
Constraint Handling in Efficient Global Optimization

Samineh Bagheri
Cologne University of Applied

Sciences (TH Köln)

Gummersbach, Germany

samineh.bagheri@th-koeln.de

Wolfgang Konen
Cologne University of Applied

Sciences (TH Köln)

Gummersbach, Germany

wolfgang.konen@th-koeln.de

Richard Allmendinger
University of Manchester

Manchester, UK

richard.allmendinger@manchester.

ac.uk

Jürgen Branke
University of Warwick

Coventry, UK

juergen.branke@wbs.ac.uk

Kalyanmoy Deb
Michigan State University

East Lansing, USA

kdeb@egr.msu.edu

Jonathan Fieldsend
University of Exeter

Exeter, UK

J.E.Fieldsend@exeter.ac.uk

DomenicoQuagliarella
Italian Aerospace Research Centre

(CIRA)

Via Maiorise, snc

Capua, Italy 81043

d.quagliarella@cira.it

Karthik Sindhya
University of Jyväskylä

Jyväskylä, Finland

karthik.sindhya@jyu.fi

ABSTRACT

Real-world optimization problems are often subject to several con-

straints which are expensive to evaluate in terms of cost or time. Al-

though a lot of effort is devoted to make use of surrogate models for

expensive optimization tasks, not many strong surrogate-assisted

algorithms can address the challenging constrained problems. Ef-

ficient Global Optimization (EGO) is a Kriging-based surrogate-

assisted algorithm. It was originally proposed to address uncon-

strained problems and later was modified to solve constrained

problems. However, these type of algorithms still suffer from sev-

eral issues, mainly: (1) early stagnation, (2) problems with multiple

active constraints and (3) frequent crashes. In this work, we intro-

duce a new EGO-based algorithm which tries to overcome these

common issues with Kriging optimization algorithms. We apply

the proposed algorithm on problems with dimension d ≤ 4 from

the G-function suite [16] and on an airfoil shape example.

KEYWORDS

Constraint optimization, expensive optimization, surrogate models,

Kriging, Gaussian processes, EGO

ACM Reference format:

Samineh Bagheri, Wolfgang Konen, Richard Allmendinger, Jürgen Branke,

Kalyanmoy Deb, Jonathan Fieldsend, DomenicoQuagliarella, and Karthik

Sindhya. 2017. Constraint Handling in Efficient Global Optimization. In

Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, 8 pages.

DOI: http://dx.doi.org/10.1145/3071178.3071278

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’17, Berlin, Germany

© 2017 ACM. 978-1-4503-4920-8/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3071178.3071278

1 INTRODUCTION

A constrained optimization problem (COP) can be defined as the

minimization of an objective function (fitness function) f subject

to inequality constraint function(s) д1, . . . ,дm :

Minimize f (�x), �x ∈ [�a, �b] ⊂ Rd (1)

subject to дi (�x) ≤ 0, i = 1, 2, . . . ,m

where �a and �b define the lower and upper bounds of the search

space (a hyperrectangle).

Real-world COPs are often very expensive to evaluate which

means only a very limited number of function evaluations is al-

lowed in practice. Giannakoglou [9] presents an overview on ef-

ficient optimization approaches and shows indicative examples

from aerodynamics. Therefore, a proper optimizer for this sort

of problems should be able to find optimal or near-optimal solu-

tions with a low number of function evaluations. Many different

surrogate-assisted techniques have been developed to tackle ex-

pensive COPs [3, 4, 20, 22, 28]. The main idea adopted by nearly

all surrogate-assisted optimization algorithms is to use fast mathe-

matical or statistical models for the optimization process and only

evaluate a new solution on the expensive function when the model

needs to be updated. Among the existing multitude of surrogate

modeling approaches with various properties, Kriging [8, 15] ap-

pears to be one of the most attractive techniques. Kriging, also

known as Gaussian Processes, offers a strong modeling tool which

provides estimation of the prediction uncertainty in addition to

the approximation of the function. Although in recent years many

studies have been undertaken with different Kriging-based un-

constrained and constrained optimizers, there are still limitations

associated with the use of Kriging models. One of the issues that

almost all Kriging-based strategies face is that frequent crashes

occur during the optimization process. The crashes usually happen

when a new solution is located very close to a former one. We

find that adding a noise variance is an effective way to handle such

stability issues.

GECCO ’17, July 15-19, 2017, Berlin, Germany S. Bagheri et. al.

Another point is that most of the existing Kriging-based con-

strained optimization strategies are evaluated only on simple 2-

dimensional benchmark functions mostly with only one active con-

straint [7, 10, 25–27]. On the other hand, real-world COPs are often

multi-constrained and are not limited to 2-dimensional problems.

This motivates us to develop a new Kriging-based optimization

algorithm which avoids crashes and is applicable on challenging

COPs. We evaluate the proposed algorithm on all benchmarks with

dimension d ≤ 4 taken from the challenging G-function suite [16].

Throughout this work we try to answer the following research

questions:

(H1) Is it possible to modify existing Kriging-based optimization

algorithms to handle challenging COPswithmultiple active

constraints?

(H2) Is it possible to balance the exploration of feasible and

infeasible infill points in a proper way?

1.1 Related Work

Most Kriging-based constrained optimization algorithms make use

of Kriging’s statistical property, expected improvement function [14,

17], for efficiently solving global COPs. We can categorize such

algorithms into three main groups.

(a)Thefirst group of algorithms transform a constrained problem

into an unconstrained problem. Schonlau et al. [27] is an example

of type (a) algorithm. This algorithm suggests to maximize the mul-

tiplication of the expected improvement of the objective function

and the probability of feasibility, which are both statistical mea-

sures determined from Kriging models of objective and constraint

functions. This algorithm fails if the number of active constraints

are large or if the objective function is very steep or flat around

the feasibility boundary. Algorithms which tend to maximize the

penalized expected improvement [18, 25] also belong to the first

group.

(b) Another approach to address COPs is to solve a constrained

sub-problem. As an example, we can name a work from Sasena et

al [26] in which the expected improvement is maximized subject to

the approximation of the constraint functions. Audet et al. [2] max-

imize the expected improvement subject to the expected violation

of each constraint.

(c) Methods in the third category transform the constrained

problems to multi-objective unconstrained problems and then use

multi-objective optimizers. These methods often consider the ex-

pected improvement of the fitness function as one objective and

one or more statistical properties of the constraint functions as

other objective(s) [7, 12, 19]. Although Durantin et al. [7] show

that the type (c) algorithms perform better than the existing algo-

rithms from type (a) and (b), we have to consider that solving a

multi-objective problem is a complex task. An increase in problem

dimension or number of active constraints makes such algorithms

very time-consuming.

To the best of our knowledge, the current state-of-the-art for

solving the G-problems is SACOBRA [3] (self adjusting COBRA).

SACOBRA uses RBF surrogate models. SACOBRA is not a Kriging-

based COP, it does not use the EI approach.

We propose in this paper a new type-(a) algorithm called SOCU

(Surrogate-Assisted Optimization encompassing Constraints and

Uncertainties).

2 METHODS

2.1 Kriging Surrogate Models

Kriging is a statistical modeling technique based on Gaussian pro-

cesses. This algorithm approximates the function f (x) with the

surrogate model

Y = μ + ϵ(x), (2)

where μ is the average of the stochastic process and the error term

ϵ(x) is normally distributed with mean 0 and variance σ 2(x). The es-

timation of μ and σ are the heart of Kriging modeling and described

in more detail in the standard Kriging literature [14, 15].

2.2 Expected Improvement with Constraints

Efficient global optimization (EGO) is an algorithm developed by

Jones et al. [14] for unconstrained optimization based on Kriging.

The main idea of the EGO algorithm – originally introduced by

Mokus et al. [17] – is to balance between exploration and exploita-

tion by maximizing the expected improvement in Eq. (4) during a

sequential optimization process:

EI (x) = E [max(fmin − Y , 0)] (3)

= (fmin − μ(x))Φ
(fmin − μ(x)

σ (x)
)
+ σ (x)φ

(fmin − μ(x)
σ (x)

)
,

where the plugin fmin is the fitness value of the best found solution

and Φ and φ are the cumulative and probability density function

of the standard normal distribution. Schonlau et al. [27] extended

the EGO algorithm to handle inequality constraints. Their algo-

rithm maximizes the penalized expected improvement function EIp
shown in Eq. (4) which is the product of the expected improvement

(now with plugin fmin being the best feasible fitness value) and the

feasibility function F (x)

EIp (x) = EI (x) · F (x) = EI (x) ·
m∏
i=1

P(дi (x) < 0), (4)

where P(дi (x) < 0) is the probability of дi (x) to be feasible, mea-

sured with the help of the Kriging model for the ith constraint:

P(дi (x) < 0) = Φ
(−μi (x)
σi (x)

)
, (5)

This algorithm often faces difficulties in solving COPs with 2 or

more active constraints, because the product of feasibility probabili-

ties approaches zero near the feasibility border where the optimum

is located. Therefore, the penalized expected improvement may

have very small values in the interesting region. Furthermore, this

algorithm is unlikely to sample infeasible solutions. Others have

shown that existence of the infeasible solutions in the population

can often be helpful [23, 24]. In order to give solutions around the

boundary a higher chance to be selected, we modify the feasibility

function introduced by Schonlau [27] and formulate a modified

expected improvement function EImod as follows:

EImod (x) = EI (x) · F (x) = EI (x) ·
m∏
i=1

min

(
2Φ

(−μi (x)
σi (x)

)
, 1

)
(6)

Constraint Handling in Efficient Global Optimization GECCO ’17, July 15-19, 2017, Berlin, Germany

− μ
σ

Figure 1: Feasibility function for the i-th constraint Fi (x).
The total feasibility function is F (x) =∏

Fi (x)

Fig. 1 shows the different feasibility functions used in Schonlau

algorithm (blue dashed line) and our proposed algorithm (red line)

for one constraint.

The proposed algorithm SOCU, shown in Alg. 1, initially maxi-

mizes the feasibility function in order to find at least one feasible

solution. As soon as one feasible solution is found, the algorithm

proceeds by maximizing the modified expected improvement (Eq. 6)

in each iteration. Since the EImod function is highly multimodal,

we decided to use a simulated annealing method as the internal

optimizer.

2.3 Plugin Control (PC): Preserving Feasibility

In our first experiments with EImod we observed a strange behav-

ior depicted in Fig. 2: Initially, the surface plot of EImod looks as

expected (upper plot), but the best feasible solution is still far away

from the true solution. When finding better solutions near the

true optimum, the EImod surface would suddenly change (lower

plot) and the maximum of EImod shifts far away into infeasible

area. What is the reason? A closer analysis revealed that the plugin

fmin in Eq. (4) is responsible for this. Usually, the plugin fmin is

taken as the best feasible objective found so far. A new value for

fmin does not change the maxima locations of EI , but it changes
the intercept. This has a large effect on the maxima locations of

EImod (x) = EI (x) · F (x). We explain this with a 1D example.

2.3.1 The 1D-Case. Consider the following simple 1D-model:

EI (x) = max(ax + b, 0) (7)

F (x) = min
(
2Φ

(
kx

)
, 1
)

(8)

We assume k > 0, so that x < 0 is the infeasible area, and a < 0,

i. e. the (unconstrained) EI (x) has better values towards x < 0. This

makes the constraint active, meaning that the constrained optimum

is on the border x = 0.

●●

Figure 2: EImod shift towards the infeasible area for a 2-

dimensional test problem (G06). The thick lines in form of

a pointed triangle show the feasible area, the blue square is

the true solution. The yellow circle is the best feasible solu-

tions (being outside the plot area in the upper plot).

Figure 3: EI (green), F (red), and EImod (black) in the 1D-case.

Right: For small interceptsb the optimumof EImod is shifted

towards the infeasible area x < 0.

GECCO ’17, July 15-19, 2017, Berlin, Germany S. Bagheri et. al.

Algorithm 1 SOCU algorithm

1: m: number of constraints

2: n: number of evaluated points

3: d : dimension of the problem

4: pop(n): population of n = 5d initial points generated by LHS

5: while n ≤ Budдet do

6: Build from pop(n) the Kriging models for objective function

f : (μ0,σ0) and them constraints дi : (μ1,σ1), . . . , (μm ,σm)
7: Obtain EI (x) from Eq. (4) with plugin corrector Eq. (10)

8: F (x) =∏m
i=1 min

(
2Φ

(− μi (x)
σi (x)

)
, 1

)
9: EImod (x) = EI (x) · F (x)
10: if a feasible solution has been found then

11: xnew = argmax(EImod (x)) � Use simulated annealing

12: else

13: xnew = argmax(F (x))
14: end if

15: Add xnew topop(n) and evaluate it on true f andд1, . . . ,дm
16: n ← n + 1
17: end while

What happens now for EImod as a function of the intercept b?
As Fig. 3 depicts, large b have the optimum for EImod correctly at

x = 0, but too small values for b lead to a false shift of EImod ’s

maximum towards the infeasible area. A short Taylor expansion

shows that the critical intercept is

bcr it =
a
√
2π

2k
. (9)

Smaller intercepts have the maximum of EImod shifted to the in-

feasible area.

To correct this, we simply have to change the plugin in Eq. (4):

EI (x) = E [max(bcr it + fmin − Y , 0)] (10)

This ensures that at the active border, where Y is not larger than

fmin , the value of EI (x) is at least bcr it . – If we have multiple

constraints, we calculate bcr it for each of them

2.3.2 The 2D- and nD-Case. In the higher-dimensional case

(d > 1) we have to find the direction �д of slowest descent of EImod

at the current best feasible point. This is for example in the case

of G06 the bisecting line of the two constraints. The slopes a and

k for EI and the constraint(s) in Eq. (9) have to be replaced by the

respective slopes along direction �д.

3 EXPERIMENTAL SETUP

3.1 General Setup

Initially we test the proposed algorithm on a toy problem Sphere4 of

steerable difficulty: This problem has a sphere as objective function

and 4 linear constraints, 2 of them being active, 2 inactive. The

constraints enclose a feasible region with a triangular tip of angle

ϕ (see Fig. 4).

Next, we apply SOCU to all G-problems from the G-problem

suite having 4 or less dimensions (see Table 1).1 This is because it

is well known that Kriging algorithms are viable only for not too

1G02 and G03 are problems scalable in their dimension d . We use here d = 2.

large dimensions. Equality constraints are translated to inequality

constraints.2

For each algorithm we run 30 independent trials with different

n = 5d initial points. Constraint violations smaller than 10−5 are
tolerated. We consider a fixed budget of 100 function evaluations for

all problems. The Kriging models are built by R packages DiceKrig-

ing and DiceOptim. In order to optimize EImod we use Generalized

Simulated Annealing (R package GenSA). The time limit for this

internal optimizer is set to 10 seconds in each iteration, allowing for

several thousand Kriging model evaluations (depending on problem

size).

Additionally, we run SOCU on an application example from

aerodynamics described in the next section.

3.2 Application example to an aerodynamic
shape design problem

The benchmarks related to aerodynamic shape design problems rep-

resent an ideal platform to test optimization systems and algorithms

that make use of surrogate methods for the evaluation of the objec-

tive functions and the constraints [13]. This is for two main reasons,

namely that the evaluation of objectives and constraints very often

requires a significant computational effort, and that both objectives

and constraints may have a degree of non-linearity which is a func-

tion of the computational model used, the operating conditions

considered and the shape parameterization chosen. The problem

presented here is a simple subsonic airfoil section design exercise

derived from [21], but with some special features in terms of ease

of implementation, flexibility, reproducibility and availability of the

analysis codes that allow its use even in contexts not specialized to

aerodynamic design.

3.2.1 Problem setup. The goal of this optimization problem is

the reduction of the aerodynamic drag of a given airfoil changing its

shape. A generic airfoil shape is parameterized as linear combina-

tion of an initial geometry, defined parametrically by (x0(s),y0(s)),
and a number of functions yi (s) that may be defined analytically or

by point distributions [11]:

y(s) = k
(
y0(s) +

n∑
i=1

wiyi (s)
)
, x(s) = x0(s) (11)

where the airfoil shape is controlled by the design parameterswi

and by the scale factork . The operating conditions areMach number

equal to 0.0 (incompressible flow) and Reynolds number equal to

3000000. The starting airfoil is the NACA 2412 [1]. The Mach

and Reynolds numbers that characterize the specified regime of

operation are sufficiently low to allow an extended laminar bucket

that can have a beneficial effect on a large part of the flight envelope.

The design goals are translated into the following optimization

problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minCD
subject to: CL = 0.5

CM ≥ −0.07
CDp ≥ 0

t/c = 0.12

�R ≥ 0.006

(12)

2The inequality sign is chosen in such a way that the constrained optimum stays at
the same location.

Constraint Handling in Efficient Global Optimization GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 1: Characteristics of the G-functions: d: dimension,

ρ∗: feasibility rate (%), FR: range of the fitness values, GR:
ratio of largest to smallest constraint range, LI/NI: num-

ber of linear/nonlinear inequalities, LE/NE: number of lin-

ear/nonlinear equalities, a: number of constraints active at

the optimum.

Fct. d ρ∗ FR GR LI / NI LE / NE a

G02mod 2 99.997% 0.57 2.632 1 / 1 0 / 0 1

G03mod 2 78.388% 1.99 1.000 0 / 0 0 / 1 1

G05 4 0.0000% 8863.69 1788.74 2 / 0 0 / 3 3

G06 2 0.0072% 1246828.23 1.010 0 / 2 0 / 0 2

G08 2 0.8751% 1821.61 2.393 0 / 2 0 / 0 0

G11 2 0.0000% 4.99 1.000 0 / 0 0 / 1 1

G15 3 0.0000% 586.0 1.034 0 / 0 1 / 1 2

G24 2 0.44250% 6.97 1.82 0 / 2 0 / 0 2

XFOIL 4 0.1349 % 0.99 1.34 0 / 3 0 / 0 1

Where CD , CDp , CL and CM are the drag, pressure drag, lift and

pitching moment coefficient of the airfoil; t/c denotes the thickness
to chord ratio. The two equality constraints defined in (12) are here

satisfied by explicitly changing two free problem parameters and

therefore they are not considered by the optimization algorithm. In

particular, the constraint on t/c is satisfied by changing properly

the free parameter k , while the constraint on CL is satisfied by

changing the second free parameter, namely the airfoil angle of

attack α .
The aerodynamic analysis code here selected to evaluate the

airfoil performance is Drela’s XFOIL code [5]. This code is based

on a second order panel method interactively coupled to a bound-

ary layer integral module. Laminar to turbulent flow transition is

predicted using the method described in [6].

4 RESULTS

Demonstration on Sphere4

The Sphere4 problem is a constrained optimization problem of steer-

able difficulty. It is used here to demonstrate the difference between

the Kriging algorithms. Fig. 5 shows the results on Sphere4. As

expected, the problem gets harder for all algorithms as the feasibil-

ity angle ϕ decreases. This is because the feasible region becomes

smaller and the optimum is surrounded by a neighborhood con-

taining more and more infeasible points. – Interestingly, also the

gap between Schonlau and SOCU gets larger as ϕ decreases. This

is understandable as well: For SOCU the probability of feasibility

is 1 along both active constraint lines for all ϕ. For Schonlau the

probability of feasibility is 0.25 at the optimum (2 active constraints,

both 0.5). If ϕ is large, the probability quickly rises to 0.5 as we

move along one of the active constraint lines, because the distance

to the other line increases. But if ϕ is small and we move along one

constraint line, the probability according to Schonlau stays longer

near 0.25, because the second constraint line is not far away. Thus

the solution found by Schonlau will be farther from the optimum

since the maximum of the product EI · F moves farther into the

feasible region. This is exactly what we see in Fig. 5.

optimum

ϕ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

Sphere4

0

0.5

1

1.5

2

·105

Figure 4: Sphere4 problem. The colored contour levels show

the objective function 105 · (x21 +x22) (2D sphere function). The

thick black lines depict 4 linear constraints enclosing the

feasible region. The difficulty of this problem is scalable by

changing the feasibility angle ϕ.

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●●●●

π π π π π π
φ

Figure 5: Comparing the final optimization error deter-

mined by different algorithms for optimizing Sphere4 prob-

lems with different feasibility angles. The results are taken

from 30 independent runs and 100 function evaluations.

Noise Variance

In our first experiments we experienced frequent crashes of the

Kriging modeling software due to numeric instabilities. This is

a well-known but cumbersome observation shared by many re-

searchers in Kriging especially if the modeling points are unevenly

spaced, as it is inevitably the case in optimization tasks. To avoid

too strong oscillations of the Kriging model due to nearby points,

it is a common cure to switch from interpolating to approximating

Kriging models, either with the so-called nugget-effect or with a

GECCO ’17, July 15-19, 2017, Berlin, Germany S. Bagheri et. al.

Table 2: Effect of noise variance.

SOCU w/o noise variance SOCU

problem crashed (%) iteration crashed (%) iteration

G06 100 19 0 –

G02mod 96 40 0 –

noise variance parameter, which assumes a certain noise or uncer-

tainty related with every modeling point. Since the nugget effect

leads to a complicated structure for the variance σ 2(x), it turned
out to be not well-suited for our case.

The noise variance, on the other hand, turned out to be very

effective: As Table 2 shows, the interpolating Kriging models had

frequent crashes. By adding the noise variance ν = 0.01 to the

model, we could completely avoid any crashes in our experiments.

Performance on G-Problems

In Fig. 6 we compare the two different variants of Kriging-based,

EGO, namely the original version of Schonlau et al. [27] and our

SOCU algorithm, which we applied to all G-problems in Tab. 1.

SOCU reaches lower optimization errors inmost cases. In the case of

G08, both algorithms have the same median curve. This is perfectly

understandable, since G08 is the only problem without any active

constraints. Absence of an active constraint is a convincing reason

for similar performance of both algorithms, since the different

feasibility functions (Fig. 1) have no effect. For problems with

active constraints, the high value of SOCU’s Fi (x) at the border of
the feasible region helps to find better solutions.

In Fig. 7 we show additionally the effect of switching off the

plugin control (Sec. 2.3) in SOCU (green boxplot ’SOCU w/o PC’).

It can be seen that the plugin control is beneficial for G03, G06 and

G11 (blue boxplot ’SOCU’).

We compare in Fig. 8 the results of SOCU with SACOBRA [3], to

the best of our knowledge the current state-of-the-art for solving

the G-problems. It is evident that SACOBRA is slightly better in

most cases, except for the case of G24. Additionally, three problems

(G05, G15, G24) show a better performance of SOCU in the early

stages (between iteration 25 and 75), although SACOBRA catches

up at iteration 100.

Finally Fig. 9 shows the overall performance comparison for all

algorithms on all test problems in form of a data profile. The larger

the data profile (ratio of solved problems), the better the relevant

algorithm. The performance factor α on the x-axis is the number

of iterations divided by d + 1.

Performance on XFOIL

Fig. 10 shows our results for the XFOIL case. SOCU is slightly better

than Schonlau in the median, but the difference is not statistically

significant. The similarity is understandable, since problem XFOIL

has only one active constraint. In such a case we do expect the

differences between Schonlau and SOCU to be not very large. SOCU

and SACOBRA produce nearly identical results.

Figure 6: Comparing the performance of SOCU and Schon-

lau [27]. The thick lines show the median from 30 indepen-

dent runs while the colored bands mark the worst and the

best run.

5 DISCUSSION AND CONCLUSION

We applied Kriging surrogate models to constrained optimization.

We could show that a small number of evaluations is sufficient to

obtain good optimization results. We were not the first to do so, but

three important conclusions for Kriging-based optimization could

be drawn in this paper:

(1) Interpolating Kriging models often suffer from numerical

instabilities and subsequent crashes, especially when the

population points are unevenly distributed in the search

space. This will be nearly always the case when apply-

ing Kriging for optimization. We have shown that these

Constraint Handling in Efficient Global Optimization GECCO ’17, July 15-19, 2017, Berlin, Germany

●
● ●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●
●

●
●
●●●
●

●

●

●

●

●

Figure 7: Comparing the final optimization error from 30

independent runs determined with different algorithms

crashes can be completely avoided (at least in our test cases)

when we add a small noise variance to the Kriging models.

This leads to approximating Kriging models and to a vari-

ance always larger than zero. Both effects are beneficial

for numeric stability of the Kriging models.

(2) Many Kriging-based COP-solvers use in one form or the

other a product of expected improvement EI and proba-

bility of feasibility F . We could show that if the additive

plugin in EI gets very small (which is no problem for the

optima of EI themselves), this can have adversarial effects

for the optima of EI · F . We proposed a method called plu-

gin control which successfully counteracts such adversarial

effects.

(3) Having this plugin control in effect, we could show that a

probability curve of SOCU being 1 at the border of feasibil-

ity is clearly superior to an approach where the probability

is 0.5 at the border [27]. The benefits are - as expected -

Figure 8: Comparing optimization performance of SACO-

BRA and SOCU.

more clearly seen for problems with two or more active

constraints (G05, G06, G15, G24).

We tested our new algorithm SOCU on a variety of benchmark

problems with dimension of d = 4 and below. We could perform

better than the Kriging-based algorithm of Schonlau et al [27], but

were in most cases worse than the non-Kriging-based SACOBRA

algorithm [3].

In some cases (G05, G15, G24) SOCU showed a better perfor-

mance (median, best and worst case) in early iterations (< 75) than

SACOBRA. We suppose that this is due to the better exploration

of the EGO approach. A drawback for Kriging-based models is

however that they become very slow for larger dimensions.

In the future, a closer investigation into the causes of the ob-

served performance differences would be desirable. Furthermore,

GECCO ’17, July 15-19, 2017, Berlin, Germany S. Bagheri et. al.

●●

●

●
●●●

●●●

●●
●●
●
●
●●
●●●

●●
●
●
●●
●

●●●●●
●●
●●●

●●●●●●●●●●

α

●

τ

Figure 9: Data profile.

Figure 10: Comparing the performance of SOCU, Schon-

lau [27], and SACOBRA [3] on the XFOIL real world opti-

mization problem (30 independent runs).

as the name SOCU suggests, we plan to test our algorithm also on

problems involving uncertainty.

The source code of the proposed algorithm ”SOCU” is available

online3.

ACKNOWLEDGMENTS

Thisworkwas initiated during the Surrogate-AssistedMulti-Criteria

Optimization Workshop at the Lorentz Center (Leiden, The Nether-

lands), 2016. We are grateful to the other participants of the work-

shop and the Lorentz Center for their support. This research was

partly funded by Tekes, the Finnish Funding Agency for Innovation

(the DeCoMo project), and by the Engineering and Physical Sciences

Research Council [grant numbers EP/N017195/1, EP/N017846/1].

REFERENCES
[1] I. H. A. Abbot and A. E. von Doenhoff. 1959. Theory of wing sections, including a

summary of airfoil data. Dover Publications, New York.

3https://github.com/saminehbagheri/SOCU

[2] C. Audet, A. J. Booker, Dennis, Jr, P. D. Frank, and D. W. Moore. 2000. A
Surrogate-Model-Based Method For Constrained Optimization. In AIAA/ISSMO.
2000–4891.

[3] S. Bagheri, W. Konen, and T. Bäck. 2016. Online selection of surrogate models
for constrained black-box optimization. In IEEE SSCI’2016. 1–8.

[4] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset. 1999. A rigorous framework for optimization of expensive functions by
surrogates. Structural Optimization 17, 1 (1999), 1–13.

[5] M. Drela. 1989. XFOIL: An Analysis and Design System for Low Reynolds
Number Airfoils. In Conference on Low Reynolds Number Airfoil Aerodynamics.
University of Notre Dame. http://web.mit.edu/drela/Public/papers/xfoil sv.pdf

[6] M. Drela and M. B. Giles. 1987. Viscous-Inviscid Analysis of Transonic and Low
Reynolds Number Airfoils. AIAA Journal 25, 10 (Oct. 1987), 1347–1355.

[7] C. Durantin, J. Marzat, and M. Balesdent. 2016. Analysis of multi-objective
Kriging-based methods for constrained global optimization. Computational
Optimization and Applications 63, 3 (2016), 903–926.

[8] A. I. Forrester and A. J. Keane. 2009. Recent advances in surrogate-based opti-
mization. Progress in Aerospace Sciences 45, 1 (2009), 50–79.

[9] K.C. Giannakoglou. 2002. Design of optimal aerodynamic shapes using stochastic
optimization methods and computational intelligence. Progress in Aerospace
Sciences 38, 1 (2002), 43 – 76.

[10] R. B. Gramacy and H. K. H. Lee. 2011. Optimization under unknown constraints.
In Bayesian Statistics. Vol. 9. 229–247.

[11] R. Hicks and P. A. Henne. 1978. Wing Design by Numerical Optimization. Journal
of Aircraft 15, 7 (1978), 407–412.

[12] R. Hussein and K. Deb. 2016. A Generative Kriging Surrogate Model for Con-
strained and Unconstrained Multi-objective Optimization. In GECCO ’16. ACM,
New York, NY, USA, 573–580.

[13] E. Iuliano and D.Quagliarella. 2015. Evolutionary Optimization of Benchmark
Aerodynamic Cases using Physics-based Surrogate Models. In AIAA SciTech.
American Institute of Aeronautics and Astronautics, 1721–1736.

[14] D. R. Jones, M. Schonlau, and W. J. Welch. 1998. Efficient Global Optimization
of Expensive Black-Box Functions. J. of Global Optimization 13, 4 (Dec. 1998),
455–492.

[15] D. G. Krige. 1951. A statistical approach to some basic mine valuation problems
on the Witwatersrand. Journal of the Southern African Institute of Mining and
Metallurgy 52, 6 (1951), 119–139.

[16] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C. Coello,
and K. Deb. 2006. Problem definitions and evaluation criteria for the CEC 2006
special session on constrained real-parameter optimization. Journal of Applied
Mechanics 41, 8 (2006).

[17] J. Mockus. 1977. On Bayesian Methods for Seeking the Extremum and their
Application. In IFIP Congress. 195–200.

[18] J. Parr, C. M. Holden, A. I. Forrester, and A. J. Keane. 2010. Review of efficient
surrogate infill sampling criteria with constraint handling. In 2nd International
Conference on Engineering Optimization. 1–10.

[19] J. M. Parr, A. J. Keane, A. I. Forrester, and C. M. Holden. 2012. Infill sampling
criteria for surrogate-based optimization with constraint handling. Engineering
Optimization 44, 10 (2012), 1147–1166.

[20] Victor Picheny. 2014. A stepwise uncertainty reduction approach to constrained
global optimization.. In International Conference on Artificial Intelligence and
Statistics. Reykjavik, Iceland, 787–795.

[21] D. Quagliarella, G. Petrone, and G. Iaccarino. 2014. Optimization Under Un-
certainty Using the Generalized Inverse Distribution Function. In AISTATS,
W. Fitzgibbon (Ed.). Computational Methods in Applied Sciences, Vol. 34.
Springer, NL, 171–190.

[22] R. G. Regis. 2014. Constrained optimization by radial basis function interpolation
for high-dimensional expensive black-box problems with infeasible initial points.
Engineering Optimization 46, 2 (2014), 218–243.

[23] T. P. Runarsson and X. Yao. 2000. Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation 4, 3 (2000), 284–
294.

[24] T. P. Runarsson and X. Yao. 2005. Search biases in constrained evolutionary opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews 35, 2 (2005), 233–243.

[25] M. J. Sasena, P. Papalambros, and P. Goovaerts. 2002. Exploration of meta-
modeling sampling criteria for constrained global optimization. Engineering
optimization 34, 3 (2002), 263–278.

[26] M. J. Sasena, P. Y. Papalambros, and P. Goovaerts. 2001. The Use of Surrogate
Modeling Algorithms to Exploit Disparities in Function Computation Time
within Simulation-Based Optimization. In 4th World Congress of Structural and
Multidisciplinary Optimization. 5–11.

[27] M. Schonlau, W. J. Welch, and D. R. Jones. 1998. Global versus local search in
constrained optimization of computer models. Lecture Notes–Monograph Series,
Vol. 34. Institute of Mathematical Statistics, Hayward, CA, 11–25.

[28] D. Villanueva, R. Le Riche, G. Picard, and R. Haftka. 2012. Surrogate-based agents
for constrained optimization. In AIAA Non-Deterministic Approaches Conference.
1935–1951.

