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Physically-based fur rendering is difficult. Recently, structural differences
between hair and fur fibers have been revealed by Yan et al. (2015), who
showed that fur fibers have an inner scattering medulla, and developed a
double cylinder model. However, fur rendering is still complicated due to
the complex scattering paths through the medulla. We develop a number of
optimizations that improve efficiency and generality without compromising
accuracy, leading to a practical fur reflectance model. We also propose a key
contribution to support both near and far-field rendering, and allow smooth
transitions between them.

Specifically, we derive a compact BCSDF model for fur reflectance with
only 5 lobes. Our model unifies hair and fur rendering, making it easy
to implement within standard hair rendering software, since we keep the
traditional R , TT , and TRT lobes in hair, and only add two extensions to
scattered lobes, TT s and TRT s . Moreover, we introduce a compression
scheme using tensor decomposition to dramatically reduce the precomputed
data storage for scattered lobes to only 150 KB, with minimal loss of accuracy.
By exploiting piecewise analytic integration, our method further enables
a multi-scale rendering scheme that transitions between near and far field
rendering smoothly and efficiently for the first time, leading to 6 − 8× speed
up over previous work.
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1 INTRODUCTION
Recently, computer-generated virtual animal characters are increas-
ingly used in both films and video games. However, photo-realistic
fur rendering is still a problem due to the complexity of light trans-
port within a fur fiber. Recently, Yan et al. (2015) have developed a
comprehensive physically-based model for fur reflectance, revealing
significant structural differences between hair and fur fibers. Scat-
tering within the central region of a fur fiber, known as the medulla,
results in complicated light paths. Moreover, this complexity directly
leads to significant pre-computation, and limits fur rendering to be
near-field only. Even for hair rendering, efficient far field integration
schemes are lacking. State of the art methods either assume that the
azimuthal section of hair fibers are perfectly smooth (Marschner
et al. 2003) so that the far-field integration can be solved, or resort
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(Yan et al. 2015)
ES, 256spp, 11.2s

Ours (near field)
256spp, 7.4s

Ours (multi-scale)
256spp, 9.2s

(Yan et al. 2015)
EQ, 1800spp, 75.8s

Fig. 1. (Top row) A rendering of a raccoon model using our practical 5-lobe
reflectance model (illustrated bottom right) and our multi-scale rendering
scheme with 1K samples per pixel. (Bottom row) Insets rendered using
different methods. We use 256 samples per pixel for equal sample (ES)
comparison, and show equal quality (EQ) comparison with Yan et al. (2015).
Our multi-scale model performs more than 8× faster for equal quality while
being practical and efficient. Even our near field model has significantly less
noise than previous work.

to numerical integrations as well as pre-computation (d’Eon et al.
2011).
Motivated by these observations, we aim to improve the effi-

ciency and practicality of fur rendering, and provide a reflectance
model that is simple to implement in modern rendering systems.
Specifically, we describe a near field fur reflectance model in Sec. 4,
focusing on simplicity and accuracy as compared to Yan et al. (2015).
In Sec. 5, we illustrate how our near-field model integrates to far-
field, and propose a novel multi-scale rendering scheme, focusing
on efficiency. Overall, our major contributions are:
Simple reflectance model: Our local illumination model builds

upon the double cylinder model representing the cuticle-cortex-
medulla structure of fur fibers (Fig. 3 (b)). We unify the cortex and
the medulla’s indices of refraction (IORs), removing most of the com-
plicated types of light interactions between them. This simplification
finally results in only 5 lobes in our model (Fig. 3 (c)), compared to
11 lobes previously. In particular, we keep the R, TT , and TRT lobes
in hair models (with intensities modified slightly because of attenua-
tion by the medulla) and only add two new scattered lobes,TT s and
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Fig. 2. Longitudinal-azimuthal parameterization for hair/fur fibers. A direc-
tion ω is parameterized into θ in the plane spanned by ω and the cylinder
axis u, and ϕ orthogonal to the plane.

TRT s . In this way, our reflectance model (BCSDF) is fully analytic, as
opposed to Yan et al. (2015) which requires implict ray tracing. The
simplicity of our model also benefits importance sampling (Sec. 6),
leading to faster convergence (Figs. 15 and 16). Our BCSDF can
be included in existing hair rendering systems with minimal extra
effort, and unifies hair and fur rendering. We are motivated by ob-
servations in the literature on fur fibers (Fig. 6), and we verify this
simplification by the accuracy of fits to real measurements (Fig. 11).
Improved accuracy and practicality: We improve the accuracy

of the model by considering different roughnesses of azimuthal
and longitudinal sections, as has been observed in previous studies
(Chiang et al. 2016; d’Eon et al. 2011). Moreover, we find that the
medulla is not purely scattering, and can also absorb light (Carrlee
and Horelick 2011). With a more general model taking these factors
into consideration, our error for fitting measured data is lower than
in Yan et al. (2015) in most cases, even with the simplification of
IORs discussed above, as shown in Fig. 11.

We also observed that the precomputed data for medulla scatter-
ing provided by Yan et al. (2015), essentially a set of 4D tables, is
low rank. We exploit tensor decomposition, the high dimensional
analogue to 2D singular value decomposition (SVD), to compress it
to as low as 150 KB, compared to more than 600 MB originally.
Analytic near/far field solution: Our model starts with analytic

near-field solutions, as opposed to the implicit ray tracing required
previously. Then we integrate our near-field model over the az-
imuthal section, by partitioning the range of integration into a few
(< 5) segments. Finally, we analytically integrate for each segment
using piecewise linear approximation. Moreover, we show how our
analytic integration transitions between near and far field fur ren-
dering, enabling multi-scale rendering for the first time (Fig. 1). This
is especially useful when a pixel covers a small range over the az-
imuthal section. Our multi-scale rendering benefits hair rendering
as well, as shown in Fig. 18.
Significant speed up: Due to the simplicity of our reflectance

model and the efficiency of our analytic integration, compared with
Yan et al. (2015), we achieve a 6 − 8× speed up in generating equal
quality results. We show more results and comparisons in Sec. 7 as
well as in the accompanying video.

2 RELATED WORK
There is a large body of work on reflectance models for hair. Here
we only discuss physically-based methods. Then we analyze the
double cylinder fur reflectance model, and its limitations.

Hair reflectance models: Marschner et al. (2003) proposed the ini-
tial physically-based hair reflectance model. They use a longitudinal-
azimuthal parameterization of hair fibers (Fig. 2), approximating
them as rough dielectric cylinders (Fig. 3 (a)). Their model has three
lobes: R,TT andTRT , where R andTT stand for reflection and trans-
mission, respectively. The Marschner model has an analytic solution
for evaluating the azimuthal lobes, but is based on the assumption
that the azimuthal sections of hair fibers are perfectly smooth, which
is not physically correct. d’Eon et al. (2011) extended the Marschner
model to account for azimuthal roughness. However, their compu-
tational cost of evaluation is significant, using Gaussian quadrature
and Taylor expansion. Chiang et al. (2016) adopted a near-field for-
mulation by considering accurate incident positions azimuthally,
leaving expensive integration across the entire azimuthal section to
the renderer. In summary, apart from the original Marschner model
that is not physically correct, there are no efficient closed-form so-
lutions for azimuthal integration. In contrast, our method supports
azimuthal roughness, and is analytic and efficient for multi-scale
hair and fur rendering.

Double cylinder fur reflectance model: Yan et al. (2015) proposed a
double cylinder model for physically accurate fur reflectance based
on anatomical literature and measurements, in which the cuticle,
the cortex and the medulla are accurately modeled (Fig. 3 (b)). The
cuticle is layered so that its reflectance can be adjusted. The cortex
only absorbs light, while the medulla only scatters. Both the cortex
and the medulla have their own indices of refraction. However, this
model is complicated, considering all kinds of light interactions
with the inner cylinder such as TrT and TrRrT (capitalized and
uncapitalized letters represent interactions with the outer and in-
ner cylinder, respectively). To incorporate the medulla’s complex
scattering effects, Yan et al. precompute for all possible incident
positions or directions of medulla scattering of different kinds of fur
fibers. The precomputed data puts a heavy burden on both storage
and memory, limiting the model’s practicality. Instead, we develop
a simplified fur reflectance model that allows fast analytic integra-
tions, but with only 5 lobes to consider, and requiring negligible
precomputed data.

Near field scattering and far field approximation: Far-field approx-
imation (d’Eon et al. 2011; Kajiya and Kay 1989; Marschner et al.
2003) assumes that hair fibers are very thin, usually thinner than a
pixel. Hence, the accurate incident position on the azimuthal sec-
tion is not important, compared to the integral over it. Thus, they
always assume collimated incident light covering the width of a
hair fiber. Since the positional information is lost, far field approx-
imation produces a flat appearance when viewed close up so that
a hair fiber covers more than one pixel (Fig. 5). Zinke et al. (2007)
introduced near-field scattering by considering accurate azimuthal
incident positions, and mathematically revealed the relationship
between near and far field scattering. Yan et al. (2015) is also based
on near-field scattering. To perform azimuthal integrations when
far-field approximation is needed, they refer to the same numerical
integration technique that is used in (d’Eon et al. 2011). In contrast,
we propose an accurate and analytic method for both near-field and
far-field rendering, benefiting both hair and fur models.
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(a) Hair reflectance model by Marschner et al. (2003).

(b) Fur reflectance model by Yan et al. (2015). TT and TRT lobes are
omited here for clarity.

(c) Our fur reflectance model with unified indices of refraction (IORs).

Fig. 3. Illustration of various reflectance models for hair and fur. All the models are illustrated using the factored representation longitudinally and azimuthally
from left to right, and the differences between hair and fur structures can be found in the cylinders in the leftmost column. Note that light paths in our model
don’t refract as they go through the medulla. This is the same with (a), but much simpler than (b).

3 BACKGROUND
Most hair/fur reflectance models represent individual hair/fur fibers
as cylinders. Similar to BRDFs, they use BCSDFs (Bidirectional Curve
Scattering Distribution Function) to characterize how hair/fur fibers
scatter light,

Lr (ωr ) =

∫
Li (ωi )S (ωi ,ωr ) cosθi dωi , (1)

whereωi andωr are the incident and outgoing directions, and Li
and Lr are the incoming and outgoing radiance. S is the BCSDF.

We use the longitudinal-azimuthal parameterization byMarschner
et al. (2003) as shown in Fig. 2,

Lr (θr ,ϕr ) =

∫ π

−π

∫ π
2

− π2

Li (θi ,ϕi )S (θi ,θr ,ϕi ,ϕr ) cos2 θi dθidϕi .

(2)
Hair models. The Marschner hair model factors the BCSDF S

into a product ofM and N profiles, representing longitudinal and
azimuthal events separately (Fig. 3 (a)). It takes three types of light
paths p ∈ R,TT ,TRT into consideration, where R and T stand for
reflection and transmission respectively. Its BCSDF is

S (θi ,θr ,ϕi ,ϕr ) =
∑
p

Sp (θi ,θr ,ϕi ,ϕr )/ cos2 θd (3)

=
∑
p

Mp (θh ) · Np (ϕ;η′)/ cos2 θd ,

where θh = (θr + θi )/2 and θd = (θr − θi )/2 are the longitudinal
half angle and difference angle, ϕ = ϕr − ϕi is the relative exiting
azimuth, and η′ =

√
η2 − sin2 θd/ cosθd is the cortex’s virtual index

of refraction (IOR), treating elliptical azimuthal sections due to
inclined longitudinal incident directions as if still being circular but
with changed IOR.

The Marschner model assumes that the azimuthal section is per-
fectly smooth, thus leading to an analytic solution. However, az-
imuthal roughness has been demonstrated to be important (Chiang

et al. 2016; d’Eon et al. 2011) and should be taken into account for
physical accuracy. Unfortunately, with the additional complexity,
these models with rough azimuthal sections are no longer analytical
for far field approximation.

Fur model. Yan et al. (2015) treat each fur fiber as two concentric
cylinders. The outer cylinder is similar to the Marschner model,
except that its reflectance can vary with a cuticle layers parameter
l , adjusting the ratio between the reflected and refracted light. The
inner cylinder represents the medulla. It doesn’t absorb light, but
scatters light when light travels inside. Between these two cylinders
is the cortex, which simply absorbs light. The IORs of the two
cylinders need not be the same. Figure 3 (b) illustrates the double
cylinder model.
With the double cylinder model, types of paths such as TrT ,

TrRrT , TttT , TtrtT and TttRttT are introduced. Furthermore, due
to the scattering property of the medulla, light paths that go through
the medulla generate both unscattered and scattered lobes when
they exit it. The double cylinder BCSDF model can be written as:

S (θi ,θr ,ϕi ,ϕr ,h) =

∑
p M

u
p (θi ,θr )N

u
p (h,ϕ)

cos2 θi
(4)

+Ms (θi ,θr ,ϕ)

∑
p N

s
p (h,ϕ)

cos2 θi
,

whereM and N still represent longitudinal and azimuthal lobes, but
with superscripts u and s specifying whether they are unscattered
or scattered. p includes these complex types of paths mentioned
above, as well as classic R, TT and TRT paths from the Marschner
model. h is the azimuthal offset specifying the incident position in
the azimuthal plane, as will be described in more detail at the end
of the section.
The unscattered lobes are represented using Gaussian distribu-

tions both longitudinally and azimuthally. The longitudinal lobes
Mp are Gaussians around the reflected longitudinal angle:

Mp (θi ,θr ) = G (θr ;−θi + αp , βp ), (5)
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(a) longitudinal (b) azimuthal

Fig. 4. Illustration of pre-computation. (a) Longitudinal. (b) Azimuthal.

where αp is the lobe shift due to the cuticle tilt, and βp is the rough-
ness of each lobe. Both are empirically given.
The azimuthal unscattered lobes Np have two parts: the attenu-

ation term Ap and the distribution term Dp . Ap is the attenuation
along path p azimuthally, with the incident position specified using
the azimuthal offset h. It considers the Fresnel reflection/refraction
at each intersection, and the attenuation along segments within the
cortex. Dp = G (Φp (h) − ϕ; β ) is a Gaussian that describes how the
attenuated energy distributes. It is centered at the exiting direction
Φp (h) along path p, and it accumulates its variance using the sur-
face roughness at each intersection. Thus, the azimuthal unscattered
lobes can be written as

Np (h,ϕ) = Ap (h) · Dp (h,ϕ), (6)
Dp = G (Φp (h) − ϕ; βp ). (7)

The scattered lobes are queried from pre-computed scattering pro-
files. As shown in Fig. 4, Yan et al. (2015) pre-compute the medulla’s
scattering profiles by enumerating every longitudinal incident angle
θi and every azimuthal offset h, simulating the medulla’s scattering
for different scattering coefficients σs and anisotropy д, and record-
ing the scattered energy for every outgoing direction. This results
in two 4D tables CM and CN , with storage of more than 600 MB.
Since the longitudinal scattering profile records both backward

and forward lobes, i.e. longitudinal scattered lobes at ϕ = 0 and
ϕ = π (blue and green in Fig. 4), any longitudinal scattered lobe can
be linearly interpolated between them, independent of path p:

Ms (θi ,θr ,ϕ) = µFt · lerpϕ (CM
ϕ=0 (θ

′
i ,θ
′
r ),C

M
ϕ=π (θ

′
i ,θ
′
r )), (8)

where Ft are Fresnel transmissions through the cuticle of the inci-
dent and outgoing light, θ ′i and θ

′
r are angles that enter the medulla

and µ is a normalization factor.
The azimuthal scattered lobes are queried similar to the unscat-

tered lobes as
N s
p (h,ϕ) = Asp (h) · D

s
p (h,ϕ). (9)

The attenuation term Asp records the path p with Fresnel terms and
absorptions until it goes into the medulla with directionΦsp (h). Then
the distribution of the scattered lobe is queried as

Ds
p (h,ϕ) = C

N (Φsp (h) − ϕ). (10)
The scattered lobe is then attenuated again as it exits through the
cortex. When it reaches the inner side of the cuticle, it either refracts
through, and is thus attenuated by another Fresnel transmission, or
reflects back, producing a diffuse lobe.

The biggest limitation of the reflectance model by Yan et al. (2015)
is the complexity. First, it has too many lobes, 11 in total. Second,

(a) near/far field scattering (b) far field close up (c) near field close up

Fig. 5. (a) Illustration of near/far field scattering. Far field scattering always
assumes collimated incident light covering the azimuthal section. Assuming
the azimuthal section is perfectly smooth (Marschner et al. 2003), it is
possible to solve for certain azimuthal offset h, given the relative exiting
azimuth ϕ . Near field scattering considers actual incident h and calculates
how much it contributes to ϕ . (b) A close-up view of fur with far field
scattering, note the flat ribbon-like appearance. (c) A close-up view of fur
with near field scattering rendered using our model in Sec. 4, note the
cylindrical appearance and the clearly visible medulla inside.

it needs to store significant pre-computed data. Third, interactions
between the scattered lobes and the cuticle are complicated. And
perhaps most critically, a path p needs to be traced from the starting
offset h until it exits the double cylinder, to find all the intersec-
tions and segments along p. Although tracing rays against circles
is implicit, i.e. intersections can be solved, it is always required to
compute the entire path p explicitly. So, there is no analytic BCSDF.

Note that the azimuthal scattering profile from the double cylinder
model depends on specific azimuthal offset h, which means that it
is limited to near field. We will describe near and far field models
next.

Near/far field scattering. When an incident ray hits a hair/fur fiber,
near-field scattering considers the actual incident position, thus an
actual azimuthal offset h ∈ [−1, 1] is specified in the azimuthal
plane. In contrast, far-field appoximation always assumes that the
incident light is a collimated beam covering the entire azimuthal
section. Figure 5 illustrates the difference.
Far field approximation produces ribbon-like flat appearance

when viewed close, but becomes accurate when viewed far away. In
this case, the width of a hair/fur fiber is so thin that distinguishing
individual h is unnecessary. In fact, the azimuthal scattering func-
tion Np from far field approximation can be found by performing
multiple near field evaluations, i.e. integrating near field results over
all possible offsets h,

Np (ϕ) =
1
2

∫ 1

−1
Np (h,ϕ) dh. (11)

Far field approximation is useful, especially for fur that is usually
near an order of magnitude thinner than human hair. Besides, far
field approximation is expected to perform faster than near field
scattering. This is because near field scattering essentially leaves
the integration problem to the renderer, leading to an inefficient
point-sampled far field model. However, as mentioned earlier, fast
analytic integration of Eqn. 11 is already difficult for human hair,
let alone for fur fibers with even more complex types of paths.

4 SIMPLIFIED NEAR FIELD BCSDF MODEL
In this section, we propose our near field BCSDF model for fur
reflectance, focusing on its simplicity and generality. We validate
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Parameter Definition
η refractive index of cortex and medulla
κ medullary index (rel. radius length)
α scale tilt for cuticle
βm longitudinal roughness of cuticle (stdev.)
βn azimuthal roughness of cuticle (stdev.)
σc,a absorption coefficient in cortex
σm,s scattering coefficient in medulla
σm,a absorption coefficient in medulla
д anisotropy factor of scattering in medulla
l layers of cuticle

Table 1. Parameters used in our BCSDF model.

(a) Yan et al. (2015)
ηc = 1.45,ηm = 1.0

(b) ours
η = 1.45

(c) Microscopic
photo

Fig. 6. Setting the medulla’s index of refraction different from the cortex
results in dark edges at the interface between them (a) for a fur fiber of
polar bear lit from behind with directional lighting (1.45 for the cortex and
1.0 for medulla). This deviates from the photometric ground truth, even
though polar bears’ medullas are filled with air inside complex structures
(c). Our local illumination model with unified IOR (1.45) does not have this
problem (b). Microscopic photo courtesy of Carrlee et al. (2011).

our simplified model against measured data in Fig. 11 and Table 4.
Section 5 discusses an efficient piecewice analytic BCSDF model
that unifies near and far field rendering.

4.1 Overview
Our first observation is that, different indices of refraction (IORs)
of the cortex and the medulla are mostly responsible for complex
paths and lobes. However, in most of the fitting results presented
in Yan et al. (2015), the IORs between the cortex and the medulla
are close. The similarity indicates that, complex types of paths such
as TrT and TtrtT are often too weak to be observed. Furthermore,
Fig. 6 shows a rare and extreme case where the IORs are clearly
different. In this case, the model by Yan et al. (2015) with different
IORs of the cortex and the medulla is supposed to be more accurate,
but still fails to match the ground truth.
Based on this observation, we unify the IORs for the cortex and

the medulla. Despite the assumption, this leads to a much simpler
model, an analytic solution, and comparably accurate results as Yan
et al. (2015). With unified IORs, the light path no longer reflects
or changes direction at the interface between the cortex and the
medulla. Our model now shares the same light paths from hair
models1 — R, TT and TRT . The only difference is that, TT and
TRT paths can be scattered passing through the medulla, forming
scattered lobesTT s andTRT s . Thus, we write our near field BCSDF

1We also need to consider attenuation by absorption in the medulla, in the formula for
the R , TT and TRT lobes, as given in Table 3.

(a) Mounted medulla (b) Thick medulla (c) Pigmented medulla

Fig. 7. The medulla absorbs light due to both its complex structure and the
pigments inside. (a) Photograph of a fur fiber with the medulla filled with a
mounting medium to minimize medulla’s scattering. We can still see the
structure of the medulla. (b) Solid ladder-like medulla which is comparably
thick as the cortex. (c) Pigments are found filling brown bear’s medulla, as
reported by Carrlee et al. (2011).

(a) All (b) R (c) TT (d) TRT (e) TT s (f) TRT s

Fig. 8. (a) A rendering of a lock of hair with medulla. (b-f) With the unifi-
cation of IORs, our reflectance model has only 5 lobes. From left to right,
results rendered using lobe R , TT , TRT , TT s and TRT s , with path traced
global illumination (Sec. 6).

as:

S (θi ,θr ,ϕi ,ϕr ,h) =
SR + STT + STRT + S

s
TT + S

s
T RT

cos2 θi
, (12)

where Sp = Mp (θi ,θr )Np (h,ϕ) represent unscattered lobes and
Ssp = Ms (θi ,θr ,ϕ)N

s
p (h,ϕ) represent scattered lobes. p is from the

set of reduced types of paths {R = 0,TT = 1,TRT = 2}. SsR is always
zero.

Apart from unifying the IORs, we improve Yan et al. (2015) by in-
troducing themedulla’s absorption and different longitudinal/azimuthal
roughness. Figure 7 demonstrates that the medulla can absorb light
because of its complex internal structure, and that there are cases
where pigments are found within the medulla (Carrlee and Horelick
2011). We also take different longitudinal/azimuthal roughness into
account, since these differences are often observed (GalatÃŋk et al.
2011) and used in practice (Chiang et al. 2016; d’Eon et al. 2011).
Table 1 lists all the parameters used in our model, Fig. 3 (c) il-

lustrates all the lobes in our BCSDF model, and Fig. 8 shows de-
composed renderings using each lobe. Except for the R lobe that
does not pass through the cortex, all other lobes produce colored
appearance. The medulla blocks most TT light paths from previous
hair models, thus producing a dark TT lobe and bright TT s lobe.
Though much simpler with only 5 lobes, our model is slightly more
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Lobe p Shift αp Roughness βp
R α βm
TT −α/2 βm/2
TRT −3α/2 3βm/2
Lobe p DistributionMs

TT s lerpϕ (CM
ϕ=0,C

M
ϕ=π ) (Eqn. 19)

TRT s lerpϕ (CM
ϕ=0,C

M
ϕ=π ) (Eqn. 19)

Table 2. Shift and roughness of longitudinal lobes.

accurate than Yan et al. (2015), as validated in Table 4. Furthermore,
individual lobes in our model are more efficient to evaluate, replac-
ing more costly implicit ray tracing with closed-form expressions
(Sec. 4.2, Fig. 14). The pre-computed data for scattering lobes can be
accurately compressed (Sec. 4.3) to make storage negligible (much
less than a megabyte in all).

4.2 Unscattered lobes (R, TT , TRT )
Since the light paths in our model no longer deviate from those in
hair models, our model unifies hair and fur rendering (Figs. 8 and
18). Thus, the unscattered lobes are very similar to the Marschner
model.

Longitudinal unscattered lobes. As in previous work, we approx-
imate the longitudinal scattering profiles for each lobe using an
empirical Gaussian distribution Mp (θi ,θr ) = G (θr ;−θi + αp , βp )
(Eqn. 5). Their centers and variances are listed in Table 2.

Similarly, the azimuthal unscattered lobes are evaluated using
Np (h,ϕ) = Ap (h) · Dp (h,ϕ) (Eqn. 6, Table 3). However, with the
unification of IORs, we are able to derive closed-form expressions
for both the attenuation term and the distribution term, rather than
needing to use implicit ray tracing.

Azimuthal attenuation. As shown in Fig. 3 (c), the R lobe (p = 0)
will be reflected by the cuticle directly, so it is attenuated by the
Fresnel reflection F (η′,γi ). The TT (p = 1) and TRT (p = 2) lobes
both refract through the cuticle twice, thus attenuated by two Fres-
nel transmissions, i.e. (1 − F )2. And the TRT lobe has an additional
internal Fresnel reflection. Besides, bothTT andTRT are attenuated
traveling through the cortex and possibly the medulla, which are
exponential falloffs with the distances 2sc and 2sm traveled within
the cortex and the medulla, respectively. This is how colors are
introduced. We list the attenuation terms for individual unscattered
lobes R, TT and TRT in Table 3, and give a general representation2
as

A0 (h) = F , (13)

Ap (h) = (1 − F )2Fp−1TcTm p ≥ 1, (14)

where F = F (η′,γi , l ) is the Fresnel term with respect to cuticle
layers l as in previous work, Tc = exp(−2pscσc,a/ cosθd ) and
Tm = exp(−2psm (σm,a +σm,s )/ cosθd ) are the attenuations within
the cortex and medulla, respectively. The division by cosθd is to
account for elongated azimuthal paths when viewed from an oblique

2These general representations for all our attenuation and distribution computations
also hold for arbitrary higher-ordered lobes, such asTRRT andTRRT s . However, we
ignore them in our renderings for simplicity.

Fig. 9. Illustration of tensor decomposition.

longitudinal angle. Here, different azimuthal offsets h decide differ-
ent Fresnel terms F , as well as distances sc and sm a path travels,
and thus the attenuation terms Tc and Tm .
Azimuthal distribution. For the distribution term Dp of unscat-

tered lobes, since they are GaussiansG (Φp (h)−ϕ; βp ) (Eqn. 7), what
we need are their centers Φp and variance βp . To find their centers,
we follow the corresponding light paths, performing mirror reflec-
tions or refractions at intersections until the path leaves the double
cylinder, as shown in Fig. 3. In this way, the exiting azimuth Φp
can be calculated, such that each refraction makes the path deviate
its direction by γt − γi , and each internal reflection introduces a
deviation of π + 2γt . For the distribution’s variance, accumulating
the squared roughness β2n at each cuticle intersection is a simple
multiplication with the number of intersections p + 1. Similar to
the attenuation terms, we also list the centers and variances of the
distribution terms for lobes R, TT and TRT in Table 3, and give a
generalized representation as

Φp (h) = 2pγt − 2γi + pπ , (15)

β2p = (p + 1)β2n . (16)

4.3 Scattered lobes (TT s ,TRT s )
As introduced in Sec. 3, the scattered lobes involve two large pre-
computed lookup tables CM and CN . In this subsection, we first
describe how the pre-computed data can be compressed. Then we
minimize interactions between the scattered lobes and the cuticle,
so that querying the scattered lobe is simplified. Finally, we derive
closed-form expressions for their attenuation and distribution terms
(Table 3), so that the previous implicit ray tracing is no longer
required.
Compression. We treat these precomputed longitudinal and az-

imuthal scattering profiles CM and CN as 4D tensors, and refer to
tensor decomposition techniques to compress them.
Tensors are high dimensional analogues to vectors or matrices,

and can be regarded as multidimensional arrays. Tensor decom-
position is a generalization of matrix singular value decomposi-
tion (SVD). In tensor decomposition, a d-dimensional tensor A is
represented as a linear combination of R “simpler” tensors, each
represented as the tensor product of d vectors:

A =

R∑
r=1

λrA
(r ) =

R∑
r=1

λr · a(r,1) ⊗ a(r,2) ⊗ · · · ⊗ a(r,d ) , (17)

where the (i1, i2, . . . , id )-th element of A (r ) is the product of the
i1-th element of a(r,1) , the i2-th element of a(r,2) , . . . , and the id -th
element of a(r,d ) (Fig. 9).

Here, R is the rank of tensor A, and each A (r ) is rank 1. Similar
to SVD for matrices, by assuming that the coefficients λr are sorted
in decreasing order and keeping only the largest k coefficients, we
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Lobe p Attenuation Ap or Asp Center Φp Variance β2p or Distribution Ds
p

R F −2γi β2n
TT (1 − F )2 exp

(
−
2scσc,a+2sm (σm,a+σm,s )

cos θd

)
2(γt − γi ) + π 2β2n

TRT (1 − F )2F exp
(
−
4scσc,a+4sm (σm,a+σm,s )

cos θd

)
(π + 2γt ) + 2(γt − γi ) + π 3β2n

TT s F exp
(
−
(sc+1−κ )σc,a+κσm,a

cos θd

)
γt − γi CN (Φsp − ϕ) (Eqn. 10)

TRT s (1 − F )F exp
(
−
(3sc+1−κ )σc,a+(2sm+κ )σm,a+2smσm,s

cos θd

)
3γt − γi + π CN (Φsp − ϕ) (Eqn. 10)

Table 3. Attenuation and distribution of each azimuthal lobe.

(a) Longitudinal (b) Azimuthal

Fig. 10. Comparison of measured (solid lines) and compressed (dotted lines)
scattering profiles. Using our tensor decomposition scheme, the compressed
profiles have good matches with the measured data over a wide range of
parameters.

are able to reconstruct tensor A approximately as

A ≈

k∑
r=1

λr · a(r,1) ⊗ a(r,2) ⊗ · · · ⊗ a(r,d ) . (18)

If a relatively smallk is needed to appoximate tensorA accurately
enough, we say that A is low rank. In this case, we only need to
store k ×d vectors to accurately reconstruct it, which is significantly
less than the storage for A itself.
We apply this tensor decomposition scheme to compress the

precomputed scattering profiles CM and CN , both with resolution
24× 16× 16× 720, storing radiance at 24 values of σm,s , 16 values of
д and 16 values of h or θi towards 720 outgoing directions. We use
scikit-tensor, a Python module for multilinear algebra and tensor
factorizations, to perform tensor decomposition using the alternat-
ing least squares (CP-ALS) algorithm. Our experiments show that, it
usually takes less than one minute (single-threaded) to decompose
either longitudinal or azimuthal precomputed data, with a maxi-
mum of 500 iterations. After the decomposition, we find that using
up to rank 16 is good enough to accurately capture the complex
shapes of all precomputed data.
The resulting coefficients take only 150 KB in storage, which is

negligible compared to the 600 MB raw data in Yan et al. (2015).
Figure 10 verifies the accuracy of our compression. Animated com-
parisons can be found in the accompanying video.
Note that previous tensor decomposition techniques for visual

data (Tsai and Shih 2006; Vasilescu and Terzopoulos 2004; Wang
et al. 2005) usually perform more complicated factorizations, using
N-mode SVD with a core tensor. However, in our application, we
find using a combination of rank 1 tensors suffices.

Longitudinal scattered lobes. The longitudinal scattered lobes are
still interpolated between the precomputed lobes at ϕ = 0 and ϕ = π .
However, we find that in Eqn. 8, the normalization factor µ is costly
to compute but still approximate. Besides, the Fresnel transmittance
cancels the normalization in most practical cases. Thus, we simplify
the queries to use the incident and outgoing longitudinal angles
directly as

Ms (θi ,θr ,ϕ) = lerpϕ (CM
ϕ=0 (θi ,θr ),C

M
ϕ=π (θi ,θr )). (19)

Azimuthal attenuation. Our azimuthal attenuation term Ap con-
sists of two parts. The first part is the attenuation from the be-
ginning to the point where the p-th segment starts intersecting
the medulla, i.e. before the medulla scatters. Specifically, for TT s
(p = 1), we consider the first segment, and for TRT s (p = 2), we
consider the second rather than the first two, since the first seg-
ment’s contribution is already accounted for in TT s . In analogy
to the unscattered lobes, we write the first part of the attenuation
as Ta = exp(−[(2p − 1)scσc,a + 2(p − 1)sm (σm,a + σm,s )]/ cosθd ).
The second part is the attenuation after the medulla’s scattering,
attenuated by the medulla of distance κ and by the cortex of dis-
tance 1−κ. We assume no reflection/refraction events happen when
exiting the cuticle. Thus, the second part of the attenuation becomes
Tb = exp(−[κσm,a + (1 − κ)σc,a]/ cosθd ). The overall attenuation
term is thus

Asp (h) = (1 − F )Fp−1TaTb . (20)

Azimuthal distribution. For the distribution termDs
p (h,ϕ) = C

N (Φsp (h)−

ϕ) (Eqn. 10), we derive the direction Φsp of the p-th segment, and
use the difference angle Φsp − ϕ to query from the precomputed
azimuthal scattering profile CN . Similar to the unscattered lobes,
the direction of the p-th segment that enters the inner cylinder is
given by

Φsp (h) = (γt − γi ) + (p − 1) (π + 2γt ). (21)
Intuitively, Eqn. 21 is the result of one refraction into the outer
cylinder for theTT s lobe (p = 1), or one refraction plus one internal
reflection for the TRT s lobe (p = 2).
The final azimuthal scattered lobes are written as N s

p (h,ϕ) =

Asp (h) · D
s
p (h,ϕ) (Eqn. 9).

In summary, for longitudinal scattered lobes, we simplify the
interactions of the scattered lobes with the cuticle by ignoring the
cuticle refraction. In this way, complex normalization is avoided
along with Fresnel transmittance. For azimuthal scattered lobes, we
assume that they originate from the center of the double cylinder
and are attenuated evenly for all directions by the medulla and the
cortex successively. So, compared to Yan et al. (2015), our model does
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Parameter Unit Bobcat Cat Deer Dog Mouse Rabbit Raccoon Red fox Springbok Human
κ unitless 0.88 0.87 0.91 0.68 0.66 0.79 0.65 0.86 0.82 0.36
η unitless 1.69 1.36 1.60 1.58 1.35 1.47 1.19 1.49 1.48 1.20
α degree 5.48 3.65 3.52 2.94 0.55 3.14 1.81 2.64 4.61 0.70
βm degree 11.64 5.66 7.00 5.77 8.39 11.91 7.44 9.45 8.02 2.05
βn degree 7.49 1.34 4.53 18.94 2.80 10.52 6.88 17.63 11.46 3.75
σc,a diameter-1 0.64 0.06 1.39 0.01 0.04 0.24 0.25 0.39 0.32 0.41
σm,s diameter-1 1.69 2.47 2.51 2.44 1.34 0.78 2.30 3.15 2.45 3.49
σm,a diameter-1 0.17 0.12 0.09 0.00 0.06 0.10 0.14 0.21 0.31 0.00
д unitless 0.44 0.60 0.46 0.26 0.36 0.12 0.08 0.79 0.19 0.28
l unitless 0.47 0.44 0.45 0.60 2.36 1.03 2.00 0.68 0.46 1.79

NRMSE ((Yan et al. 2015)) 7.2% 5.3% 7.9% 9.1% 8.5% 8.4% 10.1% 6.3% 7.0% 19.3%
NRMSE (ours) 6.8% 6.4% 7.1% 7.3% 4.7% 6.0% 9.7% 6.2% 8.1% 16.1%

Table 4. (Top) Optimized parameters fit from our measured data using our far field model. All length-related parameters are calculated assuming the azimuthal
section of every fiber is a unit circle. All angle-related parameters are in degrees. (Bottom) Normalized RMS error of Yan et al. (2015) and our model.

not have the additional diffusive lobe, and it accounts for absorption
from the medulla. The simplicity of our model naturally leads to
the ease of implementation. We provide implementation details in
Sec. 6.

5 PIECEWISE ANALYTIC BCSDF MODEL
So far, we’ve derived a near field BCSDF. Now we show how to
make a far field BCSDF approximation, which is especially efficient
in reducing variance where hair or fur fibers are much thinner than
a pixel. We then describe how to transition between near and far
field models to make a multi-scale BCSDF that integrates per pixel.
Our multi-scale BCSDF is the first model that is able to produce near
field appearance when viewed close up, and requires no sampling
when viewed far away.

5.1 Far field BCSDF model
To enable far field approximation, we need to integrate the near field
azimuthal scattering profiles Np and N s

p over the azimuthal offset h.
Both unscattered and scattered lobes share the same representation

N (ϕ) =
1
2

∫ 1

−1
A(h) · D (h,ϕ) dh, (22)

by replacing N with A · D from Eqn. 6. For simplicity, we focus
on the range h ∈ [0, 1] since it is always equivalent for symmetric
queries (h,ϕ) and (−h,−ϕ). Thus, Eqn. 22 becomes

N (ϕ) =
1
2

∫ 1

0
A(h) · D (h,ϕ) dh + 1

2

∫ 1

0
A(h) · D (h,−ϕ) dh

≜ N (+) (ϕ) + N (−) (ϕ). (23)

Unscattered lobes. We first look at the attenuation term. Our obser-
vation is that, the attenuation term Ap from Eqn. 14 can be treated
as the product of four components: (1− F )2, Fp−1,Tc andTm . These
four components are all functions of h — for the former two compo-
nents with Fresnel terms, h defines different incident angles γi , and
for the latter two absorption components, h decides the distances
light travels within cortex and medulla sc and sm . Another obser-
vation is that, these components are either monotonic or smooth
when h changes. So we start with partitioning h into a few segments
(Fig. 12 (a)). Then, for maximum accuracy, we linearize the entire

first two components (1 − F )2 and Fp−1 and the distances sc and
sm in the latter two components. Thus, the attenuation term A(h)
becomes the product of two linear functions and two exponentials
of linear functions.
Then we analyze the Gaussian distribution term Dp (h,ϕ) =

G (Φp (h) − ϕ). Here we’re not interested in its variance which is
constant with h. Instead, we focus on its center that varies with h.
As shown in Eqn. 15, when h changes, γt and γi change with it. So,
similar to the attenuation term, with segmented h, we are able to
represent γt and γi with linear functions. Since a Gaussian is an
exponential of squared variables, the distribution term ends up with
an exponential of a quadratic polynomial.
With the piecewise polynomial representation inside both the

attenuation termAp and the distribution term Dp , we’re able to rep-
resent the azimuthal scattering profile Np for unscattered lobes in a
simple form. Note that the product of two linear functions from Ap
makes a quadratic polynomial, and the product of two exponentials
of linear functions from Ap and the exponential of a quadratic poly-
nomial from Dp together makes another exponential of a quadratic
polynomial. So, we have the following form for unscattered lobes:

N
(+ |−)
p (ϕ) =

1
2

n∑
i=1

∫ hi

hi−1
Q1 (h) · exp(Q2 (h)) dh, (24)

where Q1 and Q2 are quadratic polynomials. This can be easily
solved analytically, as will be described with details in the Appendix.

Scattered lobes: The scattered lobes are similarly handled. For the
attenuation termAsp in Eqn. 20, we linearize the Fresnel terms 1− F ,
Fp−1 as well as the distances sc and sm , resulting in the product of
two linear functions and two exponentials of linear functions.
Since the distribution term Dp is queried rather than computed

as a Gaussian, it is even simpler so that we directly linearize it. So
the entire distribution term is a linear function.
Thus, the final result of the azimuthal scattering profile N s

p for
scattered lobes has the form

N
s (+ |−)
p (ϕ) =

1
2

n−1∑
i=1

∫ hi

hi−1
C (h) · exp(L(h)) dh, (25)

where C is a cubic polynomial that is the product of linearized
components (1 − F ), Fp−1 and Ds

p , and L is a linear function of the
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product fromTa andTb . This integral can also be solved analytically
with even simpler results than unscattered lobes.

Segmentation. We observed that when h is large, i.e. the incident
position is away from the center, the linear terms change more
rapidly. So we partition h ∈ [0, 1] quadratically, i.e. hi =

√
i/n.

For unscattered lobes, we find that using 5 segments is enough
in most practical renderings, while using 8 segments generates
indistinguishable scattering profiles. For scattered lobes, since they
are even smoother, we find 4 segments good enough throughout all
computations.

Acceleration. In practice, we usually don’t have to integrate all
n segments. Given a specific h, we immediately know its relative
exiting azimuth Φp (h). For unscattered lobes, since the distribu-
tion term is a Gaussian around Φp (h), it is safe to assume that a
path that is incident from h contributes only within this outgoing
range [Φp (h) − 3βp ,Φp (h) + 3βp ]. Based on this observation, for
a segment h ∈ [h1,h2], we can limit its contribution within the
range [min{Φp (h1),Φp (h2)} − 3βp ,max{Φp (h1),Φp (h2)} + 3βp ]. So
we simply throw away all the queries with ϕ that are not within this
range. In this way, each query for unscattered lobes now requires an
average of only 2−4 integrations in practice. However, for scattered
lobes, since the distribution term is precomputed for every direction,
the acceleration scheme does not apply.

Validation. To verify the accuracy of all these simplifications /
improvements, we re-fitted all the measured fur reflectance profiles
from Yan et al. (2015) and compared the NRMSE3 with previous
fitting results.
We use Ceres Solver (Agarwal et al. 2010), a nonlinear least

squares minimizer, to fit the measured profiles. The fittings are
performed in logarithemic space, with the cost function defined
as the sum of all per-pixel differences of the log-measured and
log-fitted values, divided by the range between the minimum and
maximum log-measured values. The initial values of all parameters
are manually set. The fitted profiles are generated using our far field
model, with 8 segments for unscattered lobes and 5 segments for
scattered lobes. Fitting each profile takes 2 ∼ 3 minutes in our test
platform.
Figure 11 shows 3-way comparison of the measured data, fitted

profiles in Yan et al. (2015) and our fitted profiles. From the fitted
profiles, we can see that even with only 5 lobes, our method is still
able to produce similar forward scattered lobes (e.g. red fox) and
backward scattered lobes (e.g. raccoon). Also, with the introduction
of medulla absorption, and the unification of IORs thus reducing
the complexity of light scattering, our model has much “cleaner”
forward scattered regions near (θ = 10◦,ϕ = 180◦) (e.g. mouse
and rabbit), which cannot be handled previously. The introduced
azimuthal roughness intuitively smoothes the fitted profiles az-
imuthally. It is especially obvious for the R andTT lobes, so that the
high-intensity regions fit better (e.g. raccoon, rabbit and dog). Note
that our method may not be consistently better than Yan et al. (2015)
over these regions. This is expected, since the fitting procedure is
aimed at global optimization.
One limitation of our method would be that, our results are

slightly more blurred longitudinally, indicating larger longitudinal

3Normalized RMS Error, or precisely, RMS error of the fitting result divided by the
range of measured data.

Fig. 11. (Left) Reflectance profiles measured from different animals’ fur
fibers in Yan et al. (2015). (Middle) Synthesized profiles using the factored
rendering model in Yan et al. (2015). (Right) Synthesized profiles using our
analytic far field BCSDFmodel in Sec. 5. All profiles are scaled and displayed
in logarithmic space for perceptual brightness.

roughness fitted. This may relate to a cuticle scattering phenomenon
observed as stripes in almost all measured profiles, and we leave it
as future work. Also, there are cases (e.g. human) where neither our
method nor Yan et al. (2015) produce good fits, indicating that the
double cylinder model can be further improved.
Table 4 lists all the fitted parameters and NRMSE values. As

analyzed above, though our near field model makes several approx-
imations for scattered lobes, and our far field model builds upon it
with further piecewise linear approximations, our model still has
better results in most cases. Note that our model is much simpler
and more general, and the new parameters in our model (βn and
σc,a ) provide better flexibility for artist control.
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(a) (b)

Fig. 12. (a) Illustration of far field integration. The longitudinal section is
partitioned into n segments. For each segment, we compute its contribution
to the queried relative exiting azimuth. (b) Illustration of calculating a
pixel’s coverage for multi-scale rendering. A pixel (marked red on the image
plane) is first projected to the hit point (red segment at the hit point), then
projected again towards the fiber (blue segment).

5.2 Multi-scale BCSDF model
Far field approximation is accurate when hair or fur fibers are thin-
ner than a pixel. However, when viewed close up, a fiber’s width
may cover several pixels, i.e. each pixel actually covers a small range
over the azimuthal section. In these cases, far field approximation
will produce ribbon-like appearance (Fig. 5 (b)). To deal with these
cases, we propose our multi-scale BCSDF model. We use each pixel’s
coverage on hair or fur fibers to decide the range of azimuthal offset
h it covers, and integrate per pixel instead of per fiber. In this way,
we integrate similar to far field approximation, but keep the accurate
near field appearance.
Pixel-wise integration. Suppose we know that a pixel covers a

range of azimuthal offseth ∈ [h1,h2]. We extend Eqn. 22 to integrate
only within this range as

N (ϕ) =
1

h2 − h1

∫ h2

h1
A(h) · D (h,ϕ) dh, (26)

where the term 1/(h2 − h1) guarantees energy conservation. When
a pixel fully covers the entire azimuthal section, Eqn. 26 degenerates
to the far field case Eqn. 22. And in the limit case where h1 and
h2 are infinitesimally close, it becomes the near field scattering
representation N (h,ϕ) = A(h) · D (h,ϕ). These two cases indicate
that our multi-scale BCSDF model bridges both near and far field
scattering, and is consistent when scaling between them.
Calculating a pixel’s coverage. Now that we have a multi-scale

BCSDF model, what remains is to find a pixel’s coverage [h1,h2].
Figure 12 illustrates the way to calculate it. Assuming that pixels are
round rather than square on the image plane, we can tell how large
a pixel’s coverage is at the hit point in world coordinates using its
diameter, denoted as Chit. This is very similar to ray differentials
(Igehy 1999). Then, the projected pixel at the hit point becomes a disk,
facing along the camera’s look-at directionωlookat. We project the
disk again towards the hit fiber, i.e. onto the directionωfiber. Finally,
we compare it with the fiber’s radius rfiber in world coordinates to
get the pixel’s coverage. So, we have

Cfiber ≈ (ωfiber ·ωlookat)Chit/rfiber (27)
as the pixel’s coverage in the azimuthal section of the fiber, with
the same unit as h ∈ [−1, 1]. Here ωfiber is the direction from the
camera to the fiber’s center within the same azimuthal section with
the hit point. The fiber’s center can be calculated when performing

Far field
14.0min/51s

Multi-scale
11.8min/45s

Near field
9.3min/34s

Far field
3.5min/14s

Multi-scale
3.7min/14s

Near field
2.4min/9s

Fig. 13. Validation of far field and multi-scale rendering. We render the
same scene viewed close up (left three columns) and viewed from far (right
three columns), using 1024 spp (top half) and 64 spp (bottom half). Timings
are listed for 1024 spp and 64 spp, respectively. When zoomed out, our far
field and multi-scale models perform around 1.5× slower than near field.
When zoomed in, our multi-scale model performs closer to near field, since
the range to integrate becomes smaller for each pixel.

ray-cylinder intersections. However, unless viewed from extremely
close so that a fiber covers a very large area in the image plane,
ωfiber is always close to the camera ray’s directionωcamera. So, in
practice, we replaceωfiber withωcamera in Eqn. 27 for simplicity.

After getting a pixel’s coverage, the azimuthal range to integrate
can be written as [h − Cfiber/2,h + Cfiber/2]. This range is then
clamped to be within [−1, 1], in case a pixel is much larger than
a fiber’s width, or it covers the boundary of a fiber. To integrate,
we use the same segmentation scheme for far field approximation,
clipping segments to be within this range.

Validation. We render the same insets using our near field, far field
andmulti-scale BCSDFmodels. As shown in Fig. 13, when viewed far
away, the differences between our three methods are barely visible,
but the far field and multi-scale models produce significantly less
noise. When viewed close up, our multi-scale model still generates
the same results as compared to the near field model, but the far
field results look flat. A similar effect is seen in Fig. 1, where the
multi-scale model produces the same appearance as the near field,
but is much less noisy. In the accompanying video, we include
a zooming-in sequence to verify that our multi-scale scattering
model scales smoothly and does not produce flickering appearance
between frames.

6 RENDERING
In this section, we provide a brief summary of how to implement our
reflectance model within global illumination renderers. We discuss
two relevant aspects: evaluation and sampling.
BCSDF evaluation. Since our reflectance model unifies hair and

fur rendering with only two additional scattered lobes, our BCSDF
evaluation easily fits in a hair rendering system. We provide a de-
pendency tree in Fig. 14 of variables to compute, separating the
classic R, TT and TRT lobes for hair and new scattered lobes TT s ,
TRT s .

When near field rendering is required, the azimuthal lobes are
queried at specific offset h. On the other hand, for far field approxi-
mation or multi-scale rendering, queries happen on the ends of all
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MR,TT ,TRT .................. 5
αR,TT ,TRT ...........Tab. 2
βR,TT ,TRT ...........Tab. 2

NR,TT ,TRT (h or [hi−1,hi ])..6
AR,TT ,TRT ...........13, 14
DR,TT ,TRT ...............7

ΦR,TT ,TRT ...........15
β2R,TT ,TRT ........... 16

Ms
TT ,TRT ................. 19
CM ...................18

N s
TT ,TRT (h or [hi−1,hi ])..9
AsTT ,TRT ..............20
Ds
TT ,TRT ..............10
ΦsTT ,TRT ...........21
CN ................18

Fig. 14. A dependency tree of variables for BCSDF evaluation. Equation
numbers are marked. All the variables required for both unscattered and
scattered lobes are also listed in Tables 2 and 3.

segments. Note again that every step in the tree of Fig. 14 is either
analytic or queried, thanks to the unification of IORs.

Importance sampling. Similar to d’Eon et al. (2013), our impor-
tance sampling works in four steps as follows:

• Choosing azimuthal offset h. For near field scattering, since
it is fixed, there’s no need to choose. For far field approxi-
mation and multi-scale rendering, we randomly pick an h
from the corresponding range, i.e. [−1, 1] for far field and
[h1,h2] for multi-scale.

• Choosing a lobe p to sample. The lobes are weighted ac-
cording to the energy they carry. Since the longitudinal
integral of Mp is always 1, and the azimuthal integral of
the distribution term Dp is also 1 for any selected h, the
energy that lobe p carries depends on its attenuation term
Ap . So, we calculate the attenuation term for all 5 lobes,
and choose one with the probabilities in proportion to their
values.

• Sampling azimuthally. Once the azimuthal offset h and the
lobe p have been selected, for unscattered lobes, we im-
mediately know how they distribute with center Φp and
standard variance βp . We perform a Gaussian sampling
according to this distribution to get the relative exiting az-
imuth ϕ. Then the actual outgoing azimuth ϕr = ϕ +ϕi can
be computed. For scattered lobes, since they’re smooth, we
sample them uniformly over all azimuthal angles.

• Sampling Longitudinally. This is very similar to the az-
imuthal case. Since we know which lobe is to be sampled,
for unscattered lobes, we just need to sample according to
the Gaussian Mp . For scattered lobes, we use cosine sam-
pling.

• Calculating PDF and sampling weight. The final probability
density function (PDF) is the product of PDFs sampling the
selected lobe p azimuthally and longitudinally, followed by
a conversion from (θ ,ϕ)-measure to solid angle measure.
The final samplingweight is the BCSDF value of the selected
lobe p over the final PDF, then divided by the probability
of selecting it. Since the unscattered lobes are importance
sampled and the scattered lobes are usually smooth, the
sampling weight is usually smaller than 2 in practice.

With the importance sampling scheme, we perform standard path
tracing to determine accurate global illumination.

Fig. #Strands #Segs #Samples Time Method
Hair Lock 8 1K 210 1024 3.7min N/M/F
Raccoon 1 260K 22 1024 14.1min M
Hamster 16 580K 15 1024 36.9min N

Cat 17 267K 9 256 3.8min M
Hair 18 53K 64 1024 17.3min M

Table 5. Statistics for our scenes, all rendered in 720p, using different ren-
dering methods (N for near field, M for multi-scale, F for far field). Each
of the (# Strands) fur fibers is represented using (# Segs) line segments. #
Samples is the number of samples per pixel.

Fig. 15. We compare our method with Yan et al. (2015) in (a) convergence
and (b) frame rendering time. The experiments are conducted on the central
32 × 32 patch of the hair lock scene. Our near field model converges twice
as fast as Yan et al. (2015), and our multi-scale model converges an order of
magnitude faster. Also, our near field model performs 2× faster than Yan
et al. (2015). Moreover, since our far field and multi-scale models require
solving integrals rather than querying the integrand as near field models
do, a slight performance drop is expected. However, they still outperform
Yan et al. (2015) even though it is near field, indicating that our analytic
integration is efficient. Also note that since the scene is viewed from far
away, our far field and multi-scale models converge almost as fast in this
case.

While our importance sampling method is similar to Yan et
al. (2015), their model has 11 lobes, most of which make a very
small contribution to the final image. When a lobe with low energy
is selected with low probability, the sampling weight will be large,
and the result will be noisy (have high variance). In contrast, our re-
flectance model has only 5 lobes, each of which carries a significant
amount of energy. Thus, even when comparing only our near field
results, our method still has less noise (Figs. 1, 15 and 16).

7 RESULTS
In this section, we show rendering results generated using our prac-
tical reflectance model, and compare them with previous work. We
implement our model in the Mitsuba renderer (Jakob 2010). Scene
configurations, including number of hair or fur fibers and samples
per pixel, are listed in Table 5. Parameters for raccoon, cat and hu-
man hair/fur models are taken from our best fit results in Table 4.
The hamster model uses parameters from mouse. Since the mea-
sured data from Yan et al. (2015) is grayscale only, to introduce color,
we convert colored textures at different positions to absorption coef-
ficients σc,a in the cortex, similar to Yan et al. (2015). All scenes are
rendered using path tracing on an Amazon EC2 c4.8xlarge instance

ACM Transactions on Graphics, Vol. 36, No. 4, Article 67. Publication date: July 2017.



67:12 • Yan, L. et al

(a) Yan et al. (2015), ET
870 spp, 74.2 s, E:0.032

(b) Ours (near field)
1024 spp, 73.9 s, E:0.017

(c) Yan et al. (2015), EQ
3100 spp, 258 s, E:0.017

Fig. 16. A Hamster model rendered under studio lighting with a diffuse
backdrop, using our near field model. Insets compare (b) our method with
Yan et al. (2015) for (a) equal time (ET) and (c) equal quality (EQ) (E in the sub-
captions stands for RMS error). The two models have different parameter
spaces, thus small differences can be found in the EQ comparison. In the ET
comparison, noise can be clearly seen when zoomed in. For equal quality,
our method performs 3.5× faster.

with 36 vCPUs. The source code and compressed pre-computed data
are available on http://viscomp.ucsd.edu/projects/fur2.

We measure and compare the entire frame rendering time, includ-
ing BVH traversal and ray-cylinder intersections. Even so, our near
field reflectance model still performs around 3.5× faster than Yan et
al. (2015) in terms of equal quality comparison, and our multi-scale
rendering scheme performs even better with up to a 8× speed-up.
Note that since the parameter space in our reflectance model is
different from Yan et al. (2015), slight differences can be observed in
their rendering results.4

Hair lock. Figure 8 shows decomposed renderings from each of
the 5 lobes in our model, using the fitted parameters of human hair
in Table 4. We can clearly see different lobes’ contribution, indicat-
ing that our model is concise and effective. Figure 15 compares the
convergence curves and rendering time using different methods.
Yan et al. (2015) is near field and does not require integration. How-
ever, our multi-scale model not only evaluates slightly faster, but
also converges fastest among all the models. Our near field model
evaluates fastest, but still converges 2× faster than Yan et al. (2015).
In the accompanying video, we show a zooming in and out sequence,
showing that our multi-scale rendering scheme is accurate when
viewed close, and is efficient when viewed far away (Fig. 13).

Raccoon. The raccoon scene is rendered with an HDR environ-
ment map. We use a ground projection scheme similar to Autodesk
4Hence, errors are computed with respect to the converged result for each reflectance
model separately.

(Yan et al. 2015)
ET, 60 spp, 3.5s
RMSE: 0.0280

Ours (multi-scale)
64 spp, 3.5s
RMSE: 0.0129

(Yan et al. 2015)
EQ, 380 spp, 21.2s
RMSE: 0.0130

Fig. 17. A Cat model rendered multi-scale with an area light in front. We
compare with Yan et al. (2015) for equal time and equal quality (same RMSE).
For the same quality, our multi-scale BCSDF achieves a 6.0× speed-up.

Fusion 360’s implementation, so that the raccoon stands on an ac-
tual ground rather than floating. As shown in Fig. 1, our near field
model is capable of generating very similar diffusive appearance
as compared to Yan et al. (2015), but is much simpler and has less
noise. Furthermore, our multi-scale rendering scheme converges
significantly faster with minimum overhead. This is because the fur
fibers are so thin that near field sampling is very inefficient, while
multi-scale rendering integrates efficiently, successfully removing
the high frequency noise.
Hamster. This scene (Fig. 16) shows a hamster model, rendered

under studio lighting with several area lights on top. The hamster
model is located inside a capsule-like diffuse backdrop, encompass-
ing the top, bottom and back sides. Since everything is diffuse, near
field reflectance is efficient enough. We compare our near field
model with Yan et al. (2015) which is also near field, showing that
our model has better convergence because of its simplicity.
Cat. The cat model (Fig. 17) is rendered using an area light in

front. We compare our multi-scale model with Yan et al. (2015). Our
scene is rendered noise-free with only 256 samples per pixel. In
the video, we move the light back and forth, so the noise can be
observed more clearly. Note that since the cat fur fibers are very
thin, our multi-scale and far field models generate exactly the same
results in approximately the same time.
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(a) Without medulla. (κ = 0) (b) With medulla. (κ = 0.15)

Fig. 18. A hair model rendered with and without medulla using our multi-
scale model. Our model unifies hair and fur rendering with the same light
paths, regardless of the medulla’s size. The difference between these two
renderings is clearly visible, indicating the importance of the medulla as
well as our scattered lobes TT s and TRT s , even with a small κ .

Hair. Our reflectance model and multi-scale integration also work
on human hair. As shown in Fig. 18, even a small medulla (κ = 0.15)
makes a difference in hair’s overall appearance. Intuitively, this
is because the light that goes through the medulla is spread more,
making each hair more diffusive. The result indicates the importance
of the medulla even for human hair, showing that the diffusive
appearance comes not only from global illumination between hair
fibers, but also within hair fibers. Note that the same light paths
are computed through hair or fur fibers regardless of the medulla.
Moreover, our multi-scale integration benefits both hair and fur
rendering.

8 CONCLUSION AND FUTURE WORK
We present a practical reflectance model for efficient fur rendering.
By unifying the IORs of cortex and medulla, our model is capable of
representing complex scattering within hair and fur fibers with only
5 lobes. By introducing medulla’s absorption and different longitu-
dinal and azimuthal roughness, and using tensor approximation to
minimize the storage overhead, our model achieves both accuracy
and practicality. Along with the simplified model, we propose an
analytic integration scheme for efficient far field appoximation, and
extend it to handle multi-scale rendering for the first time.

In the future, it is straightforward to implement our BCSDFmodel
for real-time rasterization based applications. It is also worth think-
ing about ways to further accelerate the far field approximation. An
artist-friendly perspective for our models can benefit the industry.
Introducing explicit eccentricity or irregular shaped azimuthal sec-
tions would also help. In summary, we believe that our model is an
important step in practical physically-based fur rendering, which
unifies hair and fur reflectance models, as well as near and far field
rendering schemes.
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APPENDIX: SOLVING EQNS. 24 AND 25
Equations. 24 and 25 are piecewise integrations of a polynomial and
the exponential of a polynomial. The key to solving them analyt-
ically is to integrate the forms Q1 · exp(Q2) and C · exp(L), where
Q1 and Q2 are quadratic polynomials, C is cubic, and L is linear.
For simplicity, here we present the analytic result of both forms as
indefinite integrations.

IntegratingQ1 · exp (Q2):∫
(dx2 + ex + f ) · exp(−ax2 + bx + c ) dx

=

√
π exp

(
b2
4a + c

)
erf
(
2ax−b
2
√
a

)
(4a2 f + 2abe + 2ad + b2d )

8a5/2
−

exp(−ax2 + bx + c ) (2adx + 2ae + bd )/(4a2) + K
where erf is the error function, which can be approximated with
high precision using polynomials. K is the integration constant in
the indefinite integral.

IntegratingC · exp (L):∫
(cx3 + dx2 + ex + f ) · exp(−ax + b) dx

= − exp(−ax + b)
(
a3cx3 + (a3d + 3a2c )x2

+ (a3e + 2a2d + 6ac )x + a3 f + a2e + 2ad + 6c
)
/a4 + K

where K is a constant.
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