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Fig. 1. (a) The proposed ART (Adaptive Regular Tiles) sampler uses a self-similar regular tile set with 1 sample per tile to supply sequences of blue-noise

samples. (b) Tiled multi-class sets can be used to partition a tiled blue noise set into separate blue-noise sets. The two bottom lines show the filling order of our

recursive tile in (a). First, sample points are filled in that are shared by one of the respective child tiles. The parent tile then visits the remaining children (in an

optimized order) and instructs them to add their samples. For each subsequent 16 (number of children) samples, control is passed recursively to the children –

in the same order – to add more samples.

We present a framework to distribute point samples with controlled spectral

properties using a regular lattice of tiles with a single sample per tile. We

employ a word-based identification scheme to identify individual tiles in the

lattice. Our scheme is recursive, permitting tiles to be subdivided into smaller

tiles that use the same set of IDs. The corresponding framework offers a very

simple setup for optimization towards different spectral properties. Small

lookup tables are sufficient to store all the information needed to produce

different point sets. For blue noise with varying densities, we employ the

bit-reversal principle to recursively traverse sub-tiles. Our framework is

also capable of delivering multi-class blue noise samples. It is well-suited

We thank the anonymous reviewers for their detailed feedback to improve the pa-
per. Thanks to Cengiz Öztireli for sharing the grid test scene. Thanks to Carla Avo-
lio for the voice over of the supporting video clip. Corresponding author is Ab-
dalla G. M. Ahmed, abdalla_gafar@hotmail.com. This work was partially funded by
Deutsche Forschungsgemeinschaft Grant (DE-620/22-1), the National Foreign 1000
Talent Plan (WQ201344000169), Leading Talents of Guangdong Program (00201509),
NSFC (61522213, 61379090, 61232011), Guangdong Science and Technology Program
(2015A030312015), and Shenzhen Innovation Program (JCYJ20151015151249564).

for different sampling scenarios in rendering, including area-light sampling

(uniform and adaptive), and importance sampling. Other applications include

stippling and distributing objects.

CCS Concepts: • Computing methodologies → Rendering;

Additional KeyWords and Phrases: Blue noise, tiling, sampling, Monte Carlo,
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1 INTRODUCTION

Point sets are ubiquitous in computer graphics. Of special interest

are point sets with a Poisson-disk property, that is, a constrained

minimal spacing between neighboring points [Cook 1986; Dippé

and Wold 1985], and blue-noise spectra, that is, attenuated energy

in low frequencies and flat spectrum in high frequencies [Ulichney

1988]. Such point sets are primarily needed for anti-aliased sampling

[Glassner 1995], but are also used in other applications including

Monte Carlo integration [Pilleboue et al. 2015], stippling [Secord

2002], meshing [Yan et al. 2009], and distributing different kinds of
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objects such as people in crowds or trees in forests [Bradbury et al.

2015].

Blue-noise sets are usually obtained by applying complex refine-

ments on a random point process. There are many algorithms for

this purpose, e.g. [Ahmed et al. 2016; Balzer et al. 2009; Cook 1986;

de Goes et al. 2012; Fattal 2011; Jiang et al. 2015; McCool and Fiume

1992; Schlömer et al. 2011]. In all these algorithms the production

cost (time and memory) is high, which leads to the idea of tabulat-

ing the blue-noise sets for subsequent reuse, replacing on-the-fly

generation of sample points by a lookup framework. Alternatively,

real-time techniques such as jittered sampling [Dippé and Wold

1985] and low-discrepancy sampling [Keller 2012] are commonly

used to approximate blue noise.

A common technique for lookup sampling is to distribute the

sample points over a set of tiles. The basic idea is as follows: A

finite set of distinct tiles is designed, each tile has a unique ID, and

is populated with one or more sample points at fixed locations.

At run time, copies of these tiles are assembled into an arbitrarily

large tiling, in accordance with a predefined “matching rule” that

constrains which tiles in the set can be placed next to each other.

There are various desirable features in a lookup sampler, depend-

ing on the target application; for example:

• Granularity: to be able to control the generated number

of samples. A single sample per tile would be ideal. Alter-

natively, the samples should be ordered (ranked [Kopf et al.

2006]) within a multi-sample tile.

• Progressiveness: incrementally addmore samples depend-

ing on the outcome of the previously taken samples. The

sampler should retain similar distribution properties over

different numbers of samples.

• Localization: some applications, e.g. image reconstruction

[Dippé and Wold 1985], require the ability to easily locate

samples nearby a given location.

• Adaptivity: Localization is also sometimes combined with

progressiveness; that is, more samples are generated in a

specific location, possibly guided by a densitymap. Example

applications include stippling and importance sampling.

• Optimizability: it should be possible to apply different

optimization techniques to control the placement of the

sample points. Any generated tiling should retain the opti-

mal quality of the point distribution.

• Efficiency: a look-up sampler has to maintain reasonable

costs in terms of memory, processing time, and coding

complexity.

The matching rule is arguably the most crucial part for building

a successful tile-based sampler. The essence of a matching rule

is that it makes a tile of a given ID aware of the IDs of potential

adjacent tiles, so that the placement of the sample points on each

tile is coordinated with the placement of the sample points on all

possible adjacent tiles. Consider, for example, the case of using the

tiles to distribute a Poisson-disk point set. Unless the number of

possible distinct adjacent tiles is limited, it would be quite difficult

to place sample points near tile edges or corners, since this would

inhibit placing points near the corresponding edges or corners of

all potential adjacent tiles.

The classic approach to sampling with regular (square) tiles is

based on Wang tiles [Cohen et al. 2003]. The four edges of each

distinct tile are color-coded, and the matching rule is that two tiles

can be adjacent only if they bear the same color on the shared edge.

This gives each tile an idea about the IDs of potential neighbors

on the four sides (North, East, South, West), but there is no explicit

information about, say, the North-Eastern neighbor tile. Thus, too

many degrees of freedom appear in Wang tilings, which drastically

limits optimizability. To address this issue, Lagae and Dutreé [Lagae

and Dutré 2006] proposed color-coding the tile corners instead of

their edges, offering each tile information about all the possible

eight neighbors. While this offers a tangible improvement [Lagae

and Dutré 2008], the degree of freedom is still too much, since each

corner is set independently. Thus, corner tiles are still unable to

sustain a granularity of one sample per tile, neither do they offer a

good environment for optimization across tile boundaries.

In this paper we develop a lookup sampler that meets all the

listed requirements. It builds on a set of regular tiles, with as few as

one sample per tile. At the heart of our solution is a novel string-

based matching rule. Instead of matching individual tiles, our key

idea is to match whole rows or columns. This way, a tile is not

informed individually about adjacent tiles on each side or corner,

but collectively about potential combinations of adjacent tiles.

2 RELATED WORK

Since the early days when Dippé and Wold [1985] proposed using

Poisson-disk point sets for anti-aliasing, they also suggested to

store such sets on toroidal tiles to avoid the high computational

cost of their creation. In a different context, halftoning, Ulichney

[1988] studied the frequency properties of a similar distribution,

and coined the name “blue noise” to describe its spectral profile. He

subsequently devised the “void-and-cluster” method to distribute

such point sets also over torodial tiles [1993].

With the advancement of computer graphics, optimization tech-

niques were developed to produce higher quality noise sets [McCool

and Fiume 1992], and a single torodial tiling was no longer able

to cope with the improved quality [Glassner 1995]. Cohen et al.

[2003] introduced Wang tiles to create non-periodic tilings for sam-

pling. These are square tiles with color-coded edges and a matching

rule that can be used to create a stochastic tiling. Unfortunately,

Wang tiles create visible seams near the edges, because each tile

may match many combinations of neighbor tiles, making it difficult

to place points near tile edges. Lagae and Dutré [2006] suggested

color-coding the corners instead of edges, and also proposed a more

systematic approach for placing the points on the tiles. Kopf et al.

[2006] presented recursive Wang tiles, a quite sophisticated tiling

structure that enables seamless tiling; side-by-side as well as recur-

sively, which makes the method suitable for adaptive sampling. In

addition, points on each tile are ordered (ranked), which enables

progressive sampling.

Lagae and Dutré [2008] report that the quality of conveyable

noise sets is low for the Wang tiles family of lookup samplers, and

the granularity is poor, starting from 256 samples per tile for a

decent quality blue noise (2048 for recursive Wang tiles), which is

not suitable for some applications, e.g. when it is desirable to locate

nearby samples. Furthermore, optimizing the placement of samples
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across tile boundaries is rather difficult, which limits Wang-tile

based point sets to distributions based on dart-throwing [McCool

and Fiume 1992].

An alternative approach was introduced by Ostromoukhov et al.

[2004], using Penrose tiles. The key principle is to use a complex

recursive tiling structure that itself creates a spectrum that resembles

blue noise. This allows to place only a single sample per tile, which

makes optimization substantially easier. This approach is well-suited

for adaptive sampling, and aims at substantially higher spectral

qualities than Wang tiles; but this comes at a considerable cost in

memory, since the whole tiling structure has to be stored. Through

two subsequent steps of development [Ostromoukhov 2007;Wachtel

et al. 2014], this approach reached a quality that enables almost full

control over the spectral properties of the conveyed point sets, using

sophisticated optimization techniques [Heck et al. 2013; Öztireli and

Gross 2012; Zhou et al. 2012] that were developed concurrently.

Unfortunately, to that end the required memory footprint grows

beyond the practical limits of many applications: gigabyte-sized

lookup tables for a single spectral profile. Another drawback of this

family of lookup techniques is that such complex tilings are difficult

to map to a unit square, a desirable feature for some applications

such as quasi-Monte Carlo integration [Keller 2012].

In all the aforementioned tile-based approaches, locating nearby

samples is difficult, especially at locations near the edges of two or

more tiles. A different approach that overcomes this localization

problem was presented by Ahmed et al. [2015], using so-called

AA Patterns. These are analytical grid-based point sets that can be

morphed into a desired distribution. The approach is very efficient

in terms of memory usage and speed. It is also quite flexible for

applying different kinds of optimization, enabling spectral control,

while all necessary operations are facilitated over a single toroidal

point set. It is, however, non-adaptive, and can therefore only be

used for applications that require a uniform density of sample points.

Our proposed framework inherits features from most of the afore-

mentioned sampling approaches. In addition, the way we scan our

tiles is closely related to ordered dither matrices [Ulichney 1987],

as well as the implicit scanning order of some low-discrepancy

sequences [Grünschloß et al. 2012].

3 STRING-BASED IDENTIFICATION

Our goal is to build a finite set of regular tiles that would be as-

sembled into a tiling at run time to place the sample points carried

on every tile. To enable progressive and adaptive sampling we also

make our tiles recursive, as illustrated in Fig. 2, so that the same

tile-set is able to tile a multi-resolution lattice.

In this section we design a matching rule that guides the place-

ment of the tiles on the lattice, as well as on other tiles, and in the

following section we describe how to optimize the placement of the

points on the tiles.

As mentioned in the introduction, our key idea is to match whole

rows and columns rather than individual tiles. Thus, our first step is

to use an orthogonal identification for rows and columns, such that

the ID of any tile is an ordered pair of the IDs of the distinct column

and row in which the tile may fit. We will talk about columns, but

the same discussion holds for rows.

Assume that we have already assigned tile IDs, built a matching

rule, and used it to make a valid tiling. The distinct IDs can be

represented by symbols from a finite set:

X = {A,B, · · · } , (1)

As we traverse through any row, we read a string of symbols of

column IDs:

S = S0S1S2 · · · (2)

where each Si is a symbol from X. Different tilings are described by

different strings that use the same set of symbols. That is, a row or

a column with a certain ID, say A, is identical in a given tiling, but

might be different from a column with the same ID in a different

tiling. In the following discussion, however, we use the symbol S to

stand for what we read in any tiling that adheres to the matching

rule.

The set X and the set of strings S comprise all the information in

our tile identification scheme, and we will now tailor properties of

these variables to impose certain desired features on this scheme.

The first property we may set is the size ofX, which is the number

of IDs per dimension. This is directly reflected in the size of the final

lookup-tables. Thus, it is desirable to keep |X| as small as possible.

Once the number of distinct IDs is decided, we need to decide

on the number of potential distinct neighbor columns for a given

column ID. From an optimization perspective, we want to keep this

number low, as we discussed in the introduction, so we allow at

most two distinct neighbor columns for any column. In our symbolic

representation, this is equivalent to saying that any symbol from X

may be followed (or preceded) by only one or two distinct symbols

in S. This is our equivalent of a matching rule, and dramatically

reduces the string S to an equivalent of a binary string W. Given

the initial symbol, S0, we may traverse S, symbol by symbol, and

write ‘0’ or ‘1’ if the current symbol is followed by its first or second

allowable successor. If, however, the following symbol is not allowed,

then the tiling does not respect the matching rule.

B,JA,JL,JK,J

B,KA,KL,KK,K

B,LA,LL,LK,L

B,GA,GL,GK,G

… …

… …

… …

… …

…
…

…
…

…
…

…
…

L,EK,EJ,EI,E

L,FK,FJ,FI,F

L,GK,GJ,GI,G

L,HK,HJ,HI,H

Fig. 2. On each cell on a regular lattice we place a copy of one of our tiles, in

accordance with a matching rule. Each tile is itself a tiling of smaller copies

of tiles from the same set, similar to recursive Wang tiles [Kopf et al. 2006].

So far we have been analyzing a fictitious matching rule that

meets our needs. To actually build the matching rule we may work

the other way around; starting from a binary string, W, that rep-

resents a valid tiling. The ID, I , of any column X , is defined as the

binary string “WX−n+1 · · ·WX−1WX ” comprising the n entries ofW

preceding and including the X th entry; where n is a design parame-

ter that controls the number of IDs. The first n − 1 IDs have to be
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assigned manually. Alternatively, the string W has to be defined

periodically.

The properties of the string W are directly reflected on the iden-

tification scheme. For example:

• A periodic string generates a periodic sequence of IDs.

• The complexity [Lothaire 2002] ofW, that is, the number

of factors (distinct substrings) of length n, determines the

number of distinct IDs.

• The number of factors of lengthn+2 determines the number

of combinations of immediate neighbors, or more generally:

• The number of factors of length n + 2r determines the

number of combinations of neighbors in a range r on each

side.

• A morphic string, that is, a string that is the stable point

of a homomorphism (replacement rule), defines a recursive

identification scheme.

• If the ith entry of the string can be computed from i , we
obtain a randomly accessible identification scheme.

A binary string that meets our typical needs is the Thue-Morse

word [Allouche and Shallit 1999; Lothaire 2002]:

T = 011010011001011010010110 · · · (3)

There is more than a single way to describe this string. For example,

it is obtained by starting with 0 and successively appending the

Boolean complement of the sequence obtained thus far. The Thue-

Morse word is a fixed point of the homomorphism:

μ :
0 �→ 01

1 �→ 10
. (4)

It is a low-complexity string, which greatly simplifies optimization,

since only a few IDs have more than one neighbor ID. By applying

Eq (4) i times, each symbol is replaced by s = 2i symbols. This

specifies the subdivision ratio of the tiles. The morphed string then

identifies columns and rows in a proportionally higher resolution

lattice.

The Thue-Morse word is non-periodic. For most practical appli-

cations, however, we would not have to deal with T ; it is sufficient

to work with a periodic sequence of IDs generated from a periodic

sub-string of T .
Let us give a small example of how tile IDs are created, and how

they are transformed using the homomorphism. Suppose that we

set the length n of ID-strings to 5. The stringT has 12 factors of this

length, all of them are found (with periodic wrapping) in the first 24

bits shown in Eq (3). Thus, we have 12 IDs. Since T is a fixed point

of the homomorphism in Eq (4), these IDs would not change by

applying this homomorphism. Table 1 displays the relation between

these IDs as we traverse T sequentially or recursively. For example,

on the right of a column bearing an ID A we can only find an ID B,
because the string “011011” never exists inT . Similar to A, most IDs

in Table 1 have only one successor, only {D,F ,H ,L} have two.
To give an example of the recursive traversal of IDs, we start with

an ID C , our symbolic name for the bit string “10100”. Applying the

homomorphism of Eq (4), we get “1001100101”. We need 5 symbols

to define an ID, so only the rightmost 6 bits of the morphed string

define the next-generation IDs; namely, an I (“10010”) followed by

a J (“00101”). Thus, only the 3 rightmost bits of the ID-string of the

ID-string ID on 0 on 1 Morphed ID-string Children IDs

01101 A B - 0110100110 EF
11010 B C - 1010011001 GH
10100 C - D 1001100101 IJ
01001 D I E 0110010110 KL
10011 E F - 1001011010 AB
00110 F G A 0101101001 CD
01100 G - H 0110100101 IJ
11001 H I E 1010010110 KL
10010 I - J 1001011001 GH
00101 J - K 0101100110 EF
01011 K L - 0110011010 AB
10110 L G A 1001101001 CD

Table 1. An example set of string-based IDs using the 12 distinct 5-bit factors

of the Thue-Morse word T , and a single application of the homomorphism

in Eq (4) to generate IDs of sub-tiles when the resolution of the underlying

grid is doubled. “On 0/1” columns show the following ID when a 0/1 is

encountered in the subsequent entry of T . The dimmed portions in the fifth

column indicates an irrelevant portion of the morphed ID string.

parent tile are relevant in determining the IDs of child tiles, which

means that even though there are 12 distinct IDs, there are only 6

distinct children structures upon subdivision. Note that the sub-tiles

of C are always I J irrespective of the neighboring tiles. Subsequent

application of Eq (4) give us:

C → I J → GHEF → I JKLABCD → · · · .

Fig. 3 illustrates how this subdivision and mapping of IDs works in

2D. Please note that since the whole stringT is generated recursively

from one bit, any ID would eventually have descendants of all the

other IDs.

C,D
I,K J,K

I,L J,L

G,A H,A E,A F,A

G,B H,B E,B F,B

G,C H,C E,C F,C

G,D H,D E,D F,D

Fig. 3. Illustration of how a 2D tile ID is translated in two steps of subdivision.

The column and row IDs are translated independently according to Table 1,

and IDs of the children tiles are obtained as a Cartesian product.

Discussion: It is worth mentioning that the identification scheme

of AA Patterns [Ahmed et al. 2015] is equivalent to a binary identi-

fication that uses so-called Sturmian words [Lothaire 2002], but it

further adds more complexity by splitting the string between evenly

and oddly indexed rows and columns, and by taking only a subset

of rows and columns. Periodic identification schemes, such as that

of LDBN [Ahmed et al. 2016], are also equivalent to binary strings:

for a t × t periodic set, the corresponding string is a t-digits periodic
binary string containing only one digit set to 1.



138:5

4 OPTIMIZATION

With our string-based recursive identification scheme we now pro-

ceed to build a sampler by optimally placing sample points on the

tiles.

4.1 Optimizing Point Positions

Optimal placement of sample points means that any tiling that ob-

serves the matching rule should produce an optimal distribution

of the conveyed sample points. Thus, the locations of the sample

point(s) on each distinct tile should be coordinated with the loca-

tions of the sample points on all possible neighbor tiles. The size

of relevant neighborhood depends on the target distribution. For

Poisson-disk distributions, for example, only immediate neighbors

matter.

To optimize the locations of the points we make a tiling that

captures all the possible combinations of neighbors allowed by the

matching rule. This is done by assigning tile IDs from a periodic

sub-string of the Thue-Morse word that is long enough to comprise

all the factors of length n + 2r , where n is the length of ID strings,

e.g. 5 in Table 1, and r is the required neighborhood size, e.g 1 for

common blue noise distributions. Such a tiling would furnish a

toroidal domain for optimizing the point set. To give an example, a

periodic string of the first 24 bits of T shown in Eq (3) contains all

the 7-bits-long factors ofT , and as such encompasses all the possible

combinations of distinct columns and their immediate neighbors

for the 5-bits-long set of IDs shown in Table 1. Thus, the string

“GHEFABCDEFGHIJKLABCDIJKL”, more specifically, a 2D Carte-

sian product of it, defines a toroidal optimization environment for

this tile set for placing blue noise samples.

Once the optimization environment is set up, we proceed to opti-

mize the point locations, starting with a random location for each

distinct tile, and then iteratively adjust the locations of the points

towards the optimal distribution.We focus on blue noise, but the pro-

cess is similar for general noise. It is an advantage of our framework

that numerous optimizations techniques could be used. We prefer

serial algorithms that work on a point-by-point basis, since such

methods work much better under the constraints of tile boundaries

and multiple combinations of neighbors.

Typical optimization algorithms include Lloyd’s algorithm [Lloyd

1982; McCool and Fiume 1992], a localized version of Farthest Point

Optimization (FPO) [Schlömer et al. 2011], and the more recent

Push-Pull Optimization (PPO) [Ahmed et al. 2016]. Since all the

mentioned algorithms are based on a Delaunay triangulation of

the point set, they can easily be combined, leading to a sequence of

optimizations applied to each visited point. Algorithm 1 summarizes

the framework we used for optimization. The acceptance criterion

varies between algorithms; for example, PPO automatically termi-

nates once the prescribed spatial measures are satisfied. Please note

that restricting the points to stay within tile boundaries is not abso-

lutely necessary, but is highly desirable for some applications such

as Monte Carlo integration. It is also a pre-requisite for building the

recursive tiles in subsequent sections.

Combating the Grid Structure: Optimizing under a regular lattice

constraint is challenging [Ahmed et al. 2016], but we experimen-

tally found an effective solution by intertwining Lloyd’s algorithm

ALGORITHM1: Optimizing the placement of points using a representative

toroidal tiling.

1 foreach ID do

2 assign a random point location;

3 Populate the tiles with the points according to their IDs;

4 repeat

5 foreach point, in a random scanning order do

6 foreach entry in the optimization sequence do

7 find the optimum location of the point and/or the neighbors

according to the designated optimization;

8 foreach suggested optimum location do

9 if the point would stay within the tile then

10 move the point;

11 update the locations of all the points in same-ID tiles;

12 until the distribution is acceptable;

13 Store the final point locations (per tile ID) in a lookup table.

and FPO. For each visited point, we first apply a step of Lloyd’s

relaxation, moving the point to the centroid of its Voronoi cell, fol-

lowed by an FPO step that moves the point farthest away from its

(new) neighbors. FPO has a good performance in avoiding regular

structures, as observed by Schloemer et al. [2011], while Lloyd’s

method improves coverage and fills the holes commonly found in

FPO profile. On top of that we found it helpful to occasionally La-

tinize [Saka et al. 2007] the point set to get rid of any remaining grid

structure. It takes only 10 iterations to reach the quality in Fig. 10.

Once the point set is sufficiently isotropic, other optimizations may

be applied.

Multi-Class Blue Noise. Our framework can also produce multi-

class blue noise – a blue noise point set that is a composite of many

blue noise point sets [Wei 2010]. For this we distribute multiple

samples per tile, one sample for each class. Algorithm 1 can easily

be adapted for multi-class optimization by splitting each iteration

into two passes: we first optimize the points within each class, then

optimize globally over the whole set. Displacements of the global

pass are substantially smaller than in the class-wise pass, hence the

optimization converges. The two passes do not have to use the same

optimization algorithm. For instance, the point set in Fig. 1(b) uses

Lloyds-FPO for global optimization and conflict-coverage PPO for

per-class optimization; note the difference in the spectra in Fig. 11

Spectral Control. Target matching algorithms [Heck et al. 2013;

Öztireli and Gross 2012; Zhou et al. 2012] can easily be adapted to our

framework thanks to the toroidal domain optimization environment

we have. The only change needed is to average the displacements

of the points holding the same ID, as advocated by all of [Ahmed

et al. 2015; Ostromoukhov 2007; Ostromoukhov et al. 2004; Wachtel

et al. 2014]. Confining the sample points to the tile boundary is

not mandatory, though it is highly desirable. Please note that the

radial distribution function of some noise profiles, e.g. pink noise

[Zhou et al. 2012], makes them unrealizable under the regular lattice

constraint, and we have to allow the sample points to leave the tile

boundaries, or use more samples per tile.
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Fig. 4. (a) Snapping a point (red) to the nearest point in a child tile. The dis-

placement vector D comes from initial optimization, s is the self-similarity

scale of the tiling, 1/2 in this illustration. (b) The distribution of a point

set (top) before and (bottom) after snapping, demonstrating that the net

effect of snapping is a slight jitter. This distribution uses a s = 1/4; the jitter

would be substantially larger using s = 1/2.

4.2 Snapping

So far the tiling can distribute sample points in a linear tiling order,

one point per tile, as well as recursively by subdividing the tile

into sub-tiles, and putting sample points into these tiles. Recursive

generation, however, works only with full octaves, that is, by putting

a sample point on each of a complete set of child tiles.

This is why we will now optimize the placement of the samples

across octaves by ensuring that the sample point in any tile fits

well within the sample points of its sub-tiles. The only way to cope

with an arbitrary depth of subdivision is to ensure that the sample

point on a tile coincides with the sample point on one of the child

tiles, cf. [Kopf et al. 2006]. Thus, we overlay parent and children

tiles, and snap the point of the parent to the closest point of one of

the children. Instead of the heuristic treatment in [Kopf et al. 2006],

however, we provide a closed-form solution.

As illustrated in Fig. 4, we want to snap the (red) point of a parent

tile with ID x , to coincide with the (black) point in a child tile that

holds an IDy. The target point also moves, since it has to be snapped

to its own target in a grand-child tile. Please note, however, that the

target, being at a smaller scale, is moving slower than the chasing

point of the parent tile, which guarantees convergence. Our goal

is now to compute the final value of the displacement Dx when all

the points of all IDs coincide with their targets. We also want to

estimate the amount of jitter, J , experienced by each point after this

process.

We start by factoring Dx into a sum of two vectors:

Dx = Vx + sDy , (5)

where s is the scaling factor. The vector Vx is the origin of the des-

ignated child tile relative to the parent tile, and is invariant. The

other component, Dy , is a variable that can be computed by apply-

ing Eq. (5) recursively to the tile ID y. This leads to the following

formulation:

Dx =

∞∑
i=0

siVhi (x ) , (6)

where h (x ) is the ID of the nominated target child for a tile of ID x

(that is y in Fig. 4), hi (x ) = h
(
hi−1 (x )

)
, and h0 (x ) = x .

Since the number of ID’s is finite, by design, we will eventually

have hj (x ) = x for some j ≤ N , the number of IDs; hence we obtain

the following closed-form formulation:

Dx =

∑j−1
i=0 s

iVhi (x )

1 − s j . (7)

In practice, the computation is limited by the numeric precision,

hence it is sufficient to take a large enough j , irrespective of whether
hj (x ) = x or not.

The error vector Jx can be computed in a similar way by factoring

it into two components; the only difference is that we now compute

it relative to the displaced positions rather than the original positions

of the points. We end up with the following equation:

Jx =

∑j−1
i=0 s

iOhi (x )

1 − s j . (8)

The first thing to notice is that the optimization data is only used

to nominate the target child; the initial displacement vectors D
never appear in Eq. (7). In some sense, this represents a quantization

process, and the subdivision scale s plays an important role for the

final quality. The example in Fig. 1(a) uses a scaling factor of 1/4,

obtained by applying Eq. (4) twice.

Besides the scaling factor, the quality of the initial optimization

directly affects the final results. The coverage radius determines

how far the nearest point would be to each point (the offset vector

O), hence it is directly reflected in the expected jitter J . The conflict
radius has no direct influence on the jitter, but on the impact of

these jitters, as they would bring some points closer to each other.

This analysis is generic and works for different tiling schemes, e.g.

[Kopf et al. 2006; Ostromoukhov 2007; Wachtel et al. 2014], but it

simplifies greatly for our case that uses orthogonal coordinates. Each

ID is assigned log2 (1/s ) fractional bits, on each axis, to indicate the

row and column of the nominated target child; then Eq (7) reduces

to concatenation of bits.

Thus, the overall effect of snapping the points is a random jitter

sized by the coverage radius and the scaling factor s . We want

to have a large conflict radius and a small coverage radius. This

directly suggests FPO and Lloyd’s algorithm, respectively, which

is another reason to favor this combination. We may further assist

these algorithms by applying coverage and conflict optimization

using PPO. It is worth noting that the conflict and coverage radius

are usually measured relative to the packing radius of a triangular

grid, and to convert them in relation to our regular grid spacing we

need to divide by

√
2/
√
3.

Finally, we found that higher quality sets can be obtained by

applying cycles of optimizing (Algorithm 1) and snapping, so we in-

tegrated the snapping process in the optimization code.We ended up

applying the snapping step after each iteration of the optimization

algorithm.
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4.3 Ranking

After snapping, the tiles can deliver coherent sets of samples pro-

gressively in full octaves. The next step is to optimize them to deliver

also subsets of octaves. For this goal we follow the procedure sug-

gested by Ostromoukhov [Ostromoukhov 2007] for Polyominos:

we assign ranks to the children of each tile to work with different

densities. Like Ostromoukhov we use an adaptation of Ulichney’s

void-and-cluster method [1993], which is also reflected in methods

for ordered dithering [Bayer 1973]. In our case the first rank is al-

ways assigned to the child whose sample point coincides with the

parent’s.

Ranking is the final necessary step in our construction, which we

call Adaptive Regular Tiles (ART) sampler. Afterward we store all

the optimization information in a single lookup table. The record

for each tile ID contains the coordinates of the sample point(s),

plus the IDs and ranks of the child tiles. This table actually repre-

sents an infinite non-periodic set of sample points, and each sample

holds a unique sequence number in the top-level tile, obtained by

left-concatenating the ranks of its ancestry, then “bit-reversing”.

Algorithm 2 describes how to retrieve the ith sample in a tile, and

the idea is visually illustrated in Fig. 1. Please note that in contrast

to Polyhexes [Wachtel et al. 2014] and Polyominos [Ostromoukhov

2007], we do not need to store any geometric rules to define the

tiles.

ALGORITHM 2: Retrieving the ith sample in a tile given the top-level tile

ID. The variable s is the subdivision ratio (per axis) of the tiling.

1 while i > 0 do

2 childNo ← t ile[id].order [i % s2];

3 id ← t ile[id].childID[childNo];

4 translate to (childNo % s, childNo/s );

5 scale by 1/s ;

6 i = i/s2;

7 return t ile[id].point .

4.4 Further Optimization

We may optionally implement further application-specific optimiza-

tions. For example, since our point sets are stratified by construction,

they are ripe for enforcing the low-discrepancy property on the gen-

erated point sets by applying Algorithm 2 of [Ahmed et al. 2016].

One interesting post-optimization, due to Ostromoukhov [2007],

is to optimize the distribution at each rank (density) to achieve

good qualities between octaves. That is, the distribution is post-

optimized for each of the densities in the bottom on Fig. 1. Our

framework offers a 2 × 2 subdivision ratio, with only three ranks,

which substantially reduces the size of the involved lookup tables.

A 4 × 4 subdivision gives a smoother transition of the sample loca-

tions with density changes, but at the cost of substantially larger

lookup tables. This step would improve the visual appearance of

the point set, and suits applications like stippling, but the point set

would no longer be progressive; that is, no more samples can be

inserted without disturbing the distribution quality. We describe our

own implementation of Ostromoukhov’s idea in the supplementary

material.

5 APPLICATIONS

Quasi-Monte Carlo integration is arguably the most important appli-

cation of point samplers in computer graphics, so we proceed here

by highlighting two example application scenarios where our design

will be advantageous, then we briefly discuss other applications.

5.1 Area-Light Sampling

Theoretical analysis on Monte Carlo integration error/variance,

by different groups [Durand 2011; Öztireli 2016; Pilleboue et al.

2015; Ramamoorthi et al. 2012; Subr and Kautz 2013], leads to the

intuition that a sampling pattern with a blue noise spectrum is a

good choice for area-light sampling. Yet, low-discrepancy sequences

continue to prevail as the favorite sampler for this purpose [Pharr

and Humphreys 2010]. Notably, low discrepancy sequences are not

only much easier to produce, but they also tend to give better results;

which is quite surprising and not intuitive at first sight.

One possible explanation relates to the way how shadow sam-

ples are eventually aggregated to decide the per-pixel radiance. For

a super-sampled image [Glassner 1995], many samples are taken

around each pixel. For each pixel-sample a set of shadow-samples is

generated, for each light source, and these sets are aggregated for the

final pixel radiance. Most of the theoretical analysis consider shadow

samples as a single sample set and neglects that many sample sets are

actually being averaged. On the practical side, common blue noise

samplers can not do better than generating the shadow sample sets

independently for each pixel-sample. In contrast, a low-discrepancy

sequence can produce negatively-correlated sets of samples to re-

duce variance, by generating the whole set of shadow samples as

a single sequence, and assigning sub-sequences of it to individual

pixel-samples, as described by Pharr and Humphreys [2010]. This

grants a low discrepancy sequence of samples for each pixel sample,

as well as for the whole set.

Our framework offers more than one way to emulate the par-

titioning capability of low-discrepancy sequences. The simplest

configuration uses a randomly chosen tile of our set to produce a

sequence of blue-noise samples; the same way as a low-discrepancy

sequence does. A more sophisticated setup combines the side-by-

side and recursive tiling order of our tile set. To produce i2 light
samples for each of p pixel samples, we construct an i × i tiling, and
sequentially add p samples to each tile. The first sample on each tile

is assigned to the first pixel-sample, the second to the second, and

so on. This assigns a stratified sample sub-set to each pixel-sample,

and a blue-noise super-set to the whole pixel. Yet another possibility

is to use the multi-class concept described by Wei [2010], using

one class for each pixel-sample. It assigns a blue noise set to the

individual pixels-samples as well as the whole pixel.

Fig. 5 illustrates these ideas for partitioning the point set, which

are still at an early stage of development. The initial results are

promising; at least as good as the PBRT low discrepancy sampler,

as demonstrated in the rendering results of Fig. 9.

5.2 Importance and Adaptive Sampling

The recursive nature of our tiling makes it suitable for importance

sampling, where a map is provided to control the density of samples.

As already pointed out by McCool and Fiume [1992], importance
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BNOT

Low-Discrepancy

Progressive ART

Multi-Class ART

Fig. 5. Four individual shadow sample sets and the combined set for dif-

ferent samplers. A typical blue noise sampler like BNOT offers excellent

individual sets, but the combined set is poor. In contrast, low-discrepancy

sampling is capable of maintaining the same quality for the sub-sets and

the combined set. Our framework tries to emulate this capability.

sampling is equivalent to the well-studied problem of ordered dither-

ing [Ulichney 1987].

Each of our tiles, with sequentially ordered sub-tiles (and sample

points), represents a matrix for ordered dither with an infinitude

of thresholds, optimized to recursively deliver a blue noise distri-

bution. This is the setup developed by Ostromoukhov [2007] for

Polyominos. We were inspired by his work, but we use a much

simpler structure for the tiles. The square tiles of our design have an

important advantage over Polyominos: For most applications, tiles

have to be clipped to sample a rectangular domain. For the complex

shapes of a G-Hexomino, for example, 33% of the samples would

fall outside the sampled domain, and the corresponding thresholds

would be lost. In contrast, our tiles match the sampled domain, so

we retain a smooth linear gradient of thresholds. Fig. 6 demonstrates

how our samples can faithfully reproduce a density map, and Fig. 7

shows an example importance sampling with our sampler.

For some adaptive sampling scenarios the required number of

samples is not known apriori but is determined from the outcome

of previously taken samples [Glassner 1995]. Our progressive de-

sign is especially advantageous for these scenarios, since the new

samples fit well with the already taken ones. It is worth noting that

Grünschloß et al. [2012] studied ways to add similar functional-

ity to low-discrepancy sequences, which are defined only globally.

In contrast, localization functionality is enabled by design in our

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Sampling of (a) a quadratic density map using (b) an optimization-

based sampler (BNOT), (c) Polyhexes, the current state-of-the-art, and (d)-(f)

our method: (d) 2 × 2 progressive ART, (e) 2 × 2 post-optimized ART using

the initial table of (d), and (f) 4 × 4 post-optimized ART. Notice how the

points are relocated between (d) and (e). Even at 2 × 2 subdivision ratio

our post-optimized sampler compares with the state-of-the-art in adaptive

lookup sampling. At 4 × 4 we are evidently better.

Fig. 7. Example importance sampling. Our method is able to distribute

samples over a large density variation.

framework. Fig 8 illustrates how our tiles adaptively subdivide to

retrieve more samples.
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Fig. 8. Adaptive localized subdivision of the tiles to add more samples.

5.3 Other Applications

Our framework combines features of all major lookup samplers, and

can therefore serve as a substitute for existing implementations of

Penrose tiles,Wang tiles, Polyominoes, Polyhexes, or AA Patterns, in

a number of applications ranging from stippling, to various systems

for distributing objects in films and games (crowds), biology (trees

and other plants) or texturing.

One unique advantage of our framework is that it readily scales

to three or four dimensions. This could be useful for distributing

particles in 3D, or using Monte Carlo integration to estimate vol-

umes.

6 RESULTS

Table 2 shows a qualitative comparison of our method with some

of the existing samplers. In the rest of this section we discuss some

practical aspects of our design and the way it delivers the samples.

6.1 Design Parameters

A few parameters have to be set to define our tile system. The

first important parameter is the number of IDs. For our self-similar

construction during all our tests we considered a 4k (64 × 64) set
of IDs, as advocated in [Ahmed et al. 2015]. This corresponds to

identification strings of 21 bits from the Thue-Morse word T . If we
use more than one sample per tile, we may consider fewer IDs, since

we have another degree of freedom then. In our experiments with

multi-class blue noise sets, for example, we were satisfied with the

results created by using only 44 × 44 sets of IDs. Fig. 1 and Fig. 5

show the quality of these sets.

Once the number of IDs (and the length of the ID bit strings) is

determined, we need to choose a sub-string of T to define the opti-

mization environment. As discussed in Section 4, the length of this

sub-string depends on the neighborhood we wish to consider during

optimization. For blue noise, only one or two levels of neighbors

need to be considered, but the framework is flexible and allows us

to define an arbitrary wide neighborhood. It is a property of T that

any prefix of length 3 · 2k toroidally wraps the first few elements.

The first 96 elements of this string can be wrapped periodically to

contain all the 21-bit ID strings, and all combinations of six neigh-

bors on each size. Thus, our optimization environment was a single

96 × 96 toroidal set of tiles for the self-similar construction, and

48 × 48 tiles for the multi-class configuration.

Finally, we need to define a subdivision ratio for the self-similar

tiling. The subdivision ratio needs to be a power of 2 per axis1.

This is a trade-off between many aspects, including the quality of

the distribution at full octaves, the quality between octaves, the

granularity of subdivision, the size of tables for the post-optimized

variant, and the uniformity of distribution. We observed that a

too-optimal distribution at full octaves tends to produce poorer

distributions between octaves. For many applications we find 4 × 4
to be a good compromise.

6.2 Performance

All our experiments were computed on a Core i7 desktop with 16

GB memory. The first phase of optimization, placing the points,

takes between a few seconds using classic blue noise optimization

techniques (Lloyd, FPO, etc), and a few minutes using the target-

matching algorithm of [Heck et al. 2013]. Snapping does not take any

time, since it comprises only a few bit operations. Ranking takes

around two minutes for 16 children. Thus, our complete lookup

tables can be created within a few minutes. It might be desirable,

though, to feed the tables back through a few cycles of optimization-

snapping, which takes more time.

At run time, our framework delivers more than 270M samples

per second for uniform sampling if the Thue-Morse word has to be

evaluated, reaching 390M when using a periodic sub-string, which

is faster than any lookup sampler we are aware of. In recursive

mode our sampler is an order of magnitude slower, delivering 13M

samples per second, but is still faster than the speeds reported for

common adaptive samplers [Wachtel et al. 2014]. Thus, our sampler

meets the speed requirements of time-sensitive applications such

are real-time rendering. Indeed, we tested our sampler in PBRT, and

did not notice any speed difference from the default low-discrepancy

sampler.

6.3 Quality

Fig. 10 shows some of the results we obtained from optimization.

Overall, the quality is good, though it can be seen that for all the

spectra there is some fixed level of anisotropy. This is inevitable

in lookup samplers and comes from the fact that some parts of the

distribution have to be repeated elsewhere in the point set. The

shown plots use 96 × 96 points (our optimization environment) but

1In theory the concept supports other subdivision ratios using different homomor-
phisms than Eq (4), but in practice we would prefer powers of 2 to take advantage of
the binary nature of computers.
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ART Polyhexes Recursive Wang Tiles AA Patterns

(ours) [Wachtel et al. 2014] [Kopf et al. 2006] [Ahmed et al. 2015]

Granularity 1 sample per tile 1 sample per tile 2048, but ranked not applicable

Progressive Yes No Yes No

Adaptive Yes Yes Yes No

Localization easy difficult difficult easy

Spectral control Yes Yes No Yes

Optimization domain single, toroidal multiple, non-toroidal multiple, non-toroidal single, toroidal

Memory footprint Kilobytes to Megabytes Gigabytes Megabytes Kilobytes

Table 2. Qualitative comparison of our method to the major categories of lookup samplers. All the four are ultra fast.

only 64 × 64 degrees of freedom (the number of IDs), which means

that, on average, each local neighborhood is found twice.

This anisotropy can be concealed by using larger tables, but would

immediately appear when the number of points is substantially

larger than the size of the table. Compared to other lookup frame-

works, our construction has the advantage that the lookup tables

can be scaled freely to any desirable/affordable size. Many practical

applications, such as area-light sampling, distributing objects, or

stippling, would not be too sensitive to repetitions beyond 4k points,

which justifies our choice of this table size.

The more important comment on the spectra is that even though

the spectrum might look visually perfect, it might contain some

spikes that could be harmful for some applications such as rendering.

Anisotropy is a good tool to highlight such artifacts. We observed

that enforcing self-similarity has the tendency to emphasize har-

monic frequencies of the tiling. For our regular tiling we know

precisely where these harmonics are located, and we can get rid of

them by using Latinization. On the down side, Latinization implies

some regularity, and might lead to banding in shadow rendering,

as is the case with low-discrepancy sequences. A possibly better

treatment is to weaken these harmonics by interleaving Latinization

with optimization, which explains the cross in some of our spectra.

The jitter implied during snapping (Section 4.2) then removes this

negative effect of Latinization, and we obtain a good distribution.

This is our current plan, but we do not claim any optimality, and

we encourage further research on this aspect. Finally, we observed

that the multi-class setup is less susceptible to this problem, which

is another reason to prefer it for area-light sampling. This is a natu-

ral consequence of having more than one sample per tile, but the

self-similar setup has its own merits. Fig. 9 shows some rendering

results that highlight these insights.

7 CONCLUSION

We have presented a framework for producing a variety of point

sets with applications ranging from sampling to distributing objects.

To our knowledge, it is the first adaptive method that uses a simple

lattice structure with only a single point per tile and is able to

produce point sets with blue noise or other spectral properties. This

makes our method suitable for importance sampling, area-light

sampling, stippling and many other applications that need point

sets with varying densities, and where sampling takes place in a

rectangular domain.

We have demonstrated how to optimize point sets using combina-

tions of existing methods. While we were able to produce point sets

with good quality, we do not claim optimality, and we are almost

sure that better qualities are achievable using other optimization

methods and combinations. The main advantage of our framework

is that such optimizations can easily be integrated and future works

can produce even better point sets. We provide the code of our

framework as well as the point sets for further comparison.

While our look-up tables are very compact for the usual applica-

tion in two dimensions, they grow exponentially with the number

of dimensions, thus the method gets impractical for more than four

dimensions.

The focus in our paper is on presenting the framework itself, and

we think that it will encourage further research on many aspects.

We are especially interested in the ranking step. Current ranking

algorithms are devoted to blue noise, and it would be great to see

ranking techniques that enable varying densities of arbitrary noise

spectra.
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