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ABSTRACT
�is article presents a non-deterministic approach to the �ree-
Dimensional Bin Packing Problem, using a genetic algorithm. To
perform the packing, an algorithm was developed considering rota-
tions, size constraints of objects and be�er utilization of previous
free spaces (�exible width). Genetic operators have been imple-
mented based on existing operators, but the highlight is the Real-
Polarized crossover operator that produces new solutions with a
certain disturbance near the best parent. �e proposal presented
here has been tested on instances already known in the literature
and real instances. A visual comparison using boxplot was done
and, in some situations, it was possible to say that the obtained
results are statistically superior than the ones presented in the lit-
erature. In a given instance class, the presented Genetic Algorithm
found solutions reaching up to 70% less bins.
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1 INTRODUCTION
In the Bin Packing Problem [10], given a set of objects with di�erent
dimensions and an unlimited amount of bins, all the items must be
packed in order to minimize the number of bins used. �is problem
is part of the optimization class of Packing Problems [5, 6] and is
commonly classi�ed by: (i) the dimension of items, being 1D, 2D
or 3D [18]; (ii) the bins size, that is, in case they are all with the
same size, the problem is classi�ed as homogeneous; otherwise,
heterogeneous [3]; (iii) the constraints, such as weight limit, speci�c
insertion order, overlapping and rotation possibility. In this paper,
we studied the �ree-Dimensional Bin Packing Problem (3D-BPP),
a generalization of the Bin Packing Problem, with homogeneous
containers.

�e 3D-BPP is related to other similar problems: the Container
Loading Problem [1, 9] and the Knapsack Loading Problem [12],
di�ering mainly from the objective of each. In both, all objects must
be packed in only one container. In the Container Loading Problem,
the bin has an in�nite length and the main goal is to achieve the
maximum compressing yielding a minimization fo the bin length.
In the Knapsack Loading Problem, the items have an associated
value and the objective is to maximize the pro�t.

�e 3D-BPP has great importance for many freight transport
companies [17], such as mail and cargo ship companies, since a lot
of money is spared by optimizing the space used and reducing the
number of recipients used. In this way, improving those solutions
bene�t the use of these algorithms for frequent practical problems.

In this paper, a non-deterministic heuristic was proposed using
a Genetic Algorithm (GA) with a Real-Polarized crossing operator
to solve the homogeneous 3D-BPP. Also, a Local Search is executed
in every generation, trying to generate a further improvement in
the population. �e objects to be loaded could be rotated in all di-
rections and the only constraint considered was that one box could
not be on top of another if it exceeds the dimensions (width and
length) of the box below. �e results of our algorithm (RPGA) were
compared with the results presented in Zhu et al. [18] using a visual
approach called boxplot. In 10% of instances, it was possible to say
that the results of proposed proposed approach were statistically
superior than the results in the literature. For a particular instance,
we found about 70% less bins than BS-EPSD algorithm.
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�is work is organized as follows: Section 2 presents related
works. Section 3 formalizes the 3D-BPP de�nition. Section 4
presents our proposed Genetic Algorithm. Section 5 presents the
performed experiments and the results obtained. Section 6 con-
cludes our work.

2 RELATEDWORK
Several works related to the Bin Packing and the Container Loading
Problems can be found in the literature. Understanding that these
problems are very similar, some Container Loading works [2, 9, 15]
were useful in this study. Referring to the Bin Packing Problem, we
can cite the works [10, 18].

In Neto [15], the concept of subspace, used in this article, and the
order of �lling these spaces are de�ned. �e author demonstrates
the loading orders (top, side, front) and (side, top, front) and how
to decompose the container space at each box. �e author has
implemented a genetic algorithm in which the objectives are to
maximize the volume used, the weight, the stability and the mone-
tary value of the load in a container. In addition, it demonstrates
the �tness functions, calculated by a compound arithmetic mean,
giving weights to each of the objectives.

George and Robinson [9] introduced the �exible width concept
used on this article. �e authors load the container by layers, so
the �exible width is the capability to merge the present layer with
the previous ones if there are space. We used this concept in this
paper in the loading algorithm used in the GA decoding.

Cecilio and Morabito [2] proposed a change in the loading se-
quence previously proposed by George and Robinson [9]. �e new
sequence was determined by sorting the box according to the fol-
lowing criteria, considering, �rstly, the most important: (i) Box
with the largest dimension between the smallest ones (ii) Box with
the largest quantity available (iii) Box with the largest dimension
(iv) Box with the biggest volume (v) Box with the largest ratio:
largest dimension by the smallest dimension We used this sequence
in our Local Search strategy in Section 4 as CM Sequence.

Zhu et al. [18] presented a non-deterministic algorithm to �nd
a good solution to the Bin Packing Problem. �is algorithm was
designed using the extreme point insertion heuristic [4] with two
improvements based on Space Defragmentation, which are: the
push-out operation, consisting of, just before inserting a box, all
items that intercept it are pushed forward to make the box �t into
space; the in�ate operation, which in�ates a box, already inserted, as
much as possible, pushing the other boxes already placed, and then
veri�es if the box to be inserted �ts in the in�ated space, swapping
it by the in�ated box. �e authors used the 3D-BPP instances
generated by Martello et al. [11] and new instances created by
themselves to compare their algorithm with several already existing
in the literature known to produce good results. �us, the proposal
presented here will be compared with the results displayed by Zhu
et al. [18].

In Takahashi et al. [16] the authors proposed a new operator
for continuous GAs called Real-Polarized Crossing. One of the
characteristics of this operator is to generate children that are more
likely to be close to parents of be�er �tness value. In a concept of
geometric operators, Martins et al. [13] presented a version of the
Real-Polarized Crossing operator for discrete problems.

0 1 2 3 4 5 6 7 8 9

5 1 3 2 4 6 8 10 9 7

Figure 1: An individual representing a solution in which the
�rst box loaded is the 5, then the 1, then the 3, and so on.

Our work di�ers from others since we used the Real-Polarized
operator for the crossover in the GA, producing results that sur-
passed others in the literature. Also, our loading algorithm merged
the best characteristics of others loading algorithms [2, 9, 15].

3 PROBLEM DEFINITION
Given a set of n rectangular-shaped items I = {1, ...,n}, de�ned by
a width wi , a height hi and a length li (i ∈ I ), and a setC of in�nite
number of identical bins with widthW , height H and length L, the
�ree-Dimensional Bin Packing Problem consists in load all n items
orthogonally, inside a certain number of bins and minimizing the
total number of bins used.

Many constraints can be added to the 3D-BPP to specify the
problem. It can be considered rotations in all directions and, in
some situation, some orientations can be restricted. �e bins size
can be equal or not. �e boxes can have weights and each container
a weight limit (if homogeneous, all bins have the same limit). It
can be considered an insertion order, due to an relation with the
unload order [8].

In this study, we consider that the length L of the bin is parallel
to the Z-axis of the Cartesian coordinate system; the widthW is
parallel to the X-axis; and the height H is parallel to the Y-axis.
All bins are considered to be in the �rst octant and one corner is
at origin. We assumed that the boxes could be rotated in all six
possibilities.

4 REAL-POLARIZED GENETIC ALGORITHM
FOR THREE-DIMENSIONAL BIN PACKING
PROBLEM

A Genetic Algorithm (GA) [14] is a metaheuristic based on the nat-
ural processes of evolution, considering the crossing of individuals,
the gene mutation process and natural selection, that is, an indi-
vidual who is be�er adapted (be�er genetic conditions) will have
greater chances of surviving and passing on their genes to the next
generations. �e algorithm works using the idea that each iteration
is a generation of the population, thus, all the processes described
above are used, in order to keep the population size constant and to
generate diversi�ed individuals (problem solvers), each time be�er.

�e proposed Real-Polarized Genetic Algorithm for Bin Packing
(RPGA) was based on the GA proposed by Neto [15], in which
the loading pa�ern is based on the upper, lateral and frontal or-
der, to maximize the volume used of the container. Also, in every
generation, the best individual is submi�ed to a Local Search.

4.1 Coding
An individual, or chromosome, represents a solution of the algo-
rithm. Each individual is a list of boxes representing a loading
sequence of the instance, that is, each allele represents a single box.
Figure 1 shows a chromosome sample.
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4.2 Decoding
For the GA construction proposed here, a deterministic algorithm
was implemented to insert boxes into a container and evaluate
an individual. We decided to implement a new loading algorithm
instead of using already existing ones, such as George and Robinson
[9], due to some particularities of the instances. During the loading
process, the subspace concept is used, which represents a lateral,
superior or frontal space with respect to the container, which has a
size and spatial coordinates.

�e general idea of the constructed loading algorithm is repre-
sented in Algorithm 1. Basically, we have two distinct procedures:
(i) Try Load Box, which returns if a box can be inserted inside a
certain bin; (ii) Load Box, which does the loading itself, generating
the necessaries subspaces. �e la�er procedure is explained next.

Algorithm 1: Loading
Data: C, I
foreach c in C do

foreach i in I do
if not Try Load Box(i , c) then

c ← c + 1 ;
end
if c is ∅ then

Load First Box(i , c) ;
else

Loading Subsequent Boxes(i , c) ;
end

end
end

4.2.1 Try Load Box Procedure. �is procedure makes a veri�-
cation if it is possible to insert a box in the current bin. In this way,
if it is not possible to insert in the current bin, a new empty one is
generated and the loading continues inserting the next box as the
�rst box.

4.2.2 Load First Box Procedure. �e �rst inserted box in the
container is placed in the position (0,0,0), that is, touching the �oor,
the back and the le� wall. From this box, the �rst subspaces are
created, being: the superior, the subspace that has the same width
and depth of the box and height equal to the top of the container
until the top of the box; the side, which has the same depth as the
box, height equal to the height of the container and width relative
to the lateral space of the carton; the front, which has the same
height and width of the container and depth equal to the free space
in front of the container.

4.2.3 Loading Subsequent Boxes Procedure. �e order of inser-
tion a�empt was �rst in the upper subspace, then in the lateral
and �nally in the frontal, as shown by Neto [15], since it is under-
stood that this is the order commonly used for a real application
of the algorithm. When inserting a box, the �rst step is to check
if is possible to merge subspaces, then we try to insert it making
rotations every time it does not �t, only changing of subspace a�er
all rotations. �ese steps are described as follows:

Use of Previous Side Subspaces. Based on the �exible width con-
cept [9], when a box is inserted into the side subspace, a new
subspace (S1) is created, updating the width. If the next box does
not �t into this new subspace, it will be inserted in the front part,
creating a new subspace (S2). �e Figure 2a shows this con�gura-
tion with S1 and S2. �us, to take advantage of space S1 le� behind,
if S2 has a x coordinate greater than or equal to the x coordinate of
S1, spaces S1 and S2 are grouped, so that their depth is summed and
the new subspace has a coordinate x correspondent to the greater
x between the two, as shown in Figure 2b. �en, the next box is
inserted in the new subspace (S1+S2), resulting in the con�guration
shown on Figure 2c.

Rotation. A box can be rotated to �t in a space and this rotation
was done by changing the value of two dimensions at a time, for 6
times, intercalating the following changes: width with depth and
height with width. In this way, it is possible to rotate the object in
all six possibilities. �e Figure 3 shows all the possibles orientations
of a box considering the axes.

4.3 Initial Population
In this Section, we present the proposed strategy to generate the
initial population. �e initial population P consists of popSize indi-
viduals in which each one of these is generated using the Restricted
Candidate List (RCL) concept, utilized in the Construction Phase of
the GRASP (Greedy Randomized Adaptive Search Procedure) algo-
rithm [7]. �e Algorithm 2 shows the general process of creating
the initial population.

At the Algorithm, a randomized greedy technique provides feasi-
ble solutions. Each feasible solution is iteratively constructed, one
element at a time. However, instead of always selecting the best
solution, a Restricted Candidate List (RCL) of good elements is built,
and one element (not necessarily the top candidate) is randomly
selected. Algorithm 3 presents the proposed Generate Individual
algorithm.

We use, as a Build RCL Procedure, a algorithm to order the items
according to their volume. However, instead of choosing the item
with maximum volume, we create a list of items and randomly
select one element of the list. An RCL parameter α that can vary
from 0.0 to 1.0, determines the level of greediness or randomness
at the Generate Individual. When α = 0.0, the Generate Individual
becomes a simple greedy algorithm and will always select the item
with maximum volume at each iteration. Otherwise, when α = 1.0,
the Generate Individual becomes totally random. If the RCL is
built with many elements, then many di�erent solutions will be
produced, according to chosen α value. �e Algorithm 4 presents a
pseudo-code from the Build RCL Procedure.

�e Build RCL Procedure works as follows: �rst, the RCL list is
set to empty. �en we compute the Maximal and Minimal volume
of all items. For each remaining item, we verify if the volume of
this item is more than Max − α (Max − Min). If the condition is
true, we add this item to the RCL list.

4.4 Evaluating the Population
Each individual of the population is loaded using the sequence
suggested by Neto [15], as quoted in Section 4.2. �en, we evaluate
the solution using as the �rst criterion the number of containers
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(a) (b) (c)

Figure 2: Example of joining previous subspaces while loading the container. In Figure 2a, subspaces S2 and S1 can be joined.
Figure 2b shows the subspace resulting from the union of S1 and S2, that can contain a box with greater depth than with S1
and S2 separated. Figure 2c shows the result of inserting a box a�er the union.
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Figure 3: All the possibles rotations of an object in the 3 axes

Algorithm 2: Population Generation
Data: popSize, I ,α
P ← ∅;
while size(P ) < popSize do

P ← P + Generate Individual(I ,α );
end
return P ;

Algorithm 3: Generate Individual Procedure
Data: I ,α
I ′← Sort Volume(I ); /* Sort by volume decreasingly */

Individual← ∅;
while I ′ is notempty do

RCL← Build RCL(I ′,α ); /* Create RCL */

Selected Item← Randomly Choose Element(RCL);
Individual← Individual + Selected Item;

end
return (Individual);

used. We consider that the best solutions are the ones with the
least amount of containers. When there is a tie in the number of
containers, we use as the criterion the lowest sum of void volume
with inverse quadratic relation, that is, a large empty volume in

Algorithm 4: Build RCL Procedure
Data: I ′,α
Max← Select Max Volume(I ′); /* Max volume */

Min← Select Min Volume(I ′); /* Min volume */

RCL← ∅ ;
/* Building RCL */

foreach i in I ′ do
if Volume (i ) >= Min + α ∗ (Max −Min) then

RCL← RCL + i;
end

end
return (RCL);

the �rst container is worse than in the second one (Equation 1). In
this way, solutions in which the �rst containers are fuller are be�er
evaluated.

maxBins∑
j=1

(totalVolume −
∑
boxVolume )

totalVolume
∗

1
j2

(1)

4.5 Genetic Operators
Genetic operators are the elements responsible for varying indi-
viduals in the population, in order to �nd be�er solutions each
time, maintaining the adaptive characteristics acquired in previous
populations and, at the same time, diversifying solutions. �e most
commonly used operators are mutation, crossover and selection of
individuals.

In this work, the operators implemented in the Genetic Algo-
rithm were based on operators already known in the literature.
�ey can be considered generic because they serve for any genetic
algorithm that uses an integer representation of the solution. How-
ever, the crossover operator is more elaborate since it breeds the
new individuals so that they look more like the be�er parent.

4.5.1 Mutation. A mutation operator was designed in order to
create a disturbance in the population, seeking to generate solutions
not yet veri�ed. �is operator bases on the position change of a
de�ned alleles number in the chromosome. �e number of boxes
to be exchanged was determined in as tExch of the total items of
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(a) A solution representation based on the type of each box, that
is, boxes with same dimensions have the same value. If the box in
position 3 is drawn, then it will be swapped with the box in position
6, the next one which is not of type 2

0 1 2 3 4 5 6 7 8 9

1 1 5 4 2 2 2 4 3 5

(b) Solution representation of (a) a�er swapping of the boxes. �e
mutation consists of repeating this process several times (tExch of
total boxes) for the same individual

Figure 4: Mutation operation example

Figure 5: Extrapolation of parents A and B

the individual and the probability of a mutation occur in a subject
was set as tMut .

Taking into account the existence of same box types (with the
same dimensions), the mutation, illustrated in Figure 4, consists of
selecting a random box in the individual and switching with the
�rst box, next to it in the list, that is not of the same type. In this
way, it is avoided to exchange boxes of the same kind, which would
not make any di�erence in the solution.

4.5.2 Crossover. �e crossover operator used is based on the
Real-Polarized Crossing operator and uses the concept of edit move,
as shown by Martins et al. [13], an arti�ce used to construct geomet-
ric operators. �e minimum path between two individuals is the
minimum set of edit moves required for the two individuals to be
equivalent. Also, the concept of distance between two individuals
was used, which is equivalent to this minimum path length between
them.

To generate more di�erentiated solutions, not only through the
mutation, the distance between two chromosomes was extrapolated,
that is, the distance between them is increased by 10% for each side,
as shown in Equation 2. �e generation of the children is performed
a�er the extrapolation, using the parents A′ and B′.

dist (A′,A) = dist (B′,B) = 0.1 ∗ dist (A,B)
dist (A′,B′) = 1.2 ∗ dist (A,B) (2)

�e children are created from edit moves starting from the best-
evaluated parent, that is, the children are in the path betweenA′ and
B′. In order to maintain the best individuals, the amount of edit move
to be performed for the �rst child is determined randomly according
to a quadratic distribution so that the number of exchanges is

more likely to generate an individual closer to the best parent,
whereas for the second child a uniform distribution is used. Figure 5
demonstrates this quadratic distribution across the curve above the
parent extrapolation line, considering that the best parent, in this
case, is A. Parents are chosen randomly, where everyone has the
same chance of being chosen. �e probability of a crossover occur
in one generation is tCross .

4.5.3 Selection. �e population size is raised a�er the crossover
operation, so a tournament selection method is used to remove
one individual at a time, seeking to maintain the population size
constant. �is selection function, illustrated in Algorithm 5, chooses
two individuals randomly and the worst of them is selected to be
removed from the population. �is method is repeated until the
population returns to its original size.

Algorithm 5: Select Survivors
Data: P ,popSize
while size(P ) > popSize do

c1← Random(P); /* choose one individual randomly */

c2← Random(P); /* choose one individual randomly */

P ← P −Worst(c1, c2);
end
return P ;

4.6 Local Search
Seeking always to �nd be�er solutions, at each iteration, a local
search on the best individual best is performed. �is search was
implemented using the loading sequence de�ned by Cecilio and
Morabito [2].

�is local search method was implemented using the Re�ning
Heuristic known as the First Improvement Method. �erefore, in
each iteration, the Algorithm 6 procedure is done, and if a be�er
solution than the original is found, it is returned and added to the
population, ending the process. However, if no best solution is
found, reaching the iteration threshold set at localIter , the process
does not return any new solutions.

Algorithm 6: Local Search
Data: Individual
B ← ∅ ;
Q ← Position(Random Box(Individual ));
B ← Remove Items A�er Position(Individual , Q − 1);
while B is not ∅ do

A← Choose Item From(B); /* Choose item based on

CM Sequence */

Individual ← Individual + A ;
end
return Individual ;

5 EXPERIMENTS
To evaluate the e�ciency of the RPGA, experiments were performed
on two sets of instances suggested by Zhu et al. [18]. �e tests were



GECCO ’17, July 15-19, 2017, Berlin, Germany André D. et. al.

Table 1: Comparison between the algorithms for the 3D-BPP
instances with respect to the best solution in the 11 execu-
tions

Algorithm Wins Loses Percentage
BS-EPSD 235 85 73,4%
RPGA 85 235 26,6%

Table 2: Comparison between algorithms for 3D-BPP in-
stances through boxplot

Algorithm Wins Loses Unde�ned Percentage
RPGA 20 282 18 6,25%
BS-EPSD 282 20 18 88,13%

performed on a computer with AMD FX-8350 4GHz with 16GB of
RAM, running Linux Mint 17.3 Cinnamon 64-bit. �e algorithm
was implemented using Oracle’s 64-bit Java Development Kit. In
all tests, popSize = 100, tMut = 5%, tExch = 5%, tCross = 85%,
localIter = 20, and, α = 0.75. All this parameters were de�ned
empirically.

�e �rst set of instances generated by Martello et al. [11], called
3D-BPP, contains 320 instances. �is set is divided into 8 classes,
each class divided into 4 groups and each group has a given number
of objects: 50, 100, 150 and 200. For each of these instances, the
algorithms to be compared were executed 11 times.

Table 1 shows a comparison of the best solution of the 11 execu-
tions of each algorithm for each instance. An algorithm solution
was considered be�er when it presented a smaller number of con-
tainers. Comparing the number of containers in the 320 instances
is possible to see that in 26.6% of the instances the RPGA performed
be�er than the BS-EPSD.

For a more consistent analysis, boxplot type graphics were plot-
ted for the 320 instances for both algorithms. In this way, they were
compared side by side to visually check if the ”boxes” of the boxplot
does not overlap, and identify which ”box” is further down, thereby
identifying which approach was considered best. �en, with this
visual analysis it was possible to determine 3 situations:

i Con�rm when RPGA solution was statistically be�er than
BS-EPSD solution. (Figure 6a)

ii Not to conclude which approach was statistically be�er,
since it would require another statistical test for such a
conclusion. (Figure 6b)

iii Con�rm when BS-EPSD solution was statistically be�er
than RPGA solution. (Figure 6c)

A general analysis can be done by looking at the graph in Figure 7.
�e circles (in red) and the x represent, respectively the BS-EPSD
and RPGA solutions absolute values, in two colors: blue for when
RPGA performed worse than BS-EPSD and black, otherwise. It can
be noticed that the RPGA obtained be�er results for the smaller

Table 3: Comparison between algorithms for 3D-BPP in-
stances through boxplot per class

Algorithm RPGA BS-EPSD Unde�ned
Class 1 0 38 2
Class 2 2 37 1
Class 3 0 39 1
Class 4 11 21 8
Class 5 4 35 1
Class 6 0 40 0
Class 7 2 36 2
Class 8 0 37 3

Table 4: Comparison between the algorithms for the T3 in-
stances with respect to the best solution in the 11 executions

Algorithm Wins Loses Percentage
BS-EPSD 81 19 82%
RPGA 19 81 18%

instances. However, even so, the results for the class shown in
Figure 7 approximated the BS-EPSD results. �is class was the one
with the best results in the comparison.

Table 2 shows the comparison between RPGA and BS-EPSD in
all 3D-BPP instances, while Table 3 shows the same data divided
into classes, con�rming that the best RPGA performance was in
Class 4. In this way, Figure 8 illustrates the percentage di�erence
between RPGA and BS-EPSD (displayed by the black line) in the
Class 4 instances, demonstrating that, when the RPGA got be�er
results, it achieved a bigger di�erence that when it got worse results.
In average (the mean of the sum of the gains minus the losses),
considering all this class, the RPGA got 5% less bins than BS-EPSD,
reaching up to about 70% fewer bins. When the performed worst in
this class, the biggest di�erence was at most 20% more bins, while
there were at least 8 instances that achieved a gain of more than
20%.

�e second set of instances generated by Zhu et al. [18], called
Type3 (T3), has 100 instances and was built based on a real problem
data for loading boxes into a 20-foot container. �is set of instances
is separated into two classes and each of them is divided into 5
groups of 2000, 4000, 6000, 8000 and 10000 items containing 10
instances each. For each of the instances, the algorithm was also
executed 11 times. Table 4 shows a comparison between the best
solution of the 11 executions of each algorithm for each instance.
Again an algorithm was considered be�er when it presented a
smaller number of containers.

�e same analysis made for the 3D-BPP instances using the
boxplots also was used for the T3, in order to make a further results
evaluation. �e results obtained are shown in Table 5 and in Figure
9. Also, the Table 6 shows the comparison between the algorithm
divided by the two T3 classes.
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Figure 6: �is Figure shows three boxplots comparing the 3D-BPP instances solutions of RPGAandBS-EPSD algorithms. Figure
6a shows an example which the RPGA solutionwas statistically better than the BS-EPSD solution. Figure 6b shows an example
which it is not possible to statistically determine a better solution. Figure 6c shows example which the BS-EPSD solution was
statistically better than the RPGA solution
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Figure 7: An example of the result of the Class 4 instance.
All instances of 3D-BPP in relation to the average number of
containers found. Each of the 8 classes occupies 40 indexes
and each size (in ascending order) within them, occupies 10
indexes.

Table 5: Comparison between algorithms for T3 instances
using boxplot

Algorithm Wins Loses Unde�ned Percentage
BS-EPSD 81 17 2 81%
RPGA 17 81 2 17%

Analyzing the two graphs of Figure 4, it can be seen that the
results of the RPGA closely approximated the results of the BS-
EPSD and, in some cases, the RPGA obtained a much be�er result
than the literature, especially for large instances.
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Figure 8: �e results obtained for Class 4 of 3D-BPP in-
stances for both algorithms, �xing BS-EPSD and compar-
ing which bins percentage the RPGA achieved. A negative
percentage means that RPGA performed better, that is, a
di�erence of -20 means that RPGA achieved 20% less bins
than BS-EPSD. A positive percentage means that RPGA per-
formed worse, getting solutions with more containers than
BS-EPSD.

Table 6: Comparison between algorithms for T3 instances
through boxplot per class

Algorithm RPGA BS-EPSD Unde�ned
Class 1 7 43 0
Class 2 10 38 2
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Figure 9: Comparison between the algorithms for the two T3 instance classes

In both tests instances, it was possible to notice that in some
cases the RPGA performed be�er than BS-EPSD. In general, RPGA
did be�er for smaller instances, although it did achieve some good
results for large instances. �is may have occurred not only because
of the number of items to be packaged but also because of the format
of the items, which may favor a be�er �lling for the RPGA rather
than BS-EPSD.

6 FINAL CONSIDERATIONS
From the presented results, it can be concluded that the algorithm
implemented produces satisfactory solutions for practical applica-
tions. �is can be con�rmed since the algorithm used for compari-
son, BS-EPSD, was compared with several others in the literature
as shown by Zhu et al. [18], having equal or be�er results than
those already existing. In addition, the T3 instances produced by
the BS-EPSD author are instances of a real problem, where the data
used were made available by a logistics company, and the results of
the tests using T3 showed that the RPGA managed to �nd solutions
be�er than those found by Zhu et al. [18].

It was possible to notice that the RPGA was be�er in instances
with smaller quantities of objects by checking the results obtained.
As future works, the instances will be studied be�er in order to
adapt the RPGA to make it more general so that its performance can
be also e�cient in large instances. �is can probably be achieved by
improving the utilization of unused spaces in the loading algorithm
and also by modifying and testing new sequences to load the objects
in the local search.

In future works, new genetic operators will be implemented for
the algorithm based on geometric operators. �ese new operators
would be made speci�cally for the Bin Packing Problem so that it is
possible to use unique aspects of this category of problems in order
to produce be�er and be�er solutions.
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Transportes 11, 2 (2004), 32–45.

[3] CS Chen, Shen-Ming Lee, and QS Shen. 1995. An analytical model for the
container loading problem. European Journal of Operational Research 80, 1 (1995),
68–76.

[4] Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. 2008. Extreme point-
based heuristics for three-dimensional bin packing. Informs Journal on computing
20, 3 (2008), 368–384.

[5] Kathryn A Dowsland and William B Dowsland. 1992. Packing problems. European
journal of operational research 56, 1 (1992), 2–14.

[6] Harald Dyckho�. 1990. A typology of cu�ing and packing problems. European
Journal of Operational Research 44, 2 (1990), 145–159.

[7] �omas A. Feo and Mauricio G. C. Resende. 1995. Greedy Randomized Adaptive
Search Procedures. Journal of Global Optimization 6, 2 (1995), 109–133. DOI:
h�p://dx.doi.org/10.1007/BF01096763

[8] Michel Gendreau, Manuel Iori, Gilbert Laporte, and Silvano Martello. 2006. A tabu
search algorithm for a routing and container loading problem. Transportation
Science 40, 3 (2006), 342–350.

[9] John A George and David F Robinson. 1980. A heuristic for packing boxes into a
container. Computers & Operations Research 7, 3 (1980), 147–156.

[10] Silvano Martello, David Pisinger, and Daniele Vigo. 2000. �e three-dimensional
bin packing problem. Operations Research 48, 2 (2000), 256–267.

[11] Silvano Martello, David Pisinger, Daniele Vigo, Edgar Den Boef, and Jan Ko-
rst. 2007. Algorithm 864: General and robot-packable variants of the three-
dimensional bin packing problem. ACM Transactions on Mathematical So�ware
(TOMS) 33, 1 (2007), 7.

[12] Silvano Martello and Paolo Toth. 1990. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, Inc., New York, NY, USA.

[13] F. V. C. Martins, E. G. Carrano, E. F. Wanner, R. H. C. Takahashi, G. R. Mateus, and
F. G. Nakamura. 2014. On a Vector Space Representation in Genetic Algorithms
for Sensor Scheduling in Wireless Sensor Networks. Evolutionary Computation
22, 3 (2014), 361 – 403. DOI:h�p://dx.doi.org/10.1162/EVCO a 00112

[14] Melanie Mitchell. 1998. An introduction to genetic algorithms. MIT press.
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