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Nutrient-based meal recommendations have the potential to help individuals prevent or manage conditions
such as diabetes and obesity. However, learning people’s food preferences and making recommendations
that simultaneously appeal to their palate and satisfy nutritional expectations are challenging. Existing
approaches either only learn high-level preferences or require a prolonged learning period. We propose
Yum-me, a personalized nutrient-based meal recommender system designed to meet individuals’ nutritional
expectations, dietary restrictions, and fine-grained food preferences. Yum-me enables a simple and accurate
food preference profiling procedure via a visual quiz-based user interface and projects the learned profile
into the domain of nutritionally appropriate food options to find ones that will appeal to the user. We present
the design and implementation of Yum-me and further describe and evaluate two innovative contributions.
The first contriution is an open source state-of-the-art food image analysis model, named FoodDist. We
demonstrate FoodDist’s superior performance through careful benchmarking and discuss its applicability
across a wide array of dietary applications. The second contribution is a novel online learning framework
that learns food preference from itemwise and pairwise image comparisons. We evaluate the framework in
a field study of 227 anonymous users and demonstrate that it outperforms other baselines by a significant
margin. We further conducted an end-to-end validation of the feasibility and effectiveness of Yum-me through
a 60-person user study, in which Yum-me improves the recommendation acceptance rate by 42.63%.
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1. INTRODUCTION

Healthy eating plays a critical role in our daily well-being and is indispensable in pre-
venting and managing conditions such as diabetes, high blood pressure, cancer, mental
illnesses, asthma, and so on [5, 41]. In particular, for children and young people, the
adoption of healthy dietary habits has been shown to be beneficial to early cognitive
development [46]. Many applications designed to promote healthy behaviors have been
proposed and studied [10, 12, 28, 29]. Among those applications, the studies and prod-
ucts that target healthy meal recommendations have attracted much attention [40, 56].
Fundamentally, the goal of these systems is to suggest food alternatives that cater to
individuals’ health goals and help users develop healthy eating behavior by following
the recommendations [67]. Akin to most recommender systems, learning users’ prefer-
ences is a necessary step in recommending healthy meals that users are more likely to
find desirable [67]. However, the current food preference elicitation approaches, includ-
ing (1) on-boarding surveys and (2) food journaling, still suffer from major limitations,
as discussed below.

• Preferences elicited by surveys are coarse-grained. A typical on-boarding sur-
vey asks a number of multi-choice questions about general food preferences. For
example, PlateJoy [40], a daily meal planner app, elicits preferences for healthy
goals and dietary restrictions with the following questions:

(1) How do you prefer to eat? No restrictions, dairy free, gluten free, kid friendly,
pescatarian, paleo, vegetarian...

(2) Are there any ingredients you prefer to avoid? avocado, eggplant, eggs, seafood,
shellfish, lamb, peanuts, tofu....

While the answers to these questions can and should be used to create a rough
dietary plan and avoid clearly unacceptable choices, they do not generate meal rec-
ommendations that cater to each person’s fine-grained food preferences, and this
may contribute to their lower-than-desired recommendation-acceptance rates, as
suggested by our user testing results.

• Food journaling approach suffers from cold-start problem and is hard to
maintain. For example, Nutrino [38], a personal meal recommender, asks users to
log their daily food consumption and learn users’ fine-grained food preferences. As
is typical of systems relying on user-generated data, food journaling suffers from
the cold-start problem, where recommendations cannot be made or are subject to
low accuracy when the user has not yet generated a sufficient amount of data. For
example, a previous study showed that an active food-journaling user makes about
3.5 entries per day [13]. It would take a non-trivial amount of time for the system
to acquire sufficient data to make recommendations, and the collected samples may
be subject to sampling biases as well [13, 32]. Moreover, the photo food journaling of
all meals is a habit difficult to adopt and maintain and therefore is not a generally
applicable solution to generate complete food inventories [13].

To tackle these limitations, we develop Yum-me, a meal recommender that learns
fine-grained food preferences without relying on the user’s dietary history. We leverage
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people’s apparent desire to engage with food photos1 to create a more user-friendly
medium for asking visually based diet-related questions. The recommender learns
users’ fine-grained food preferences through a simple quiz-based visual interface [59]
and then attempts to generate meal recommendations that cater to the user’s health
goals, food restrictions, as well as personal appetite for food. It can be used by people
who have food restrictions, such as vegetarian, vegan, kosher, or halal. Particularly,
we focus on the health goals in the form of nutritional expectations, for example ad-
justing calories, protein, and fat intake. The mapping from health goals to nutritional
expectations can be accomplished by professional nutritionists or personal coaches and
is out of the scope of this article. We leave it as future work. In designing the visual
interface [59], we propose a novel online learning framework that is suitable for learn-
ing users’ potential preferences for a large number of food items while requiring only
a modest number of interactions. Our online learning approach balances exploitation-
exploration and takes advantage of food similarities through preference-propagation
among locally connected graphs. To the best of our knowledge, this is the first inter-
face and algorithm that learns users’ food preferences through real-time interactions
without requiring specific diet history information.

For such an online learning algorithm to work, one of the most critical components
is a robust food image analysis model. Towards that end, as an additional contribution
of this work, we present a novel, unified food image analysis model, called FoodDist.
Based on deep convolutional networks and multi-task learning [6, 33], FoodDist is the
best-of-its-kind Euclidean distance embedding for food images, in which similar food
items have smaller distances while dissimilar food items have larger distances. Food-
Dist allows the recommender to learn users’ fine-grained food preferences accurately
via similarity assessments on food images. Besides preference learning, FoodDist can
be applied to other food-image-related tasks, such as food image detection, classifica-
tion, retrieval, and clustering. We benchmark FoodDist with the Food-101 dataset [6],
the largest dataset for food images. The results suggest the superior performance of
FoodDist over prior approaches [6, 35, 59]. FoodDist will be made available on Github
on publication.

We evaluate our online learning framework in a field study of 227 anonymous users
and we show that it is able to predict the food items that a user likes or dislikes with
high accuracy. Furthermore, we evaluate the desirability of Yum-me recommendations
end to end through a 60-person user study, where each user rates the meal recom-
mendations made by Yum-me relative to those made using a traditional survey-based
approach. The study results show that, compared to the traditional survey based rec-
ommender, our system significantly improves the acceptance rate of the recommended
healthy meals by 42.63%. We see Yum-me as a complement to the existing food prefer-
ence elicitation approaches that further filters the food items selected by a traditional
onboarding survey based on users’ fine-grained taste for food and allows a system
to serve tailored recommendations on the first use of the system. We discuss some
potential use cases in Section 7.

The rest of the article is organized as follows. After discussing related work in
Section 2, we introduce the structure of Yum-me and our backend database in Sec-
tion 3. In Section 4, we describe the algorithmic details of the proposed online learning
algorithm, followed by the architecture of FoodDist model in Section 5. The evaluation
results of each component, as well as the recommender are presented in Section 6.

1Collecting, sharing, and appreciating high-quality, delicious-looking food images is growing in popularity
in our everyday lives. For example, food photos are immensely popular on Instagram (#food has over 177M
posts and #foodporn has over 91M posts at the time of writing).
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Finally, we discuss the limitations, potential impact, and real-world applications in
Section 7 and conclude in Section 8.

2. RELATED WORK

Our work benefits from, and is relevant to, multiple research threads: (1) healthy meal
recommender system, (2) cold-start problem and preference elicitation, (3) pairwise
algorithms for recommendation, and (4) food image analysis, which will be surveyed in
detail next.

2.1. Healthy Meal Recommender System

Traditional food and recipe recommender systems learn users’ dietary preferences from
their online activities, including ratings [17, 19, 20, 23], past recipe choices [21, 51],
and browsing history [38, 54, 56]. For example, the authors of Reference [51] build a
social navigation system that recommends recipes based on the previous choices made
by the user; the authors of Reference [56] propose to learn a recipe similarity mea-
sure from crowd card-sorting and make recommendations based on the self-reported
meals; and the authors of References [17, 23] generate healthy meal plans based on
user’s ratings towards a set of recipes and the nutritional requirements calculated for
the person. In addition, previous recommenders also seek to incorporate users’ food
consumption histories recorded by the food logging and journaling systems (e.g. taking
food images [13] or writing down ingredients and meta-information [56]).

The above systems, while able to learn users’ detailed food preference, share a com-
mon limitation; that is, they need to wait until a user generates enough data before
their recommendations can be effective for this user (i.e., the cold-start problem). There-
fore, most commercial applications, for example, Zipongo [68] and Shopwell [47] adopt
onboarding surveys to more quickly elicit users’ coarse-grained food preferences. For
instance, Zipongo’s questionnaires [68] ask users about their nutrient intake, lifestyle,
habits, and food preferences and then make day-to-day and week-to-week healthy
meals recommendations; ShopWell’s survey [47] is designed to avoid certain food aller-
gens, for example, gluten, fish, corn, or poultry, and find meals that match to particular
lifestyles, for example, healthy pregnancy or athletic training.

Yum-me fills a vacuum that the prior approaches were not able to achieve, namely
a rapid elicitation of users’ fine-grained food preferences for immediate healthy meal
recommendations. Based on the online learning framework [59], Yum-me infers users’
preferences for each single food item among a large food dataset and projects these
preferences for general food items into the domain that meets each individual user’s
health goals.

2.2. Cold-Start Problem and Preference Elicitation

To alleviate the cold-start problem mentioned above, several models of preference
elicitation have been proposed in recent years. The most prevalent method of elicitation
is to train decision trees to poll users in a structured fashion [15, 22, 42, 50, 66]. These
questions are either generated in advance and remain static [42] or change dynamically
based on real-time user feedback [15, 22, 50, 66]. Also, another previous work explores
the possibility of eliciting item ratings directly from the user [11, 63]. This process can
either be carried at item level [63] or within category (e.g., movies) [11].

The preference elicitation methods we mentioned above largely focus on the domain
of movie recommendations [11, 42, 50, 63] and visual commerce [15] (e.g., cars, cameras)
where items can be categorized based on readily available metadata. When it comes to
real dishes, however, categorical data (e.g., cuisines) and other associated information
(e.g., cooking time) possess a much weaker connection to a user’s food preferences.
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Therefore, in this work, we leverage the visual representation of each meal to better
capture the process through which people make diet decisions.

2.3. Pairwise Algorithms for Recommendation

Pairwise approaches [25, 39, 44, 45, 57, 58, 60] are widely studied in recommender
system literature. For example, Bayesian Personalized Ranking (BPR) [44, 45] and
Weighted Approximate-Rank Pairwise (WARP) loss [57], which learn users’ and items’
representations from user-item pairs, are two representative and popular approaches
in this category. Such algorithms have successfully powered many state-of-the-art sys-
tems [25, 58]. In terms of the cold-start scenario, the authors of Reference [39] developed
a pairwise method to leverage users’ demographic information in recommending new
items.

Compared to previous methods, our problem setting fundamentally differs in the
sense that Yum-me elicits preferences in an active manner where the input is incre-
mental and contingent on the previous decisions made by the algorithm, while prior
work focuses on the static circumstances where the training data is available up-front,
and there is no need for the system to actively interact with the user.

2.4. Food Image Analysis

The tasks of analyzing food images are very important in many ubiquitous dietary
applications that actively or passively collect food images from mobile [13] and wear-
able [1, 36, 52] devices. The estimation of food intake and its nutritional information is
helpful to our health [37] as it provides detailed records of our dietary history. Previous
work mainly conducted the analysis by leveraging the crowd [37, 53] and computer
vision algorithms [6, 35].

Noronha et al. [37] crowdsourced nutritional analysis of food images by leveraging
the wisdom of untrained crowds. The study demonstrated the possibility of estimating
a meal’s calories, fat, carbohydrates, and protein by aggregating the opinions from
a large number of people; the authors of Reference [53] elicit the crowd to rank the
healthiness of several food items and validate the results against the ground truth
provided by trained observers. Although this approach has been justified to be accurate,
it inherently requires human resources that restrict it from scaling to large number of
users and providing real-time feedback.

To overcome the limitations of crowds and automate the analysis process, numerous
articles discuss algorithms for food image analysis, including classification [4, 6, 30,
35], retrieval [31], and nutrient estimation [9, 24, 35, 49]. Most of the previous work [6]
leveraged hand-crafted image features. However, traditional approaches were only
demonstrated in special contexts, such as in a specific restaurant [4] or for particular
types of cuisine [30], and the performance of the models might degrade when they are
applied to food images in the wild.

In this article, we designed FoodDist using deep convolutional neural network based
multitask learning [8], which has been shown to be successful in improving model
generalization power and performance in several applications [14, 64]. The main chal-
lenge of multitask learning is to design appropriate network structures and sharing
mechanisms across tasks. With our proposed network structure, we show that FoodDist
achieves superior performance when applied to the largest available real-world food
image dataset [6] and when compared to prior approaches.

3. YUM-ME: PERSONALIZED NUTRIENT-BASED MEAL RECOMMENDATIONS

Our personalized nutrient-based meal recommendation system, Yum-me, operates over
a given inventory of food items and suggests the items that will appeal to the users’
palate and meet their nutritional expectations and dietery restrictions. A high-level
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Fig. 1. Overview of Yum-me. This figure shows three sample scenarios in which Yum-me can be used: desktop
browser, mobile, and smart watch. The fine-grained dietary profile is used to re-rank and personalize meal
recommendations.

overview of Yum-me’s recommendation process is shown in Figure 1 and briefly de-
scribed as follows:

• Step 1: Users answer a simple survey to specify their dietary restrictions and nu-
tritional expectations. This information is used by Yum-me to filter food items and
create an initial set of recommendation candidates.

• Step 2: Users then use an adaptive visual interface to express their fine-grained food
preferences through simple comparisons of food items. The learned preferences are
used to further re-rank the recommendations presented to them.

In the rest of this section, we describe our backend large-scale food database and
aforementioned two recommendation steps: (1) a user survey that elicits user’s dietary
restrictions and nutritional expectations and (2) an adaptive visual interface that elicits
users’ fine-grained food preferences.

3.1. Large Scale Food Database

To account for the dietary restrictions in many cultures and religions, or people’s
personal choices, we prepare a separate food database for each of the following dietary
restrictions:

No restrictions, Vegetarian, Vegan, Kosher, Halal2

For each diet type, we pulled over 10,000 main dish recipes along with their images
and metadata (ingredients, nutrients, tastes, etc.) from the Yummly API [62]. The total
number of recipes is around 50,000. To customize food recommendations for people
with specific dietary restrictions, for example, vegetarian and vegan, we filter recipes
by setting the allowedDiet parameter in the search API. For kosher or halal, we explic-
itly rule out certain ingredients by setting excludedIngredient parameter. The lists of
excluded ingredients are shown below:

• Kosher: pork, rabbit, horse meat, bear, shellfish, shark, eel, octopus, octopuses,
moreton bay bugs, frog.

• Halal: pork, blood sausage, blood, blood pudding, alcohol, grain alcohol, pure grain
alcohol, ethyl alcohol.

One challenge in using a public food image API is that many recipes returned by
the API contain non-food images and incomplete nutritional information. Therefore, we
further filter the items with the following criteria: The recipe should have (1) nutritional

2Our system is not restricted to these five dietary restrictions, and we will extend the system functionalities
to other categories in the future.
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Table I. Sizes of Databases that Catered to Different
Diet Types. Unit: Number of Unique Recipes

Database Original size Final size

No restriction 9,405 7,938
Vegetarian 10,000 6,713

Vegan 9,638 6,013
Kosher 10,000 4,825
Halal 10,000 5,002

Fig. 2. Overview of two sample databases: (a) Database for users without dietary restrictions and (b)
Database for vegetarian users.

information of calories, protein, and fat and (2) at least one food image. To automate this
process, we build a binary classifier based on a deep convolutional neural network to
filter out non-food images. As suggested in Reference [35], we treat the whole training
set of Food-101 dataset [6] as one generic food category and sampled the same number
of images (75,750) from the ImageNet dataset [16] as our non-food category. We took
the pretrained VGG CNN model [48] and replaced the final 1,000-dimensional softmax
with a single logistic node. For the validation, we use the Food-101 testing dataset
along with the same number of images sampled from ImageNet (25,250). We trained
the binary classifier using the Caffe framework [27], and it reached 98.7% validation
accuracy. We applied the criteria to all the datasets, and the final statistics are shown
in Table I.

Figure 2 shows the visualizations of the collected datasets. For each of the recipe
images, we embed it into a 1,000-dimensional feature space using FoodDist (described
later in Section 5) and then project all the images onto a two-dimensional (2D) plane us-
ing t-Distributed Stochastic Neighbor Embedding(t-SNE) [55]. For visibility, we further
divide the 2D plane into several blocks, from each of which we sample a representa-
tive food image residing in that block to present in the figure. Figure 2 demonstrates
the large diversity and coverage of the collected datasets. Also, the embedding results
clearly demonstrate the effectiveness of FoodDist in grouping similar food items to-
gether while pushing dissimilar items away. This is important to the performance of
Yum-me, as discussed in Section 6.3.

3.2. User Survey

The user survey is designed to elicit user’s high-level dietary restrictions and nutri-
tional expectations. Users can specify their dietary restrictions among the five cat-
egories mentioned-above and indicate their nutritional expectations in terms of the
desired amount of calories, protein, and fat. We choose these nutrients for their high
relevance to many common health goals, such as weight control [18], sports perfor-
mance [7], and so on. We provide three options for each of these nutrients, including
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reduce, maintain, and increase. The user’s diet type is used to select the appropriate
food dataset, and the food items in the dataset are further ranked by their suitability
to users’ health goals based on the nutritional facts.

To measure the suitability of food items given users’ nutritional expectations, we rank
the recipes in terms of different nutrients in both ascending and descending order, such
that each recipe is associated with six ranking values, that is, rcalories,a, rcalories,d, rprotein,a,
rprotein,d, rfat,a, and rfat,d, where a and d stand for ascending and descending, respectively.
The final suitability value for each recipe given the health goal is calculated as follows:

u =
∑
n∈U

αn,arn,a +
∑
n∈U

αn,drn,d, (1)

where U = {calories, protein, fat}. The indicator coefficient αn,a = 1 ⇐⇒ nutrient n is
rated as reduce and αn,d = 1 ⇐⇒ nutrient n is rated as increase. Otherwise αn,a = 0
and αn,d = 0. If user’s goal is to maintain all nutrients, then all recipes are given equal
rankings. Eventually, given a user’s responses to the survey, we rank the suitability of
all the recipes in the corresponding database and select top-M items (around top 10%)
as the candidate pool of healthy meals for this user. In our initial prototype, we set
M = 500.

3.3. Adaptive Visual Interface

Based on the food suitability ranking, a candidate pool of healthy meals is created.
However, not all the meals in this candidate pool will suit the user’s palate. Therefore,
we design an adaptive visual interface to further identify recipes that cater to the user’s
taste through eliciting their fine-grained food preferences. We propose to learn users’
fine-grained food preferences by presenting users with food images and ask them to
choose ones that look delicious.

Formally, the food preference learning task can be defined as follows: Given a large
target set of food items S, we represent user’s preferences as a distribution over all
the possible food items, that is, p = [p1, . . . , p|S|],

∑
i pi = 1, where each element pi

denotes the user’s favorable scale for item i. Since the number of items, |S|, is usually
quite large and intractable to elicit individually from the user,3 the approach we take
is to adaptively choose a specific and much smaller subset V to present to the user
and propagate the users’ preferences for those items to the rest items based on their
visual similarity. Specifically, as Figure 1 shows, the preference elicitation process can
be divided into two phases:

Phase I: In each of the first two iterations, we present 10 food images and ask users
to tap on all the items that look delicious to them.

Phase II: In each of the subsequent iterations, we present a pair of food images and
ask users to either compare the food pair and tap on the one that looks delicious to
them or tap on “Yuck” if neither of the items appeal to their taste.

To support the preference elicitation process, we design a novel exploration-
exploitation online learning algorithm built on a state-of-the-art food image embedding
model, which will be discussed in the Section 4 and Section 5, respectively.

4. ONLINE LEARNING FRAMEWORK

We model the interaction between the user and our backend system at iteration t, (t ∈
R+, t = 1, 2, . . . , T ) as Figure 3 shows. The symbols that will be used in our algorithms
are defined as follows:

3The target set is often the whole food database that different applications use. For example, the size of
Yummly database can be up to 1 million [62].

ACM Transactions on Information Systems, Vol. 36, No. 1, Article 7, Publication date: July 2017.



Yum-Me: A Personalized Nutrient-Based Meal Recommender System 7:9

Fig. 3. User-system interaction at iteration t.

• Kt : Set of food items that are presented to user at iteration t (K0 = ∅). ∀k ∈ Kt, k ∈ S;
• Lt−1 : Set of food items that user prefer(select) among {k|k ∈ Kt−1}. Lt−1 ⊆ Kt−1;
• pt = [pt

1, . . . , pt
|S|] : User’s preference distribution on all food items at iteration t,

where ‖ pt‖1 = 1. p0 is initialized as p0
i = 1

|S| ;
• Bt : Set of food images that have been already explored until iteration t (B0 = ∅).

Bi ⊆ B j(i < j);
• F = { f (x1), . . . , f (x|S|)} : Set of feature vectors of food images xi(i = 1, . . . , | S |)

extracted by a feature extractor, denoted by f . We use FoodDist as the feature
extractor. More details about FoodDist appear in Section 5.

Based on the workflow depicted in Figure 3, for each iteration t, the backend system
updates vector pt−1 to pt and set Bt−1 to Bt based on users’ selections Lt−1 and previous
image set Kt−1. After that, it decides the set of images that will be immediately pre-
sented to the user (i.e., Kt). Our food preference elicitation framework can be formalized
in Algorithm. 1. The core procedures are update and select, which will be described in
the following subsections for more details.

ALGORITHM 1: Food Preference Elicitation Framework
Data: S, F = { f (x1), . . . , f (x|S|)}
Result: pT

1 B0 = ∅, K0 = ∅, L0 = ∅, p0 = [ 1
|S| , . . . ,

1
|S| ] ;

2 for t ← 1 to T do
3 [Bt, pt] ← update(Kt−1, Lt−1, Bt−1, pt−1) ;
4 Kt ← select(t, Bt, pt) ;
5 if t equals T then
6 return pT

7 else
8 ShowToUser(Kt) ;
9 Lt ← WaitForSelection() ;

4.1. User State Update

Based on user’s selections Lt−1 and the image set Kt−1, the update module renews
user’s state from {Bt−1, pt−1} to {Bt, pt}. Our intuition and assumption behind following
algorithm design is that people tend to have close preferences for similar food items.

Preference vector pt: Our strategy of updating preference vector pt is inspired by
the Exponentiated Gradient Algorithm in bandit settings (EXP3) [3]. Specifically, at
iteration t, each pt

i in vector pt is updated by

pt
i ← pt−1

i × e
βut−1

i
p t−1
i , (2)
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Fig. 4. Locally connected graph with item i.

where β is the exponentiated coefficient that controls update speed and ut−1 =
{ut−1

1 , . . . , ut−1
|S| } is the update vector used to adjust each preference value.

To calculate update vector u, we formalize the user’s selection process as a data
labeling problem [65] where for item i ∈ Lt−1, label y t−1

i = 1, and for item j ∈ Kt−1\Lt−1,
label y t−1

j = −1. Thus, the label vector yt−1 = {y t−1
1 , . . . , y t−1

|S| } provided by the user is

y t−1
i =

{ 1 : i ∈ Lt−1
0 : i �∈ Kt−1
−1 : i ∈ Kt−1\Lt−1

. (3)

For update vector u, we expect that it is close to label vector y but with smooth
propagation of label values to nearby neighbors (for convenience, we omit superscript
that denotes current iteration). The update vector u can be regarded as a soften label
vector compared with y. To make the solution more computationally tractable, for each
item i with yi �= 0, we construct a locally connected undirected graph Gi as Figure 4
shows: ∀ j ∈ S, add an edge (i, j) if ‖ f (xi) − f (xj)‖ ≤ δ. The labels yi for vertices sj in
graph Gi are calculated as yi

j = 0( j = 1, . . . , |S| \ i), yi
i = yi.

For each locally connected graph Gi, we fix ui
i value as ui

i = yi
i and propose the

following regularized optimization method to compute other elements (∀ui
j, j �= i) of

update vector ui, which is inspired by the traditional label propagation method [65].
Consider the problem of minimizing following objective function Q(ui):

min
ui

|S|∑
j=1, j �=i

wi j
(
yi

i − ui
j

)2 +
|S|∑

j=1, j �=i

(1 − wi j)
(
ui

j − yi
j

)2
. (4)

In Equation (4), wi j represents the similarity measure between food item si and sj :

wi j =
{

e− 1
2α2 ‖ f (xi )− f (xj )‖2

: ‖ f (xi) − f (xj)‖ ≤ δ
0 : ‖ f (xi) − f (xj)‖ > δ

, (5)

where α2 = 1
|S|2

∑
i, j∈S

‖ f (xi) − f (xj)‖2

The first term of the objective function Q(ui) is the smoothness constraint, as the
update value for similar food items should not change too much. The second term is
the fitting constraint, which makes ui close to the initial labeling assigned by user (i.e.,
yi). However, unlike in Reference [65], in our algorithm, the tradeoff between these
two constraints is dynamically adjusted by the similarity between item i and j where
similar pairs are weighed more with smoothness and dissimilar pairs are forced to be
close to initial labeling.
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ALGORITHM 2: User State Update Algorithm

1 Function update(Kt−1,Lt−1,Bt−1, pt−1)
input: Kt−1,Lt−1,Bt−1, pt−1

output: Bt, pt

2 u = [0, . . . , 0],Bt = Bt−1, pt = pt−1

3 for i ← 1 to | S | do
4 // preference update
5 for sj in Kt−1 do
6 ui ← ui + (−1)1( j∈Lt−1)−1wi j

7 pt
i = pt−1

i e
βui

pt−1
i

8 // explored image set update
9 if min(‖ f (xi) − f (xj)‖, ∀ j ∈ Kt−1) ≤ δ then

10 Bt ← Bt ∪ {i}
11 // normalize pt s.t.‖ pt‖1 = 1
12 normalize(pt)

With Equation (4) being defined, we can take the partial derivative of Q(ui) with
respect to different ui

j as follows:

∂Q(ui)
ui

j, j �=i
= 2wi j

(
ui

j − ui
i

) + 2(1 − wi j)
(
ui

j − yi
j

) = 0. (6)

As ui
i = yi

i , then

ui
j = wi jui

i = wi j yi
i ( j = 1, 2, . . . , | S |). (7)

After all ui are calculated, the original update vector u is then the sum of ui, that is,
u = ∑

i ui. The pseudo code for the algorithm of updating preference vector is shown
in Algorithm.2 for details.

Explored food image set Bt: To balance the exploitation and exploration in image se-
lection phase, we maintain a set Bt that keeps track of all similar food items that have
already been visited by user and the updating rule for Bt is as follows:

Bt ← Bt−1 ∪ {i ∈ S|minj∈Kt−1‖ f (xi) − f (xj)‖ ≤ δ}. (8)

With the algorithms designed for updating preference vector pt and explored image
set Bt, the overall functionality of procedure update is shown in Algorithm 2.

4.2. Images Selection

After updating user state, the select module then picks food images that will be pre-
sented in the next round. To trade off between exploration and exploitation in our
algorithm, we propose different images selection strategies based on current iteration t.

4.2.1. Food Exploration. For each of the first two iterations, we select ten different food
images by using k-means++ [2] algorithm, which is a seeding method used in k-means
clustering and can guarantee that selected items are evenly distributed in the feature
space. For our use case, the k-means++ algorithm is summarized in Algorithm 3.

4.2.2. Food Exploitation-Exploration. Starting from the third iteration, users are asked to
make pairwise comparisons between food images. To balance the Exploitation and Ex-
ploration, we always select one image from the area with higher preference value based
on current pt and another one from unexplored area, that is, S\Bt. (Both selections
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ALGORITHM 3: k-means++ Algorithm for Exploration
1 Function k-means-pp(S, n)

input: S, n
output: Kt

2 Kt = random(S)
3 while | Kt |< n do
4 prob ← [0, . . . , 0]|S|
5 for i ← 1 to | S | do
6 probi ← min(‖ f (xi) − f (xj)‖2|∀ j ∈ Kt)

7 sample m ∈ S with probability ∝ probm
8 Kt ← Kt ∪ {m}

ALGORITHM 4: Images Selection Algorithm - select

1 Function select(t,Bt, pt)
input: t,Bt, pt

output: Kt

2 Kt = ∅
3 if t ≤ 2 then
4 Kt ← k-means-pp(S, 10) // K-means++
5 else
6 // 99th percentile (top 1%)
7 threshold ← percentile(pt, 99)
8 topSet ← {si ∈ S|pt

i ≥ threshold}
9 Kt ← [random(topSet), random(S\B t)]

are random in a given subset of food items.) With the above explanations, the image
selection method we propose in this application is shown in Algorithm 4.

5. FOODDIST: FOOD IMAGE EMBEDDING

Formally, the goal of FoodDist is to learn a feature extractor (embedding) f such that
given an image x, f (x) projects it to an N dimensional feature vector for which the
Euclidean distance to other such vectors will reflect the similarities between food
images, as Figure 5 shows. Formally speaking, if image x1 is more similar to image x2
than image x3, then ‖ f (x1) − f (x2)‖ < ‖ f (x1) − f (x3)‖.

We build FoodDist based on recent advances in deep Convolutional Neural Networks
(CNN), which provide a powerful framework for automatic feature learning. Traditional
feature representations for images are mostly hand-crafted and were used with feature
descriptors, such as Scale Invariant Feature Transform [34], which aims for invariance
to changes in object scale and illumination, thereby improving the generalizability of
the trained model. However, in the face of highly diverse image characteristics, the
one-size-fits-all feature extractor performs poorly. In contrast, deep learning adapts
the features to particular image characteristics and extracts features that are most
discriminative in the given task [43].

As we present below, a feature extractor for food images can be learned through
classification and metric learning, or through multitask learning, which concurrently
performs these two tasks. We demonstrate that the proposed multitask learning ap-
proach enjoys the benefits of both classification and metric learning and achieves the
best performance.
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Fig. 5. Euclidean embedding of FoodDist. This figure shows the pairwise Euclidean distances between food
images in the embedding. A distance of 0.0 means two food items are identical and a distance of 2.0 represents
that the image contents completely differ. For this example, if the threshold is set to 1.0, then all the food
images can be correctly classified.

5.1. Learning with Classification

One common way to learn a feature extractor for labeled data is to train a neural
network that performs classification (i.e., mapping input to labels) and takes the output
of a hidden layer as the feature representations; specifically, using a feedforward deep
CNN with n-layers (as the upper half of the Figure 6 shows),

F(x) = gn
(
gn−1

(
. . . gi(. . . g1(x) . . . )

))
, (9)

f (x) = gn−1
(
. . . gi(. . . g1(x) . . . )

)
. (10)

Usually, the last few layers will be fully connected layers, and the last layer gn(.) is
roughly equivalent to a linear classifier that is built on the features f (x) [26]. Therefore,
f (x) is discriminative in separating instances under different categorical labels, and
the Euclidean distances between normalized feature vectors can reflect the similarities
between images.

5.2. Metric Learning

Differing from the classification approach, where the feature extractor is a by-product,
metric learning proposes to learn the distance embedding directly from the paired
inputs of similar and dissimilar examples. Prior work [59] used a Siamese network to
learn a feature extractor for food images. The structure of a Siamese network resembles
that in Figure 6 but without the Class label, Fully connected, 101, and Softmax Loss
layers. The inputs to the Siamese network are pairs of food images x1, x2. The images
pass through CNNs with shared weights, and the output of each network is regarded
as the feature representation, that is, f (x1) and f (x2), respectively. Our goal is for f (x1)
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Fig. 6. Multitask learning structure of FoodDist. Different types of layers are denoted by different colors.
The format of each type of layer: Convolution layer: [receptive field size:step size ..., #channels]; Pooling
layer: [pooling size:step size ...]; Fully connected layer: [..., output dimension].

and f (x2) to have a small distance value (close to 0) if x1 and x2 are similar food items;
otherwise, they should have a larger distance value. The value of contrastive loss is
then back-propagated to optimize the Siamese network:

L(x1, x2, l) = 1
2

lD2 + 1
2

(1 − l) max (0, m− D)2
, (11)

where similarity label l ∈ {0, 1} indicates whether the input pair of food items x1, x2
are similar (l = 1 for similar, l = 0 for dissimilar), m > 0 is the margin for dissimilar
items, and D is the Euclidean distance between f (x1) and f (x2) in embedding space.
Minimizing the contrastive loss will pull similar pairs together and push dissimilar
pairs farther away (larger than a margin m), and it exactly matches the goal.

The major advantage of metric learning is that the network will be directly optimized
for our final goal, that is, a robust distance measure between images. However, as shown
in the model benchmarks, using the pairwise information alone does not improve the
embedding performance as the process of sampling pairs loses the label information,
which is arguably more discriminative than (dis)similar pairs.

5.3. Multitask Learning: Concurrently Optimize Both Tasks

Both methods above have their pros and cons. Learning with classification leverages
the label information, but the network is not directly optimized to our goal. As a result,
although the feature vectors are learned to be separable in the linear space, the intra-
and inter- categorical distances might still be unbalanced. On the other hand, metric
learning is explicitly optimized for our final objective by pushing the distances between
dissimilar food items apart beyond a margin m. Nevertheless, sampling the similar or
dissimilar pairs loses valuable label information. For example, given a pair of items
with different labels, we only consider the dissimilarity between the two categories
they belong to, but overlook the fact that each item also differs from the remaining
n − 2 categories, where n is the total number of categories.

To leverage the benefits of both tasks, we propose a multitask learning design [26]
for FoodDist. The idea of multitask learning is to share part of the model across
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tasks to improve the generalization ability of the learned model [26]. In our case, as
Figure 6 shows, we share the parameters between the classification network and
Siamese network and optimize them simultaneously. We use the base structure of
the Siamese network and share the upper CNN with a classification network where
the output of the CNN is fed into a cascade of a fully connected layer and a softmax
loss layer. The final loss of the whole network is the weighted sum of the softmax loss
Lsoftmax and contrastive loss Lcontrastive:

L = ωLsoftmax + (1 − ω)Lcontrastive (12)

Our benchmark results (Section 6.2) suggest that the feature extractor built with
multitask learning achieves the best of both worlds: It achieves the best performance
for both classification and Euclidean distance-based retrieval tasks.

6. EVALUATION

• H1: Our online learning framework learns more accurate food preference profile than
baseline approaches.

• H2: FoodDist generates better similarity measure for food images than state-of-the-
art embedding models.

• H3: Yum-me makes more accurate nutritionally appropriate meal recommendations
than traditional surveys, as it integrates coarse-grained item filtering (provided by
a survey) with fine-grained food preference learned through adaptive elicitation.

In this section, we first present user testing results for the online learning framework
in Section 6.1 and then the offline benchmark FoodDist model with a large-scale real-
world food image dataset in Section 6.2 and, finally, discuss the results of end-to-end
user testing in Section 6.3.

6.1. User Testing for Online Learning Framework

To evaluate the accuracy of our online learning framework, we conducted a field study
among 227 anonymous users recruited from social networks and university mailing
lists. The experiment was approved by Institutional Review Board (ID: 1411005129)
at Cornell University. All participants were required to use this system independently
3 times. Each time the study consisted of following two phases:

• Training Phase. Users conducted the first T iterations of food image comparisons,
and the system learnt and elicited preference vector pT based on the algorithms
proposed in this article or baseline methods, which will be discussed later. We ran-
domly picked T from set {5, 10, 15} at the beginning but made sure that each user
experienced different values of T only once.

• Testing Phase. After T iterations of training, users entered the testing phase, which
consisted of 10 rounds of pairwise comparisons. We picked testing images based on
preference vector pT that were learned from online interactions: One of them was
selected from food area that user liked (i.e., item with top 1% preference value) and
the other one from the area that user disliked (i.e., item with bottom 1% preference
value). Both of the images were picked randomly among unexplored food items.

6.1.1. Prediction Accuracy. To evaluate the effectiveness of user state update and images
selection methods, respectively, we conduct a 2-by-2 experiment in this section. For the
user state update method, we compare the proposed Label propagation, Exponenti-
ated Gradient (LE) algorithm to Online Perceptron (OP), and for the images selection
method, we compare the proposed Exploration-Exploitation (EE) algorithm to the Ran-
dom Selection (RS). Specifically, four frameworks presented below are evaluated. Users
encountered them randomly when they logged into the system.
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Fig. 7. Prediction accuracy for different algorithms in various training settings (asterisks represent different
levels of statistical significance: ∗ ∗ ∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05).

LE+EE: This is the online learning algorithm proposed in this article that combines
the ideas of Label propagation, the Exponentiated Gradient algorithm for user state
update, and Exploitation-Exploration strategy for images selection.

LE+RS: This algorithm retains our method for user state update (LE) but Random
Select images to present to user without any exploitation or exploration.

OP+EE: As each item is represented by a 1,000-dimensional feature vector, we can
adopt the idea of regression to tackle this online learning problem (i.e., learning weight
vector w such that w f (xi) is higher for item i that user prefer). Hence, we compare our
method with Online Perceptron algorithm that updates w whenever it makes error,
that is, if yiw f (xi) ≤ 0, then assign w ← w + yiw f (xi), where yi is the label for item i
(pairwise comparison is regarded as binary classification such that the food item that
user select is labeled as +1 and otherwise −1). In this algorithm, we retain our strategy
of images selection (i.e., EE).

OP+RS: The last algorithm is the Online Perceptron mentioned above but with
Random images Selection strategy.

Of the 227 participants in our study, 58 of them finally used algorithm LE+EE and
57 used OP+RS. For the rest of the users (112), half of them (56) tested OP+EE and
the other half (56) tested LE+RS. Overall, the participants for different algorithms are
totally random so the performances of different models are directly comparable.

After all users go through the training and testing phases, we calculate the predic-
tion accuracy of each individual user and aggregate them based on the context that
they encountered (i.e. the number of training iterations T and the algorithm settings
mentioned above). The prediction accuracies and their cumulative distributions are
shown in Figures 7, 8, and 9 respectively.

Length effects of training iterations. As shown in Figure 7 and Figure 8, the pre-
diction accuracies of our online learning algorithm are all significantly higher than the
baselines.The algorithm performance is further improved with longer training period.
As is clearly shown in Figure 8, when the number of training iterations reaches 15,
about half of the users will experience the prediction accuracy that exceeds 80%, which
is fairly promising and decent considering the small number of interactions that the
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Fig. 8. Cumulative distribution of prediction accuracy for LE+EE algorithm (Numbers in the legend repre-
sent the number of training iterations (i.e., values of T )).

Fig. 9. Comparison of cumulative distribution of prediction accuracy across different algorithms.

system elicited from scratch. The results above justify that the online preference learn-
ing algorithm can adjust itself to explore users’ preference area as more information
is available from their choices. For the task of item-based food preference bootstrap-
ping, our system can efficiently balance the exploration-exploitation while providing
reasonably accurate predictions.

Comparisons across different algorithms. As mentioned previously, we com-
pared our algorithm with several obvious alternatives. As shown in Figure 7 and
Figure 9, none of these algorithms works very well and the accuracy of prediction is
actually decreasing as the user provides more information. Additionally, as is shown
in Figure 9, our algorithm has particular advantages when users are making progress
(i.e., the number of training iterations reaches 15). The reason why these techniques
are not suited for our application is mainly due to the following limitations:

Random Selection. Within a limited number of interactions, random selection cannot
maintain the knowledge that it has already learned about the user (exploitation) or
explore unknown areas (exploration). In addition, it is more likely that the system will
choose food items that are very similar to each other and thus hard for the user to
make decisions. Therefore, after short periods of interactions, the system is messed up,
and the performance degrades.

Underfitting. The algorithm that will possibly have the underfitting problem is
the online perceptron (OP). For our application, each food item is represented by a
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Fig. 10. Timestamp records for user response time and system execution time.

Table II. Average Time to
Complete Training Phase

# Iter: 5 # Iter: 10 # Iter: 15
28.75s 39.74s 53.22s

1,000-dimensional feature vector, and OP is trying to learn a separate hyperplane
based on a limited number of training data. As each single feature is directly derived
from a deep neural network, the linearity assumptions made by the perceptron might
yield wrong predictions for the dishes that have not been explored before.

6.1.2. System Efficiency. As another two aspects of online preference elicitation system,
computing efficiency and user experience are also very important metrics for system
evaluation. Therefore, we recorded the program execution time and user response time
as a lens into the real-time performance of the online learning algorithm. As shown
in Figure 10(b), the program execution time is about 0.35s for the first two iterations
and less than 0.025s for the iterations afterwards.4 Also, according to Figure 10(a), the
majority of users can make their decisions in less than 15s for the task of comparison
among 10 food images while the payload for the pairwise comparison is less than 2 to
3s. As a final cumulative metric for the system overhead, it is shown in Table II that
even for 15 iterations of training, users can typically complete the whole process within
53s, which further justify that our online learning framework is lightweight and user
friendly in efficiently eliciting food preference.

6.1.3. User Qualitative Feedback. After the study, some participants send us emails re-
garding their experiences towards the adaptive visual interface. Most of the comments
reflect the participants’ satisfactions and that our system is able to engage the user
throughout the elicitation process, for example, “Now I’m really hungry and want a
grilled cheese sandwhich!,” “That was fun seeing tasty food at top of the morning,” and
“Pretty cool tool.” However, they also highlight some limitations of our current proto-
type, for example, “I am addicted to spicy food and it totally missed it. There may just
not be enough spicy alternatives in the different dishes to pick up on it” points out that
the prototype is limited in the size of the food database.

4Our web system implementation is based on Amazon EC2 t2-micro Linux 64-bit instance
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Table III. Model Performance of Classification Task. ∗ Represents State-of-the-Art
Approach and Bold Text Indicates the Method with the Best Performance

Method Top-1 ACC (%) Top-5 ACC(%)

RFDC∗ [6] 50.76% —
GoogleLeNet∗ [35] 79% —

AlexNet+CL 67.63% 89.02%
AlexNet+MT 70.50% 90.36%

VGG+CL 82.48% 95.70%
VGG+MT (FoodDist) 83.09% 95.82%

6.2. Offline Benchmarking for FoodDist

We develop FoodDist and baseline models (Section 5) using the Food-101 training
dataset, which contains 75,750 food images from 101 food categories (750 instances
for each category) [6]. To the best of our knowledge, Food-101 is the largest and most
challenging publicly available dataset for food images. We implement models using
Caffe [27] and experiment with two CNN architectures in our framework: AlexNet [33],
which won first place at the ILSVRC2012 challenge, and VGG [48], which is the state-of-
the-art CNN model. The inputs to the networks are image crops of sizes 224×224 (VGG)
or 227 × 227 (AlexNet). They are randomly sampled from a pixelwise mean-subtracted
image or its horizontal flip. In our benchmark, we train four different feature extractors:
AlexNet+Learning with classification (AlexNet+CL), AlextNet+Multitask learning
(AlexNet+MT), VGG+Learning with classification (VGG+CL), and VGG+Multitask
learning (VGG+ML, FoodDist). For the multitask learning framework, we sample
the similar and dissimilar image pairs with 1:10 ratio from the Food-101 dataset based
on the categorical labels to be consistent with the previous work [59]. The models
are fine-tuned based on the networks pre-trained with the ImageNet data. We use
Stochastic Gradient Decent with a mini-batch size of 64, and each network is trained
for 10 × 104 iterations. The initial learning rate is set to 0.001, and we use a weight
decay of 0.0005 and momentum of 0.9.

We compare the performance of four feature extractors, including FoodDist, with the
state-of-the-art food image analysis models using the Food-101 testing dataset, which
contains 25,250 food images from 101 food categories (250 instances for each category).
The performance for the classification and retrieval tasks are evaluated as follows:

• Classification: We test the performance of using learned image features for clas-
sification. For the classification deep neural network in each of the models above,
we adopt the standard 10-crop testing. that is, the network makes a prediction by
extracting 10 patches (the four corner patches and the center patch in the original
images and their horizontal reflections) and averaging the predictions at the softmax
layer. The metrics used in this article are Top-1 accuracy and Top-5 accuracy.

• Retrieval: We use a retrieval task to evaluate the quality of the Euclidean distances
between extracted features. Ideally, the distances should be smaller for similar image
pairs and larger for dissimilar pairs. Therefore, as suggested by previous work [59,
61], we check the nearest k-neighbors of each test image, for k = 1, 2, . . . , N, where
N = 25, 250 is the size of the testing dataset, and calculate the Precision and Recall
values for each k. We use mean Average Precision (mAP) as the evaluation met-
ric to compare the performance. For every method, the Precision/Recall values are
averaged over all the images in the testing set.

The classification and retrieval performance of all models are summarized in Table III
and Table IV, respectively. FoodDist performs the best among four models and is signif-
icantly better than the state-of-the-art approaches in both tasks. For the classification
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Table IV. Model Performance of Retrieval Task. ∗ Represents
State-of-the-Art Approach and Bold Text Indicates

the Method with the Best Performance

Method mean Average Precision (mAP)

Food-CNN∗ [59] 0.3084

AlexNet+CL 0.3751
AlexNet+MT 0.4063
VGG+CL 0.6417
VGG+MT (FoodDist) 0.6670

Note: The mAP value that we report for food-cnn is higher
because we use pixel-wise mean subtraction while the orig-
inal paper only used per-channel mean subtraction.

task, the classifier built on FoodDist features achieves 83.09% Top-1 accuracy, which
significantly outperforms the original RFDC [6] model and the proprietary GoogLeNet
model [35]; for the retrieval task, FoodDist doubles the mAP value reported by previous
work [59] that only used the AlexNet and Siamese network architecture. The bench-
mark results demonstrate that FoodDist features possess high generalization ability
and the Euclidean distances between feature vectors reflect the similarities between
food images with great fidelity. In addition, as we can observe from both tables, the
multitask learning-based approach always performs better than learning with classifi-
cation for both tasks no matter which CNN is used. This further justifies the proposed
multitask learning approach and its advantage of incorporating both label and pair-
wise distance information that makes the learned features more generalizable and
meaningful in the Euclidean distance embedding.

6.3. End-to-End User Testing

We conducted end-to-end user testing to validate the efficacy of Yum-me recommenda-
tions. We recruited 60 participants through the university mailing list, Facebook, and
Twitter. The goal of the user testing was to compare Yum-me recommendations with
a widely used user onboarding approach, that is, a traditional food preference survey
(a sample survey used by PlateJoy is shown in Figure 13). As Yum-me is designed for
scenarios where no rating or food consumption history is available (which is common
when the user is new to a platform or is visiting a nutritionist’s office), a collaborative
filtering algorithm that has been adopted by many state-of-the-art recommenders is
not directly comparable to our system.

In this study, we used a within-subjects study design in which each participant ex-
pressed their opinions regarding the meals recommended by both of the recommenders,
and the effectiveness of the systems were compared on a per-user basis.

6.3.1. Study Design. We created a traditional recommendation system by randomly
picking N of M meals in the candidate pool to recommend to the users. The values
of N and M are controlled such that N = 10, M = 500 for both Yum-me and the
traditional baseline. The user study consists of three phases, as Figure 11 shows:
(1) Each participant was asked to indicate his or her diet type and health goals through
our basic user survey. (2) Each participant was then asked to use the visual interface.
(3) Twenty meal recommendations were arranged in a random order and presented
to the participant at the same time, where 10 of them are made by Yum-me, and the
other 10 are generated by the baseline. The participant was asked to express their
opinion by dragging each of the 20 meals into either the Yummy or the No way bucket.
To overcome the fact that humans would tend to balance the buckets if their previous
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Fig. 11. User study workflow for personalized nutrient-based meals recommendation system. We compare
Yum-me (blue arrows) with the baseline method (violet arrow) that makes recommendations solely based on
nutritional facts and dietary restrictions.

Table V. Statistics of Health Goals Among 60 Participants.
Unit: Number of Participants

Nutrient Reduce Maintain Increase

Calories 30 28 2
Protein 1 44 15

Fat 23 36 1

choices were shown, the food item disappeared after the user dragged it into a bucket.
In this way, users were not reminded of how many meals they had put into each bucket.

The user study systems were implemented as web services and participants accessed
the study from desktop or mobile browsers. We chose a web service for its wide accessi-
bility to the population, but we could easily fit Yum-me into other ubiquitous devices,
as mentioned earlier.

6.3.2. Participants. The most common dietary choice among our 60 participants was No
restrictions (48), followed by Vegetarian (9), Halal (2), and Kosher (1). No participants
chose Vegan. Participant preferences in terms of nutrients are summarized in Table V.
For Calories and Fat, the top two goals were Reduce and Maintain. For Protein, par-
ticipants tended to choose either Increase or Maintain. For health goals, the top four
participant choices were Maintain calories-Maintain protein-Maintain fat (20), Reduce
calories-Maintain protein-Reduce fat (10), Reduce calories-Maintain protein-Maintain
fat (10) and Reduce calories-Increase protein-Reduce fat (5). The statistics match well
with the common health goals among the general population, that is, people who plan
to control weight and improve sports performance tend to reduce the intake calories
and fat and increase the amount of protein.

6.3.3. Quantitative Analysis. We use a quantitive approach to demonstrate that (1) Yum-
me recommendations yield higher meal acceptance rates than traditional approaches
and (2) meals recommended by Yum-me satisfy users’ nutritional needs.

To show higher meal acceptance rates, we calculated the participant acceptance rate
of meal recommendations as

# Meals in Yummy bucket
# Recommended meals

.

The cumulative distribution of the acceptance rate is shown in Figure 12, and the
average acceptance rate, Mean Absolute Error (MAE), and Root Mean Square Error
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Fig. 12. Cumulative distribution of acceptance rate for both recommender systems.

Table VI. Average Acceptance Rates (Avg. Acc.), Mean Absolute
Error (MAE), and Root Mean Square Error (RMSE) between two

Systems. Paired t-test P-value (Avg. Acc.): 8.58 × 10−10

Metric Mean SEM

Yum-me Avg. Acc. 0.7250 0.0299
Baseline Avg. Acc. 0.5083 0.0341

Yum-me MAE 0.2750 0.0299
Baseline MAE 0.4916 0.0341

Yum-me RMSE 0.4481 0.0355
Baseline RMSE 0.6649 0.0290

(RMSE) of each approach are presented in Table VI. The results demonstrate that
Yum-me significantly improves the quality of the presented food items. The per-user
acceptance rate difference between two approaches was normally distributed,5 and
a paired Student’s t-test indicated a significant difference between the two methods
(p < 0.0001).6

To quantify the improvement provided by Yum-me, we calculated the difference
between the acceptance rates of the two systems, that is, difference = Yum-me
acceptance rate − baseline acceptance rate. The distribution and average values of the
differences are presented in Figure 14 and Table VI, respectively. It is noteworthy that
Yum-me outperformed the baseline by 42.63% in terms of the number of preferred
recommendations, which demonstrates its utility over the traditional meal recommen-
dation approach. However, another observed phenomenon in Figure 14 is that there are
12 users (20%) with zero acceptance rate differences, which may due to the following
two reasons: (1) Yum-me is not effective to this set of users, and it does not improve
their preferences towards recommended food items. (2) As we did not conduct partici-
pant control and filtering, some participants may not be well involved in the study and
randomly select or drag items.

To examine meal nutrition, we compare the nutritional facts of paticipants’ favorite
meals with those of meals recommended (by Yum-me) and accepted (items dragged
into the yummy bucket) by the user. As shown in Figure 15, for users with the same
nutritional needs and no dietary restrictions, we calculate the average amount of pro-
tein, calories, and fat (per-serving) in (1) their favorite 20 meals (as determined by our

5A Shapiro Wilk W test was not significant (p = 0.12), which justifies that the difference is normally
distributed.
6We also performed a non-parametric Wilcoxon signed-rank test and found a comparable result.
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Fig. 13. The survey used for user onboarding of PlateJoy. The questions are up to date at the time of the
writing of this article, and we only include top four questions for illustration purpose.

online learning algorithm) and (2) their recommended and accepted meals, respectively.
The mean values presented in Figure 15 are normalized by the average amount of cor-
responding nutrients in their favorite meals. The results demonstrate that by using a
relatively simple nutritional ranking approach, Yum-me is able to satisfy most of the
nutritional needs set by the users, including reduce, maintain and increase calories,
increase protein, and reduce fat. However, our system fails to meet two nutritional
requirments, that is, maintain protein and maintain fat. Our results also show where
Yum-me recommendations result in unintended nutritional composition. For example,
the goal of reducing fat results in the reduction of protein and calories, and the goal
of increasing calories ends up increasing the protein in meals. This is partially due to
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Fig. 14. Distribution of the acceptance rate differences between two recommender systems.

Fig. 15. Nutritional facts comparison between paticipants’ favorite meals and recommended (Yum-me)
and accepted meals. The meal is accepted if it is dragged into the yummy bucket. The mean values are
normalized by the average amount of corresponding nutrient in the favorite meals (orange bar). (Only seven
of nine nutritional goals are used by at least one partipant.)
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Fig. 16. Qualitative analysis of personalized healthy meal recommendations. Images on the left half are
sampled from users’ top-20 favorite meals learned from Yum-me; images on the right half are the meals
presented to the user. The number under each food image represents the amount of calories for the dish,
unit: kcal/serving.

the inherent inter-dependence between nutrients, and we leave further investigation
of this issue to future work.

6.3.4. Qualitative Analysis. To qualitatively understand the personalization mechanism
of Yum-me, we randomly pick three participants with no dietary restrictions and with
the health goal of reducing calories. For each user, we select top-20 general food items
the user likes most (inferred by the online learning algorithm). These food items played
important roles in selecting the healthy meals to recommend to the user. To visualize
this relationship, among these top-20 items, we further select two food items that are
most similar to the healthy items Yum-me recommended to the users and present three
such examples in Figure 16. Intuitively, our system is able to recommend healthy food
items that are visually similar to the food items a user like, but the recommended items
are of lower calories due to the use of healthier ingredients or different cooking styles.
These examples showcase how Yum-me can project users’ general food preferences to
the domain of the healthy options and find the ones that can most appeal to users.

6.3.5. Error Analysis. Through a closer examination of the cases where our system
performed, or did not perform, well, we observed a negative correlation between the
entropy of the learned preference distribution p7 and the improvement of Yum-me over

7Entropy of preference distribution: H(p) = −∑
i pi log pi .
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Fig. 17. Entropy of preference distributions in different iterations of online learning. (Data are from 48
users with no dietary restrictions.)

the baseline (r = −0.32, p = 0.026). This correlation suggests that when user’s pref-
erence distributions are more concentrated, the recommended meals tend to perform
better. This is not too surprising, because the entropy of the preference distribution
roughly reflects the degree of confidence the system has in the users’ preferences,
where the confidence is higher if the entropy is lower and vice versa. In Figure 17, we
show the evolution of the entropy value as the users are making more comparisons. The
results demonstrate that the system becomes more confident about user’s preferences
as users provide more feedback.

7. DISCUSSION

In this section, we discuss the limitations of the current prototype and study and
present real-world scenarios where Yum-me and its sub-modules can be used.

7.1. Limitations of the Evaluations

In evaluating the online learning framework, because there is no previous algorithm
that can end-to-end solve our preference elicitation problem, the baselines are con-
structed by combining methods that intuitively fit user state update and images se-
lection modules, respectively. This introduces potential biases in baseline selections.
Additionally, in the end-to-end user testing, the participants’ judgements of whether
the food is Yummy or No way is potentially influenced by the image quality and the
health concerns. These may be confounding factors in measuring users’ preferences
towards food items and can be eliminated by explicitly instructing the participants to
not consider these factors. We leave further evaluations as future work.

7.2. Limitations of Yum-me in Recommending Healthy Meals

The ultimate effectiveness of Yum-me in generating healthy meal suggestions is contin-
gent on the appropriateness of the nutritional needs input by the user. To conduct such
recommendations for people with different conditions, Yum-me could be used in the
context of personal health coaches, nutritionists, or coaching applications that provide
reliable nutritional suggestions based on the user’s age, weight, height, exercise, and
disease history. For instance, general nutritional recommendations can be calculated
using online services built on the guidelines from National Institutes of Health, such
as weight-success8 and active.9 Also, although we have demonstrated the feasibility
of building a personalized meal recommender catering to people’s fine-grained food

8http://www.weighing-success.com/NutritionalNeeds.html.
9http://www.active.com/fitness/calculators/nutrition.
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preference and nutritional needs, the current prototype of Yum-me assumes a rela-
tively simple strategy to rank the nutritional appropriateness, and is limited in terms
of the available options for nutrition. Future work should investigate more sophisti-
cated ranking approaches and incorporate options relevant to the specific application
context.

7.3. Yum-Me for Real-World Dietary Applications

We envision that Yum-me has the potential to power many real-world dietary appli-
cations. For example, (1) User onboarding. Traditionally, food companies, for example,
Zipongo and Plated, address the cold start problem by asking each new user to answer
a set of pre-defined questions, as shown in Section 6.3, and then recommend meals
accordingly. Yum-me can enhance this process by eliciting user’s fine-grained food
preference and informing an accurate dietary profile. Service providers can customize
Yum-me to serve their own businesses and products by using a specialized backend
food item database and then use it as a step after the general questions. (2) Nutritional
assistants. While visiting a doctor’s office, patients are often asked to fill out standard
questionnaires to indicate food preferences and restrictions. Patients’ answers are then
investigated by the professionals to come up with effective and personalized dietary
suggestions. In such a scenario, the recommendations made by Yum-me could provide a
complementary channel for communicating the patient’s fine-grained food preferences
to the doctor to further tailor suggestions.

7.4. FoodDist for a Wide Range of Food Image Analysis Tasks

FoodDist provides a unified model to extract features from food images so they are
discriminative in the classification and clustering tasks, and its pairwise Euclidean
distances are meaningful in reflecting similarities. The model is rather efficient (<0.5s/f
on eight-core commodity processors) and can be ported to mobile devices with the
publicly available caffe-android-lib framework.10

In addition to enabling Yum-me, we released the FoodDist model to the community
(https://github.com/ylongqi/FoodDist), so it can be used to fuel other nutritional appli-
cations. For the sake of space, we only briefly discuss two sample use cases below:

• Food/Meal recognition: Given a set of labels, for example, food categories, cuisines,
and restaurants, the task of food and meal recognition could be approached by first
extracting food image features from FoodDist and then training a linear classifier,
for example, logistic regression or SVM, to classify the food images that are beyond
the categories given in the Food-101 dataset.

• Nutrition Facts estimation: With the emergence of large-scale food item or recipe
databases, such as Yummly, the problem of nutritional fact estimation might be con-
verted to a simple nearest-neighbor retrieval task: Given a query image, we find its
closest neighbor in the FoodDist based on Euclidean distance and use that neighbor’s
nutritional information to estimate the nutrition facts of the query image [35].

8. CONCLUSION AND FUTURE WORK

In this article, we propose Yum-me, a novel nutrient-based meal recommender that
makes meal recommendations catering to users’ fine-grained food preferences and
nutritional needs. We further present an online learning algorithm that is capable
of efficiently learning food preference and FoodDist, a best-of-its-kind unified food
image analysis model. The user study and benchmarking results demonstrate the
effectiveness of Yum-me and the superior performance of the FoodDist model.

10https://github.com/sh1r0/caffe-android-lib.
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Looking forward, we envision that the idea of using visual similarity for preference
elicitation may have implications to the following research areas. (1) User-centric
modeling: the fine-grained food preference learned by Yum-me can be seen as a gen-
eral dietary profile of each user and be projected to other domains to enable more
dietary applications, such as suggesting proper meal plans for diabetes patients. More-
over, a personal dietary API can be built on top of this profile to enable sharing and
improvementment across multiple dietary applications. (2) Food image analysis API
for deeper content understanding: With the release of the FoodDist model and API,
many dietary applications, in particular the ones that capture a large number of food
images, might benefit from a deeper understanding of their image contents. For in-
stance, food journaling applications could benefit from the automatic analysis of food
images to summarize the day-to-day food intake or trigger timely reminders and sug-
gestions when needed. (3) Fine-grained preference elicitation leveraging visual
interfaces. The idea of eliciting users’ fine-grained preference via visual interfaces is
also applicable to other domains. The key insight here is that visual contents capture
many subtle variations among objects that text or categorical data cannot capture, and
the learned representations can be used as an effective medium to enable fine-grained
preferences learning. For instance, the IoT, wearable, and mobile systems for enter-
tainments, consumer products, and general content deliveries might leverage such an
adaptive visual interface to design an onboarding process that learn users’ preferences
in a much shorter time and potentially provide a more pleasant user experience than
traditional approaches.
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