skip to main content
research-article
Public Access

Worst-case stress relief for microstructures

Published:20 July 2017Publication History
Skip Abstract Section

Abstract

Additive fabrication technologies are limited by the types of material they can print: while the technologies are continuously improving, still only a relatively small discrete set of materials can be used in each printed object. At the same time, the low cost of introducing geometric complexity suggests the alternative of controlling the elastic material properties by producing microstructures, which can achieve behaviors significantly differing from the solid printing material. While promising results have been obtained in this direction, fragility is a significant problem blocking practical applications, especially for achieving soft material properties: due to stress concentrations at thin joints, deformations and repeated loadings are likely to cause fracture.

We present a set of methods to minimize stress concentrations in microstructures by evolving their shapes. First, we demonstrate that the worst-case stress analysis problem (maximizing a stress measure over all possible unit loads) has an exact solution for periodic microstructures. We develop a new, accurate discretization of the shape derivative for stress objectives and introduce a low-dimensional parametric shape model for microstructures. This model supports robust minimization of maximal stress (approximated by an Lp norm with high p) and an efficient implementation of printability constraints. In addition to significantly reducing stresses (by a typical factor of 5X), the new method substantially expands the range of effective material properties covered by the collection of structures.

Skip Supplemental Material Section

Supplemental Material

papers-0303.mp4

mp4

470 MB

References

  1. G. Allaire. 2002. Shape optimization by the homogenization method. Vol. 146. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Allaire and F. Jouve. 2008. Minimum stress optimal design with the level set method. Engineering Analysis with Boundary Elements 32, 11 (2008), 909 -- 918. Shape and Topological Sensitivity Analysis: Theory and Applications. Google ScholarGoogle ScholarCross RefCross Ref
  3. G. Allaire, F. Jouve, and H. Maillot. 2004. Topology optimization for minimum stress design with the homogenization method. Structural and Multidisciplinary Optimization 28, 2--3 (2004), 87--98.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. Alliez, C. Jamin, L. Rineau, S. Tayeb, J. Tournois, and M. Yvinec. 2016. 3D Mesh Generation. In CGAL User and Reference Manual (4.9 ed.). CGAL Editorial Board. http://doc.cgal.org/4.9/Manual/packages.html#PkgMesh_3SummaryGoogle ScholarGoogle Scholar
  5. E. Andreassen, B. S. Lazarov, and O. Sigmund. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1 (2014), 1--10. Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Barthe, B. Wyvill, and E. De Groot. 2004. Controllable Binary CSG operators for "soft objects". International Journal of Shape Modeling 10, 02 (2004), 135--154. Google ScholarGoogle ScholarCross RefCross Ref
  7. M. P. Bendsøe. 1989. Optimal shape design as a material distribution problem. Structural optimization 1, 4 (1989), 193--202. Google ScholarGoogle ScholarCross RefCross Ref
  8. M. P. Bendsøe and O. Sigmund. 2003. Topology optimization: theory, methods and applications. Springer.Google ScholarGoogle Scholar
  9. A. Bernhardt, L. Barthe, M.-P. Cani, and B. Wyvill. 2010. Implicit blending revisited. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 367--375. Google ScholarGoogle ScholarCross RefCross Ref
  10. B. Bickel, M. Bächer, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. F. Blinn. 1982. A generalization of algebraic surface drawing. ACM transactions on graphics (TOG) 1, 3 (1982), 235--256.Google ScholarGoogle Scholar
  12. J. Bloomenthal. 1997. Bulge elimination in convolution surfaces. In Computer Graphics Forum, Vol. 16. Wiley Online Library, 31--41. Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener. 2012. Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography. Advanced Materials 24, 20 (2012), 2710--2714. Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Cherkaev. 2000. Variational methods for structural optimization. Vol. 140. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Cioranescu and P. Donato. 1999. An introduction to homogenization. Oxford University Press.Google ScholarGoogle Scholar
  16. A. T. Gaynor and J. K. Guest. 2016. Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design. Structural and Multidisciplinary Optimization 54, 5 (2016), 1157--1172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. O. Gourmel, L. Barthe, M.-P. Cani, B. Wyvill, A. Bernhardt, M. Paulin, and H. Grasberger. 2013. A gradient-based implicit blend. ACM Transactions on Graphics (TOG) 32, 2 (2013), 12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel. 2011. Poisson's ratio and modern materials. Nature Materials 10, 11 (2011), 823--837. Google ScholarGoogle ScholarCross RefCross Ref
  19. Z. Hashin and S. Shtrikman. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 2 (1963), 127--140. Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Hiller and H. Lipson. 2009. Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyping Journal 15, 2 (2009), 137--149. Google ScholarGoogle ScholarCross RefCross Ref
  21. S. J. Hollister. 2005. Porous scaffold design for tissue engineering. Nature Materials 4, 7 (2005), 518--524. Google ScholarGoogle ScholarCross RefCross Ref
  22. S. G. Johnson. 2016. The NLopt nonlinear-optimization package. (2016). http://ab-initio.mit.edu/nloptGoogle ScholarGoogle Scholar
  23. H. S. Kang. 2010. Hierarchical design and simulation of tissue engineering scaffold mechanical, mass transport, and degradation properties. Ph.D. Dissertation. The University of Michigan.Google ScholarGoogle Scholar
  24. L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun. 2009. Numerical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3, Article 51 (July 2009), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Kraft. 1994. Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Transactions on Mathematical Software (TOMS) 20, 3 (1994), 262--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. G. Kreisselmeier and R. Steinhauser. 1983. Application of vector performance optimization to a robust control loop design for a fighter aircraft. Internat. J. Control 37, 2 (1983), 251--284. Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Langelaar. 2016. An additive manufacturing filter for topology optimization of print-ready designs. Structural and Multidisciplinary Optimization (2016), 1--13.Google ScholarGoogle Scholar
  28. T. Langlois, A. Shamir, D. Dror, W. Matusik, and D. I. Levin. 2016. Stochastic structural analysis for context-aware design and fabrication. ACM Transactions on Graphics (TOG) 35, 6 (2016), 226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Lian, A. N. Christiansen, D. A. Tortorelli, O. Sigmund, and N. Aage. 2017. Combined shape and topology optimization for minimization of maximal von Mises stress. Structural and Multidisciplinary Optimization 55, 5 (2017), 1541--1557. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C.-Y. Lin, C.-C. Hsiao, P.-Q. Chen, and S. J. Hollister. 2004a. Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29, 16 (2004), 1747--1754. PMID: 15303018. Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Y. Lin, N. Kikuchi, and S. J. Hollister. 2004b. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Journal of Biomechanics 37, 5 (2004), 623--636. Google ScholarGoogle ScholarCross RefCross Ref
  32. H. Lin, Y. Xiong, and H. Liao. 2014. Semi-structured B-spline for blending two B-spline surfaces. Computers & Mathematics with Applications 68, 7 (2014), 706--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Martínez, J. Dumas, and S. Lefebvre. 2016. Procedural Voronoi foams for additive manufacturing. ACM Transactions on Graphics (TOG) 35, 4 (2016), 44.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. W. Milton. 2002. The theory of composites. Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  35. P. Nakasone and E. Silva. 2010. Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. Journal of Intelligent Material Systems and Structures 21, 16 (2010), 1627--1652. Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics (TOG) 34, 4 (2015), 135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Pasko and V. Adzhiev. 2002. Function-based shape modeling: mathematical framework and specialized language. In International Workshop on Automated Deduction in Geometry. Springer, 132--160.Google ScholarGoogle Scholar
  38. G. I. Pasko, A. A. Pasko, and T. L. Kunii. 2005. Bounded blending for function-based shape modeling. IEEE Computer Graphics and Applications 25, 2 (2005), 36--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Polajnar, F. Kosel, and R. Drazumeric. 2017. Structural optimization using global stress-deviation objective function via the level-set method. Structural and Multidisciplinary Optimization 55, 1 (2017), 91--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Qian. 2016. Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Internat. J. Numer. Methods Engrg. (2016).Google ScholarGoogle Scholar
  41. I. Quilez. 2013. Smooth minimum. (2013). http://www.iquilezles.org/www/articles/smin/smin.htmGoogle ScholarGoogle Scholar
  42. A. P. Rockwood. 1989. The displacement method for implicit blending surfaces in solid models. ACM Transactions on Graphics (TOG) 8, 4 (1989), 279--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Sabin. 1968. The use of potential surfaces for numerical geometry. British Aircraft Corporation, Weybridge, UK, Technical Report No. VTO/MS/153 (1968).Google ScholarGoogle Scholar
  44. C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. Schwerdtfeger, F. Wein, G. Leugering, R. F. Singer, C. Körner, M. Stingl, and F. Schury. 2011. Design of Auxetic Structures via Mathematical Optimization. Advanced Materials 23, 22 (2011), 2650--2654. Google ScholarGoogle ScholarCross RefCross Ref
  46. M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, and M. Gross. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics (TOG) 32, 4 (2013), 82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. F. Sonmez. 2009. Optimal shape design of shoulder fillets for flat and round bars under various loadings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, 8 (2009), 1741--1754. Google ScholarGoogle ScholarCross RefCross Ref
  48. O. Stava, J. Vanek, B. Benes, N. Carr, and R. Mvech. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Torquato. 2002. Random heterogeneous materials: microstructure and macroscopic properties. Vol. 16. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  50. L. Van Miegroet and P. Duysinx. 2007. Stress concentration minimization of 2D filets using X-FEM and level set description. Structural and Multidisciplinary Optimization 33, 4--5 (2007), 425--438.Google ScholarGoogle ScholarCross RefCross Ref
  51. J. Vida, R. R. Martin, and T. Varady. 1994. A survey of blending methods that use parametric surfaces. Computer-Aided Design 26, 5 (1994), 341--365. Google ScholarGoogle ScholarCross RefCross Ref
  52. Q. Xia, T. Shi, S. Liu, and M. Y. Wang. 2012. A level set solution to the stress-based structural shape and topology optimization. Computers & Structures 90 (2012), 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. Zanni, A. Bernhardt, M. Quiblier, and M.-P. Cani. 2013. SCALe-invariant Integral Surfaces. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 219--232. Google ScholarGoogle ScholarCross RefCross Ref
  54. C. Zanni, M. Gleicher, and M.-P. Cani. 2015. N-ary implicit blends with topology control. Computers & Graphics 46 (2015), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. H. Zhao, W. Xu, K. Zhou, Y. Yang, X. Jin, and H. Wu. 2016. Stress-Constrained Thickness Optimization for Shell Object Fabrication. In Computer Graphics Forum. Wiley Online Library. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Q. Zhou, J. Panetta, and D. Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Y. Zhou, E. Kalogerakis, R. Wang, and I. R. Grosse. 2016. Direct shape optimization for strengthening 3D printable objects. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 333--342.Google ScholarGoogle Scholar

Index Terms

  1. Worst-case stress relief for microstructures

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 36, Issue 4
          August 2017
          2155 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3072959
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 July 2017
          Published in tog Volume 36, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader