchmarks and a simple cir-
cuit regression task and evolved variable activation functions by
including a function scaling factor. �e authors show that homo-
geneous networks reach signi�cantly di�erent �tness levels and
convergence times, depending on the activation function and data
set, whereby no single activation function can be shown to work
best for all problems. Heterogeneous networks are created as well
with the transfer function evolved from both a list of the before-
mentioned nonlinear functions or as a parameterized activation
function. �e authors �nd clear improvements using heteroge-
neous networks, when comparing to the average homogeneous
network. In most cases however, there exists an activation function
for which the homogeneous networks perform mostly be�er than
the heterogeneous ones. �ey also �nd that the networks do not
tend to prefer any particular activation function, especially in the
case of the CGP algorithm that evolves the topology as well as the
weights.

2.3 Discussion
It is necessary to do more research on the e�ects of evolving the
transfer functions in neuroevolved networks, especially in the con-
text of regression and algorithms that construct a network’s topol-
ogy.

As NEAT is a NE method that initializes networks in a mini-
mal state, which will allow us to use this regularizing e�ect, this
work extends that approach. �e algorithm is naturally topology-
minimizing and its internal representation is easily extendible to
include coevolution of activation functions. Especially when tar-
geting regression where multiple target outputs are correlated, the
bo�om-up construction of neural networks in NEAT could allow
the more general submodels or modules to evolve �rst, a�er which
the later layers or neurons are added to specialize on more speci�c
behaviours in the underlying model.

�e original implementation of NEAT does not evolve the ac-
tivation functions of the network, leading to homogeneous net-
works. Even though there is research on evolving activation func-
tions [1, 5, 16], these methods have not yet been applied to the
canonical NEAT. While HyperNEAT, a NEAT derivate, evolves ac-
tivation functions, it has many other modi�cations. Especially
noteworthy is the use of CPPNs instead of the directly encoded

GECCO ’17, July 15–19, 2017, Berlin, Germany Alexander Hagg, Maximilian Mensing, and Alexander Asteroth

ANNs NEAT uses [5, 23]. While this approach increases the suit-
ability to solve high-dimensional control and vision problems, apart
from symbolic regression [3] it has not been widely applied on re-
gression or classi�cation problems. HyperNEAT and its derivatives
were designed to indirectly train large networks, but we focus on
training directly encoded parsimonious networks for regression.

3 APPROACH
In order to grow heterogeneous models, we enhance NEAT by
allowing the evolutionary process to a�ect neurons’ activation
functions. �is enhanced version of the algorithm, HA-NEAT, pro-
duces heterogeneous topologies, increasing the parsimony of NEAT,
shortening the time to convergence, and increasing the accuracy of
the produced model. �e rest of this section only discusses changes
we made to the original implementation of NEAT. Please refer to the
original publication for elaborated details on the implementation
of NEAT [26].

To simplify optimization of topology, and because of our focus on
regression problems, we only allow feed forward networks. Before
a connection is added to the network, we check whether it creates
a cycle in the network. Only connections that do not cause such a
recurrency are added.

1

input

none

2

input

none

3

hidden

tanh

4

hidden

sigmoid

5

output

lin

1

3

0.7

enabled

1

1

4

0.3

enabled

2

2

3

0.4

disabled

3

3

4

0.1

enabled

7

3

5

0.6

enabled

11

4

5

0.3

enabled

12

neuron

gene

connection

gene

ID

type

activation

source

target

weight

status

innovation

Figure 4: Directly encoded HA-NEAT genome, sample input
and output values are presented to the network directly.

In order to evolve the activation function, the genome is extended
by adding genes that represent the activation function of the neu-
rons. �is modi�ed genome is illustrated in Figure 4. It is similar
to the CPPNs used in HyperNEAT [24], but instead of taking the
coordinates of weights as input, we use a direct encoding. �e data
is presented to inputs and outputs in a direct manner. �e activation
function gene is an integer number, representing the index in a list
of activation functions. �e list contains a number of activation
functions: the discontinuous step function, the non-di�erentiable
Recti�er Linear Unit [20], the smooth sigmoid and locally active
Gaussian kernel, which are shown in Figure 5. Instead of evolving
a parameterized activation function as was done in [16], which
would add continuous parameters to the search space, we manu-
ally determine a small number of qualitatively di�erent activation
functions to reduce the search problem for NEAT.

Activation functions like the hyperbolic tangent are not used,
because these functions need a di�erent range in their output nor-
malization. Mixed, heterogeneous networks, would then need to
scale all neuron outputs di�erently, depending on their output
range.

During the initialization phase, we assign a standard linear acti-
vation function to the input and output nodes. A modi�ed version

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

0.5

1 Step
ReLu
Sigmoid
Gaussian

Figure 5: Activation functions used in HA-NEAT

of the add node mutation operator is used. When constructing a
new neuron, a random activation function is selected.

A new mutation operation that changes the activation function
of a node is added as well, which was not used in the HyperNEAT
algorithm. Depending on the probability of this particular mutation,
a node is randomly selected and an activation function is uniformly
randomly selected from the list of possible functions. Since the
connection weights to this neuron were optimized for the old acti-
vation function, the network might perform worse than its parents.
�erefore, highly non-linear changes in the networks are expected
during evolution, when the activation function is mutated. �is
o�en leads to a drop in �tness �rst and decreases the chance of an
individual to survive.

Speciation is used to protect innovation. �e mutate activation
operator is adjusted by changing the identi�er of the node and the
innovation numbers of all incoming and outgoing connections if
the activation function is changed. �is increases the individual’s
speciation distance profoundly, as a single mutation can a�ect many
connections’ innovation numbers. �is is a desirable e�ect, because
changing the activation function in many neural pathways causes
large qualitative changes in the neural network’s output function.

Large changes to individuals are now protected by speciation.
In order to prevent too many changes to an individual, we only
allow changing one node per genome per generation. �e e�ect of
mutating the activation function of existing nodes, as opposed to
�xing the activation when the node is created, as in HyperNEAT,
is examined in more detail in Section 4, where we show that the
mutation operator is bene�cial to evolution.

�e expected impact of the proposed extension can be summa-
rized as follows. We expect smaller networks to be more expressive,
as was shown in Section 1. We therefore expect an approximation
accuracy that rivals homogeneous networks created with NEAT,
especially for problems with multiple target functions. �e de-
crease in the number of necessary nodes to approximate a certain
target will lead to faster convergence, although this will be partially
counteracted by the increased search space, which depends on the
number of possible activation functions.

4 EVALUATION
4.1 Data Sets
A number of regression and classi�cation datasets is used to evalu-
ate HA-NEAT. All inputs are normalized to the interval [−1, 1]. �e
datasets are separated into training and test sets using 5-fold cross
validation, which are replicated 10 times, leading to a total of 50
replicates. We compare the median mean square error (MSE), and
25% and 75% quantiles of the regression predictions with the target
values, which are normalized between [0, 1].

Evolving Parsimonious Networks by Mixing Activation Functions GECCO ’17, July 15–19, 2017, Berlin, Germany

Cholesterol Level Indicators
�e �rst task is a regression problem in which three cholesterol
level indicators (LDL, VLDL and HDL) from 21 spectral measure-
ments of 264 blood samples are estimated. �e data originates from
work done by Purdie [22] and is shown in Figure 6.

Engine Torque and Emissions
�e second task, also a regression problem, is to estimate torque
and nitrous oxide emissions for 1199 samples containing fuel rate
and speed. �e data is provided by Martin Hagan[7].

Wisconsin Breast Cancer Diagnosis Problem
�e �nal task is a classi�cation problem from the UCI [15] machine
learning database. �e data set provides 699 samples, 16 of which
are incomplete and therefore omi�ed for these experiments. Sam-
ples contain 9 dimensions, describing several known indicators
for breast cancer and 2 classi�cation labels: benign and malignant.
�e performance on this binary classi�cation problem is measured
by rounding the neural network’s output to the closest label and
comparing the MSE on the labels, so the classi�cation threshold is
set to 0.5 for this binary problem.

-2 0 2 4

0

0.5

1

Ta
rg

et

Cholesterol

-1 0 1

Engine

0 2 4

Cancer

1st Principal Component

Figure 6: Datasets, viewed on the �rst principal component,
le�: cholesterol levels prediction, middle: prediction of en-
gine torque and CO2 emissions, right: breast cancer classi�-
cation. Colors are used to indicate multiple target values.

4.2 Algorithmic Setup
HA-NEAT’s hyperparameters are described in Table 1 and were
selected based on experiments done with a simple regression prob-
lem which was not part of the data sets used in these experiments.
A custom Matlab implementation of NEAT was used. �e data is
normalized and used to train HA-NEAT and standard NEAT with a
number of �xed activation functions.

4.3 Homogeneous Networks
As mentioned above, Kamruzzaman and Aziz [11] and Laudani
et al. [13] show that there is no single best activation function
for di�erent regression problems. To con�rm that the data sets
indeed require di�erent activation functions for optimal training,
a performance comparison of homogeneous networks, networks
that use a single activation function and evolved with NEAT, be-
tween the cholesterol and engine regression, as well as the cancer
classi�cation problems is made.

�e results in Figure 7 show that indeed, not a single activation
function leads to the best performing networks. Mean square errors

General
population size 100
max. generation 3000

Speciation
target species 10
compatibility threshold 20 start value
excess gene weight 1
disjoint gene weight 1
weight distance weight 0.2
drop o� age 15

Genome operations
crossover 90 % of population
add node(*) 1 % chance/genome
add connection 30 % chance/genome
mutate activation(*) 20 % chance/genome

Gene operations
mutate weight 20 % chance/gene
δ weight 2
enable connection 0.02 % chance/gene
disable connection 0.2 % chance/gene

Table 1: Hyperparameters of heterogeneous(*) NEAT

1000 2000 3000
10 -2

10 -1
M

S
E

 T
es

t

1000 2000 3000
Generation

10 -2

1000 2000 3000

10 -1

Step
ReLu
Sigmoid
Gaussian

Figure 7: Median test error over 50 replicates of homoge-
neous networks on the cholesterol, engine and cancer prob-
lem. Best homogeneous networks for the �rst set use a sig-
moid activation, for the second set, Gaussian and ReLu have
the highest accuracy, and the third set requires a sigmoid
activation

are shown in Table 2. We conclude that no single activation function
works best for our data sets, which con�rms the results in [29].

4.4 Heterogeneous Networks
4.4.1 Mutation Operator. �e mutation function that changes

the activation function of a node is an addition that was not used in
the HyperNEAT algorithm. Figure 8 shows the di�erence between
not using the mutation (0% mutation rate) and various probabilities
of mutating once per genome on the engine data set. A rate of 100%
means that one of the nodes in an individual’s network is changed
in every generation. Experiments were repeated 50 times but only
for a small population of 50 individuals, explaining the discrepancy
with respect to results of other experiments.

Although the algorithm converges quicker in the beginning
when the mutation operator is disabled (similar to what is done in
HyperNEAT), a�er 500-750 generations, depending on the mutation

GECCO ’17, July 15–19, 2017, Berlin, Germany Alexander Hagg, Maximilian Mensing, and Alexander Asteroth

HA-NEAT Step ReLu Sigmoid Gaussian
Cholesterol

MSE 0.0197 0.0199 0.0198 0.0163 0.0170
25% quantile 0.0173 0.0181 0.0167 0.0138 0.0149
75% quantile 0.0248 0.0237 0.0251 0.0197 0.0214

Engine
MSE 0.0048 0.0091 0.0047 0.0053 0.0048

25% quantile 0.0041 0.0083 0.0043 0.0047 0.0042
75% quantile 0.0055 0.0103 0.0054 0.0061 0.0058

Cancer
MSE 0.0366 0.0365 0.0403 0.0294 0.0438

25% quantile 0.0292 0.0292 0.0292 0.0219 0.0292
75% quantile 0.0438 0.0441 0.0511 0.0511 0.0511

Table 2: MedianMSE, 25% and 75% quantiles, comparing het-
erogeneous networks and homogeneous networks with dif-
ferent activation functions on cholesterol, engine and can-
cer data sets, 50 experiment replicates. HA-NEAT shows sim-
ilar results on the cholesterol data set, although sigmoid cre-
ates the best performing networks. On the engine dataset,
HA-NEAT performs as good as the best performing homo-
geneous networks, ReLu and Gaussian. �e best performing
homogeneous network for the cancer data set use sigmoid,
heterogeneous networks’ performance is not far o�.

1000 2000 3000
Generation

0.005

0.01

0.015

0.02

M
S

E
 T

ra
in

1000 2000 3000
Generation

0.005

0.01

0.015

0.02

M
S

E
 T

es
t

 0 %
 20 %
 40 %
 60 %
 80 %
100 %

Figure 8: Mean training and test error for various rates
of mutating the activation function once per individual
genome on the engine data set.

rate, all instances of HA-NEAT surpass the accuracy of the mutation-
free instance. Although the operator can be quite destructive, it
still increases the evolvability of our representation. �e di�erence
between various mutation rates seems to not be very signi�cant,
but this needs to be analyzed more in depth.

4.4.2 Accuracy and Size. Figure 9 shows the development of
median training error, test error and number of nodes and connec-
tions on the cancer dataset over 50 replicates. �e heterogeneous
networks perform as well as the best homogeneous networks, but
with lower complexity.

4.4.3 Activation Functions. �e median amount of nodes used
in the heterogeneous networks for the three data sets, 32/10/20, is
much lower than the 51/16/29 nodes required in the homogeneous
networks. Similarly, the heterogeneous networks use a median
value of 124/35/116 connections, whereas the homogeneous net-
works use 225/170/197 connections. �is shows that HA-NEAT

HA-NEAT
Step
ReLu
Sigmoid
Gaussian

1000 2000 3000
Generation

10 -2

10 -1

M
S

E
 T

ra
in

1000 2000 3000
Generation

10 -2

10 -1

M
S

E
 T

es
t

1000 2000 3000
Generation

10 1

10 2

A
vg

. N
um

be
r o

f N
od

es

1000 2000 3000
Generation

10 2

A
vg

. N
um

be
r o

f C
on

ne
ct

io
ns

Figure 9: Development of median training and test errors,
and network size (nodes and connections) compared for en-
gine dataset. HA-NEAT’s training and test error are as good
as any homogeneous network. �e number of nodes and
connections is smaller than the best performing homoge-
neous network.

S
te

p

R
eL

u

S
ig

m
oi

d

G
au

ss
ia

n

0

0.1

0.2

0.3

0.4

R
el

at
iv

e
Fr

eq
ue

nc
y

S
te

p

R
eL

u

S
ig

m
oi

d

G
au

ss
ia

n

S
te

p

R
eL

u

S
ig

m
oi

d

G
au

ss
ia

n

Figure 10: Relative frequency of activation functions in re-
sulting heterogeneous networks for cholesterol, engine and
cancer datasets.

creates more parsimonious networks than the original implemen-
tation of NEAT. Although the topological search space, in terms of
di�erent neurons, is increased, because of the added dimension of
4 instead of 1 activation function, the algorithm has a convergence
rate similar to that of the homogeneous versions.

�e relative frequency of di�erent activation functions in the
heterogeneous solutions is shown in Figure 10. For the cholesterol
HA-NEAT does not seem to prefer a speci�c activation function.
In case of the engine data, the step function is underrepresented,
whereas in case of cancer classi�cation, step and sigmoid activations
are preferred. �e histograms show that HA-NEAT does not simply
prefer just �nding the best performing homogeneous network, but
�nds qualitatively di�erent solutions.

4.4.4 Parsimony. Figure 11 shows the relationship between test
errors in a comparison between heterogeneous and homogeneous
networks. When trained on the cholesterol data set NEAT is clearly
more parsimonous when creating heterogeneous instead of homo-
geneous networks, showing that it is easier to be more parsimonious

Evolving Parsimonious Networks by Mixing Activation Functions GECCO ’17, July 15–19, 2017, Berlin, Germany

50 100 150 200 250
Network Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
S

E te
st

50 100 150 200 250 300
Network Size

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

50 100 150 200 250 300

Network Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08HA-NEAT
Step
ReLu
Sigmoid
Gaussian

Figure 11: Network size and test errors compared between heterogeneous and homogeneous networks for the cholesterol (le�),
engine (middle) and cancer (right) data sets.

when we allow the evolution of activation functions. As was al-
ready discussed in Figure 9, although the search space is increased
by the number of activation functions, the increased expressivity of
the networks decreases it with respect to a certain accuracy. Similar
results are noticeable for the engine data set. Here, the resulting
variance in terms of accuracy and size is much smaller using het-
erogeneous networks, as they have a much smaller footprint in the
plot. In the classi�cation experiment the heterogeneous networks
are again much smaller than most homogeneous networks.

Although we did not focus on the topic of modularity in this
work, Figure 12 shows one of the top networks produced by HA-
NEAT on the engine data set. It shows that for this multi-target
problem, we do see the kind of modularity we describe in 1.2. �e
two hidden neurons in the lower le� of the network are used for
both outputs, whereas the rest is split into two modules that serve
only one of the outputs. �is is the same behaviour as was observed
for HyperNEAT in [10].

In Section 2.2 it is mentioned that Turner and Miller [29] found
that heterogeneous networks perform be�er than the average homo-
geneous networks. We show that for regression and classi�cation
problems heterogeneous networks perform not only as well as the
average homogeneous model, but mostly as well as the best homo-
geneous models. Most of all though, the heterogeneous networks
are more parsimonious and do indeed contain a non-trivial mix of

selected activation functions. �e networks reach a higher accuracy
per connection, resulting in a smaller search space.

5 CONCLUSION
An extension to the NEAT algorithm is introduced, allowing for
it to produce heterogeneous networks, consisting of neurons with
di�erent activation functions, a directly encoded version of the
CPPNs used in HyperNEAT. HA-NEAT is able to �nd solutions that
perform as good as the best homogeneous networks, which use
only one kind of activation function, but using less nodes and con-
nections. Although the search space is increased by parameterizing
the activation function of every node, the reduction in topological
complexity is shown to lead to convergence speeds that are similar
to the best-performing homogeneous networks. HA-NEAT auto-
matically picks solutions that rivals the original NEAT in regression
problems, posing the bene�t of not having to pick the right activa-
tion function and at the same time being more parsimonious than
homogeneous networks.

A mutation operator that allows changing the activation function
of nodes during evolution has been evaluated. �is operator was not
used in HyperNEAT but shows that it improves convergence. �e
amount of activation mutations did not have a signi�cant impact
but the results seem to suggest, that we may use more than one

positive weight negative weightinput bias hidden output

Figure 12: One of the best networks found for engine data set. Le�: full network, middle: subnetwork serving the �rst output
node, right: subnetwork serving the second output node.

GECCO ’17, July 15–19, 2017, Berlin, Germany Alexander Hagg, Maximilian Mensing, and Alexander Asteroth

mutation per genome per generation. �is will have to be further
analyzed.

Although heterogeneous networks perform as well as the best
homogeneous networks, more a�ention has to be given to the train-
ing of weights. Using backpropagation on the evolved network
topologies in certain intervals might allow us to make fairer compar-
isons between individuals with di�erent topologies sooner, which
would decrease some of the necessity for innovation protection.

When training data is scarce and over��ing is to be expected,
networks should be as parsimonious as possible, while still retaining
a high accuracy. �e use of heterogeneous networks has shown to
be a promising approach to do just that in topology-constructing
neuroevolutionary training methods.

REFERENCES
[1] Forest Agostinelli, Ma�hew Ho�man, Peter Sadowski, and Pierre Baldi. 2014.

Learning activation functions to improve deep neural networks. arXiv preprint
arXiv:1412.6830 5, 3-4 (2014).

[2] John E. Angus. 1991. Criteria for Choosing the Best Neural Network: Part 1.
Technical Report 91-16. DTIC Document.

[3] Jan Drchal and Miroslav Snorek. 2012. Distance measures for HyperGP with
�tness sharing. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation. ACM, 545–552.

[4] Mehmet Ö. Efe. 2008. Novel neuronal activation functions for feedforward neural
networks. Neural Processing Le�ers 28, 2 (2008), 63–79.

[5] Jason Gauci and Kenneth O. Stanley. 2010. Autonomous evolution of topographic
regularities in arti�cial neural networks. Neural computation 22, 7 (2010), 1860–
1898.

[6] Faustino Gomez and Risto Miikkulainen. 1998. 2-D pole balancing with recurrent
evolutionary networks. In ICANN 98. Springer, 425–430.

[7] Martin T. Hagan. 2017. Engine dataset. (2017). h�p://hagan.ecen.ceat.okstate.edu
[8] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-

forward networks are universal approximators. Neural Networks 2, 5 (1989),
359–366.

[9] Reinhold Huber, H.A. Mayer, and Roland Schwaiger. 1995. netGEN-A Parallel
System Generating Problem-Adapted Topologies of Arti�cial Neural Networks
by means of Genetic Algorithms. 7 (1995).

[10] Joost Huizinga, Jean-Baptiste Mouret, and Je� Clune. 2014. Evolving Neural
Networks �at Are Both Modular and Regular: HyperNeat Plus the Connection
Cost Technique. GECCO ’14 Proceedings of the 16th annual Genetic and Evolu-
tionary Computation Conference (2014), 697–704. DOI:h�p://dx.doi.org/10.1145/
2576768.2598232

[11] J. Kamruzzaman and S.M. Aziz. 2002. A note on activation function in multilayer
feedforward learning. Proceedings of the 2002 International Joint Conference on
Neural Networks. IJCNN’02 (Cat. No.02CH37290) 1 (2002).

[12] Andrey N. Kolmogorov. 1957. On the representation of continuous functions of
many variables by superpositions of continuous functions of one variable and
addition. MR 22 (1957), 2669.

[13] Antonino Laudani, Gabriele Maria Lozito, Francesco Riganti Fulginei, and
Alessandro Salvini. 2015. On training e�ciency and computational costs of
a feed forward neural network: A review. Computational Intelligence and Neuro-
science 2015 (2015).

[14] Maryam Mahsal Khan, Arbab Masood Ahmad, Gul Muhammad Khan, and Ju-
lian F. Miller. 2013. Fast learning neural networks using Cartesian genetic
programming. Neurocomputing 121 (2013), 274–289. DOI:h�p://dx.doi.org/10.
1016/j.neucom.2013.04.005

[15] Olvi L. Mangasarian and William H. Wolberg. 1990. Cancer diagnosis via linear
programming. University of Wisconsin-Madison. Computer Sciences Department
(1990).

[16] Helmut Mayer and Roland Schwaiger. 2002. Di�erentiation of Neuron Types by
Evolving Activation Function Templates for Arti�cial Neural Networks. In 2002
International Joint Conference on Neural Networks Vol. 2. 1773–1778.

[17] Julian F. Miller and Peter �omson. 2000. Cartesian genetic programming.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
�cial Intelligence and Lecture Notes in Bioinformatics) 1802 (2000), 121–132.
arXiv:arXiv:1011.1669v3

[18] David E. Moriarty and Risto Miikkulainen. 1996. E�cient reinforcement learning
through symbiotic evolution. Machine Learning 22, 1-3 (1996), 11–32.

[19] Gregory Morse and Kenneth O. Stanley. 2016. Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks. GECCO ’16 Proceed-
ings of the 18th annual Genetic and Evolutionary Computation Conference (2016).
DOI:h�p://dx.doi.org/10.1145/2908812.2908916

[20] Vinod Nair and Geo�rey E. Hinton. 2010. Recti�ed Linear Units Improve Re-
stricted Boltzmann Machines. Proceedings of the 27th International Conference on
Machine Learning 3 (2010), 807–814.

[21] Mark JL Orr. 1993. Regularised centre recruitment in radial basis function
networks. In Centre for Cognitive Science, Edinburgh University. Citeseer.

[22] N Purdie, EA Lucas, and MB Talley. 1992. Direct measure of total cholesterol
and its distribution among major serum lipoproteins. Clinical Chemistry 38, 9
(1992), 1645–1647.

[23] Sebastian Risi, Joel Lehman, and Kenneth O. Stanley. 2010. Evolving the Place-
ment and Density of Neurons in the HyperNEAT Substrate. GECCO ’10 Proceed-
ings of the 12th annual Genetic and Evolutionary Computation Conference (2010),
563–570.

[24] Kenneth O. Stanley. 2007. Compositional pa�ern producing networks: A novel
abstraction of development. Genetic Programming and Evolvable Machines 8, 2
(2007), 131–162. DOI:h�p://dx.doi.org/10.1007/s10710-007-9028-8

[25] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Arti�cial Life 15, 2
(2009), 185–212. DOI:h�p://dx.doi.org/10.1162/artl.2009.15.2.15202

[26] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127.

[27] Kowaliw Taras, Bredeche Nicolas, and Renè Doursat. 2014. HyperNEAT: �e
First Five Years. In Studies in Computational Intelligence. Vol. 557. 159–185. DOI:
h�p://dx.doi.org/10.1007/978-3-642-55337-0

[28] Leonardo Trujillo, Luis Munoz, Enrique Naredo, and Yuliana Martinez. 2014.
{NEAT}, �ere’s No Bloat. 17th European Conference on Genetic Programming
8599 (2014), 174–185. DOI:h�p://dx.doi.org/doi:10.1007/978-3-662-44303-3 15

[29] Andrew James Turner and Julian Francis Miller. 2014. NeuroEvolution: Evolving
Heterogeneous Arti�cial Neural Networks. Evolutionary Intelligence 7, 3 (2014),
135–154. DOI:h�p://dx.doi.org/10.1007/s12065-014-0115-5

[30] Xin Yao. 1999. Evolving arti�cial neural networks. Proc. IEEE 87, 9 (1999),
1423–1447. DOI:h�p://dx.doi.org/10.1109/5.784219 arXiv:1108.1530

http://hagan.ecen.ceat.okstate.edu
http://dx.doi.org/10.1145/2576768.2598232
http://dx.doi.org/10.1145/2576768.2598232
http://dx.doi.org/10.1016/j.neucom.2013.04.005
http://dx.doi.org/10.1016/j.neucom.2013.04.005
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1145/2908812.2908916
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1007/978-3-642-55337-0
http://dx.doi.org/doi:10.1007/978-3-662-44303-3_15
http://dx.doi.org/10.1007/s12065-014-0115-5
http://dx.doi.org/10.1109/5.784219
http://arxiv.org/abs/1108.1530

	Abstract
	1 Introduction
	1.1 Influence of Activation Function
	1.2 Heterogeneous Networks

	2 Related Work
	2.1 Evolving Topologies
	2.2 Evolving Activation Functions
	2.3 Discussion

	3 Approach
	4 Evaluation
	4.1 Data Sets
	4.2 Algorithmic Setup
	4.3 Homogeneous Networks
	4.4 Heterogeneous Networks

	5 Conclusion
	References

