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Learning Fixed-dimension Linear Thresholds FromFragmented Data�Paul W. GoldbergDept. of Computer S
ien
e,University of Warwi
k,Coventry CV4 7AL, U.K.pwg�d
s.warwi
k.a
.ukSeptember 10, 1999Abstra
tWe investigate PAC-learning in a situation in whi
h examples (
onsisting of aninput ve
tor and 0/1 label) have some of the 
omponents of the input ve
tor 
on
ealedfrom the learner. This is a spe
ial 
ase of Restri
ted Fo
us of Attention (RFA)learning. Our interest here is in 1-RFA learning, where only a single 
omponent of aninput ve
tor is given, for ea
h example. We argue that 1-RFA learning merits spe
ial
onsideration within the wider �eld of RFA learning. It is the most restri
tive formof RFA learning (so that positive results apply in general), and it models a typi
al\data fusion" s
enario, where we have sets of observations from a number of separatesensors, but these sensors are un
orrelated sour
es.Within this setting we study the well-known 
lass of linear threshold fun
tions,the 
hara
teristi
 fun
tions of Eu
lidean half-spa
es. The sample 
omplexity (i.e.sample-size requirement as a fun
tion of the parameters) of this learning problem isa�e
ted by the input distribution. We show that the sample 
omplexity is always�nite, for any given input distribution, but we also exhibit methods for de�ning \bad"input distributions for whi
h the sample 
omplexity 
an grow arbitrarily fast. Weidentify fairly general suÆ
ient 
onditions for an input distribution to give rise tosample 
omplexity that is polynomial in the PAC parameters ��1 and Æ�1 . We givean algorithm (using an empiri
al �-
over) whose sample 
omplexity is polynomial inthese parameters and the dimension (number of inputs), for input distributions thatsatisfy our 
onditions. The runtime is polynomial in ��1 and Æ�1 provided that thedimension is any 
onstant. We show how to adapt the algorithm to handle uniformmis
lassi�
ation noise.�A preliminary version of this paper appeared in the pro
eedings of the 1999 COLT 
onferen
e.1



1 Introdu
tionThe aim of supervised learning is to �nd out as mu
h as possible about some unknownfun
tion (
alled the target fun
tion) using observations of its input/output behavior. Inthis paper we fo
us on linear threshold fun
tions. These map ve
tors of inputs to binaryoutputs a

ording to the rule that the output should equal 1 provided that some linear
ombination of the inputs ex
eeds some threshold value, otherwise the output equals 0.Thus a linear threshold fun
tion 
an be des
ribed by a ve
tor of real 
oeÆ
ients, one forea
h input, and a real-valued threshold.Probably Approximately Corre
t (PAC) learning is a well-known framework for study-ing supervised learning problems in whi
h outputs of the fun
tions under 
onsiderationmay take one of two values (su
h as 0 and 1), so that any fun
tion partitions the inputdomain into two sets. We give the basi
 de�nitions of PAC learning below in se
tion 1.2;see textbooks su
h as [2, 30℄ for a detailed introdu
tion to the theory.The problem of learning linear threshold fun
tions in the PAC framework has re
eiveda lot of attention in the literature, some of whi
h is des
ribed below. In this paper we
onsider a natural variant of the problem in whi
h the algorithm has a

ess to examplesof the target fun
tion in whi
h only a single input 
omponent (together with the outputvalue, 0 or 1) are given. It is assumed that for ea
h example of input/output behavior, the
hoi
e of whi
h input has its value given, is made uniformly at random.The paper is organized as follows. In this se
tion we give ba
kground, motivation forstudying this variant in detail, a formal statement of the learning situation, and somepreliminary results. In se
tion 2 we show how the joint distribution of the inputs maya�e
t the number of examples needed to distinguish the target fun
tion from a singlealternative linear threshold fun
tion, having some given error. In se
tion 3 we use a generalmethod identi�ed in se
tion 2 to PAC-learn linear threshold fun
tions, for any 
onstantnumber of inputs. In se
tion 4 we 
onsider the spe
ial 
ase where inputs are binary-valued.In se
tion 5 we dis
uss the signi�
an
e of the results presented here, and mention openproblems of parti
ular interest.1.1 Ba
kground and MotivationThe topi
 of missing data, where some of the 
omponents of an observation are 
on
ealedfrom the learner, has re
eived a lot of attention in the statisti
s literature. Within PAClearning theory the situation is 
alled Restri
ted Fo
us of Attention (RFA) learning, intro-du
ed in [5, 6, 8℄, see [20℄ for an extensive survey. For query-based learning the asso
iatedframework is the Unspe
i�ed Attribute Values learning of [23℄. A good example of a dataset that motivates the work here is a medi
al prognosis problem analysed in Titterington etal. [37℄ and Lowe and Webb [33℄. The data set represents 1000 head-injured 
oma patients,and 
ontains (for ea
h patient) a subset of a set of 6 diagnosti
 indi
ators measured onadmission to hospital, and a measure of extent of re
overy. The aim is to use the datato learn to predi
t re
overy given new sets of measurements. In the data set, fewer thanhalf of the patients had all 6 measurements taken, so there is a problem of how to use the2



in
omplete ve
tors of observations e�e
tively.Most methods for learning from in
omplete data use imputation, in whi
h the missingvalues in the data set are assigned values a

ording to some rule (for example [33℄ usemean imputation, where an unknown 
omponent value is given the average of the knownvalues for that 
omponent). In general, imputation biases the data slightly, whi
h is atodds with the PAC 
riterion for su

essful learning, being used here. Linear thresholdfun
tions are an oversimpli�ed model for the data, sin
e there is 
lass overlap (indeed thedata set 
ontains identi
al pairs of input ve
tors with distin
t re
overy levels). Howeverour algorithm is extendable to a more realisti
 \mis
lassi�
ation noise" model.Our simplifying assumption that ea
h example has only a single input attribute valuegiven has the following motivations:1. It eliminates the strategy of dis
arding in
omplete examples, whi
h is wasteful inpra
ti
e. The strategy of dis
arding in
omplete examples may also bias the data ifthe missing data me
hanism is more likely to 
on
eal some values than others (i.e.anything other than what Little and Rubin [32℄ 
all missing 
ompletely at random).2. The restri
tion to a 
onstant number of values per example is equivalent to a simplesto
hasti
 missing-data me
hanism, as well as being a spe
ial 
ase of RFA learning.The statisti
al missing data literature usually assumes that there is a sto
hasti
missing data me
hanism, as opposed to RFA learning where un
on
ealed values aresele
ted by the learner.k-RFA learning refers to a setting where k 
omponents of any example are known tothe learner; thus we fo
us on 1-RFA learning. The equivalen
e noted above 
an beseen by observing that in our setting a learner may gather polynomial-sized 
olle
tionsof samples for ea
h set of k attributes, as easily as it may gather a polynomial-sizedsample, and hen
e e�e
tively query any given set of k attributes. We prefer the term\fragmented data" over \missing data" in this situation, to emphasise that only asmall proportion of any data ve
tor is given.3. The 1-RFA setting is the most stringent or restri
tive situation, in that positive resultsfor 1-RFA learning apply in other settings. It also models the \data fusion" problem,in whi
h 
olle
tions of examples are generated by a set of independent sour
es, andthe aim is to 
ombine (or \fuse") the information derived from the separate sour
es.Linear threshold fun
tions are an obvious 
hoi
e of fun
tion 
lass in the 
ontext intro-du
ed here, be
ause the output value generally depends on all the input values; it is notgenerally suÆ
ient to know just a subset of them. But information is still 
onveyed by anexample in whi
h all but one input value is 
on
ealed.We next motivate the study of distribution-spe
i�
 learning in this missing-data setting.This is justi�ed mainly by the results, whi
h show that the learning problem is impossiblein a 
ompletely distribution-free setting (fa
t 1 below) and that the sample 
omplexitydepends on the input distribution (se
tion 2). There has been relevant work on distribution-spe
i�
 PAC learning in the standard 
omplete data setting, see se
tion 1.3. Work in RFA3



learning generally assumes that the input distribution belongs to some known 
lass, su
has produ
t distributions. It is known from this work that it is ne
essary to already havea lot of knowledge of the input distribution, in order to learn the fun
tion. We mightreasonably expe
t to have a parametri
 model for the input distribution, and then use theEM algorithm [19℄ or subsequent related methods that have been devised for learning adistribution in the presen
e of missing data.In se
tion 2 we fo
us on the question of whi
h distributions are helpful or unhelpfulfor 1-RFA learning. The sensitivity of the sample 
omplexity to the nature of the inputdistribution (parti
ularly when we do not restri
t to produ
t distributions) is a distin
tivenovel feature of this 
omputational learning problem, with a lot of theoreti
al interest.(By sample 
omplexity we mean the number of examples needed for PAC learning bya 
omputationally unbounded learner.) Experimental work in the data fusion literaturesu
h as [12, 18℄ has shown the strong e�e
t that varying assumptions about the inputdistribution may have on predi
tive performan
e. We aim to provide some theoreti
alexplanation by identifying features of an input distribution that make it \helpful" and giveasso
iated sample-size bounds.We mention relationships with other learning frameworks. The RFA setting is morebenign than the \random attribute noise" [24, 36℄ s
enario. A data set with missing
omponents 
an be 
onverted to one with random attribute noise by inserting randomvalues for the missing 
omponents (although note that for k-RFA data, with small k, theasso
iated noise rate would be quite high).Finally, observe that there is a similarity to the probabilisti
 
on
epts framework of [29℄in that, given a sto
hasti
 missing data me
hanism, we have observations of a mappingfrom an input domain 
onsisting of partially observed ve
tors to outputs whose values are
onditional distributions over f0; 1g 
onditioned on the observed inputs. The di�eren
eis that we do not just want to model the 
onditional distribution of outputs given anyinput, we also want an underlying deterministi
 fun
tion to be well-approximated by our(deterministi
) hypothesis. In this paper we make use of the quadrati
 loss fun
tion of anobservation and hypothesis, as de�ned in [29℄.1.2 Formalization of the Learning ProblemWe are interested in algorithms for probably approximately 
orre
t (PAC) learning asintrodu
ed by Valiant in [38, 39℄. Here we give the basi
 de�nitions and introdu
e somenotation. An algorithm has a

ess to a sour
e of observations of a target fun
tion t :X ! f0; 1g, in whi
h inputs are 
hosen a

ording to some �xed probability distributionD over the domain X , and the 
orre
t 0=1 output is given for ea
h input. It is given twoparameters, a target a

ura
y � and an un
ertainty bound Æ. The goal is to output (intime polynomial in ��1 and Æ�1), with probability at least 1� Æ, a fun
tion h : X ! f0; 1gwith the property that for random input 
hosen a

ording to D, the probability that theoutput of h disagrees with the output of t, is at most �. The input distribution D isusually assumed to be unknown, but the target fun
tion is known to belong to some given
lass C of fun
tions. 4



Unlike most work on PAC learning, we assume that D is known 
ompletely (as studiedin [7℄). The RFA literature gives examples that show that some knowledge of D is ne
essaryfor most learning problems, and it is often assumed that D is a produ
t distribution (ea
hattribute 
hosen independently). In this paper we do not address the topi
 of partialknowledge of D. In the next se
tion we show that some knowledge is ne
essary for learninglinear threshold fun
tions (the fun
tion 
lass of interest here).Within the PAC framework, we are studying spe
i�
ally 1-RFA learnability where forea
h example the learner 
an see one of the input values and the binary output value.Thus, for domain X = Rd, an example is a member of R � f1; : : : ; dg � f0; 1g, sin
eit 
ontains a real value, the identity of the 
oordinate taking that value, and the outputlabel. As noted, the assumption that the 
oordinate's identity is 
hosen by the learner isequivalent (for PAC learning) to the assumption that it is 
hosen at random. This is morestringent than \missing 
ompletely at random" sin
e we have imposed an arti�
ial limit(of 1) on the number of observed input values. We have observed that this arti�
ial limitis important to disallow dis
arding some training examples and using others. ObviouslyPAC-learnability of 1-RFA data implies PAC-learnability of k-RFA data for any larger k.Our aim is to use fragmented data to learn linear threshold fun
tions, that is fun
tionsmapping members of some unknown halfspa
e of Rd to the output 0, and its 
omplementto 1. These are fun
tions of the form f((x1; : : : ; xd)) = 1 i� Pi aixi > � where ai areunknown 
oeÆ
ients and � is a \threshold" value. Throughout, we use the unit 
ostmodel of real number representation.Our algorithm is (for a large 
lass of input distributions) polynomial in the PAC pa-rameters ��1 and Æ�1 , provided that d is 
onstant. In investigating the behavior of thealgorithm as a fun
tion of dimension d, we need to 
onsider it with respe
t to a paramater-ized 
lass Dd of input distributions, where Dd is a probability distribution over Rd. (Thisis due to the dependen
e we have noted of sample 
omplexity on input distribution.) Thealgorithm's runtime is typi
ally exponential in d, but for two 
lasses Dd of interest, thesample 
omplexity 
an be shown to be polynomial.1.3 Related Work on Linear Thresholds and Noise-tolerant Learn-ingThe domain Rd (for 
onstant d) is a widely 
onsidered domain in the learning theory lit-erature. Examples of learning problems over this domain in
lude PAC-learning of boolean
ombinations of halfspa
es [15℄, query-based learning of unions of boxes [16℄, and unionsof halfspa
es [9, 4, 13℄. A te
hnique of [9℄ generalized by [15℄ involves generating a set offun
tions that realise all linear partitions of a sample of input ve
tors. If m is the samplesize then the set of partitions has size O(md). Our algorithm uses this te
hnique, whi
hrequires d to be 
onstant. Extending the above learning results to general (non 
onstant)d would solve the well-known open problem of learning disjun
tion normal form booleanformulae, introdu
ed in [39℄. We explain below why it is likely to be diÆ
ult to generalizethe results here to non-
onstant d. 5



Linear threshold fun
tions have been studied extensively in the ma
hine learning liter-ature. We will not review the algorithms here, but see Blum et al. [11℄ for a good a

ountof the PAC learning results. It is well-known that in the basi
 PAC framework, linearthreshold fun
tions are learnable. Finding a 
onsistent hypothesis (a hyperplane that sep-arates the given inputs with output 1 from those with output 0) 
an be solved by linearprogramming in polynomial time. The well-known results of Blumer et al. [9℄ show thatany 
onsistent hypothesis a
hieves PAC-ness, given a sample whose size is proportional to��1 , log(Æ�1), and d. (This uses the fa
t that the Vapnik-Chervonenkis (V-C) dimensionof halfspa
es of Rd is d+ 1, see [9℄ for details.)As mentioned in the previous subse
tion, we assume unit 
ost for representation andarithmeti
 operations on real values. The algorithm of [11℄ PAC-learns linear thresholdfun
tions in the presen
e of random mis
lassi�
ation noise, and requires the logarithmi

ost model for real value representation. So also does the basi
 PAC algorithm of [9℄, sin
eknown algorithms for linear programming that are polynomial in d assume logarithmi

ost. (For unit 
ost real arithmeti
, 
urrently it is known how to do linear programming inpolynomial time for logarithmi
 d, see G�artner and Welzl [25℄.) These observations raisethe question of whether we 
an �nd an algorithm that is polynomial in d as well as thePAC parameters, for logarithmi
 
ost real arithmeti
. In se
tion 4 where we dis
uss inmore detail the 
ase where inputs 
ome from the dis
rete boolean domain, we explain whythis open problem is still likely to be hard.In this paper we show how to 
onvert our algorithm into a statisti
al query (SQ) al-gorithm (as introdu
ed by Kearns [28℄), whi
h implies that it 
an be made noise-tolerant.(Over the boolean domain f0; 1gd a more general result of this kind already exists, namelythat learnability in the k-RFA implies SQ-learnability and hen
e learnability in the pres-en
e of random 
lassi�
ation noise, for k logarithmi
 in d [6℄.) An extension to RFAlearnability of linear thresholds (in time polynomial in d) would then be a strengtheningof the result of [11℄.Note that if we had a method for determining a good approximation of the error ofa hypothesis (using the fragmented data) then we 
ould PAC-learn, using a result of [7℄,whi
h says that PAC-learnability with a known distribution D in the standard settingis equivalent to PAC-learnability with a known distribution when instead of examples,the learning algorithm has a means of measuring the error of any hypothesis it 
hooses.However, we have not found any general way of approximately measuring mis
lassi�
ationrate of a hypothesis using RFA data, even for the kinds of input distributions that weidentify as implying polynomial sample 
omplexity.1.4 Te
hni
al PreliminariesWe establish some simple fa
ts about the learning situation under 
onsideration. These areto justify our assumption that the input distribution is not 
ompletely unknown. Note thatlearning may still be possible if the input distribution is not known 
ompletely, but knownto belong to a 
lass of distributions. In previous work on RFA learning, it is assumed thatthe input distribution D is an unknown produ
t distribution. This is a strong assumption6



whi
h allows RFA data to 
onvey a lot of information about D. It is already known from [5℄that without some information about the input distribution it is often possible to de�nepairs of s
enarios (a s
enario is the 
ombination of an input distribution and 
lassi�er)whi
h are substantially di�erent but are indistinguishable to a RFA learner. We use thesame method for linear threshold fun
tions.Given a binary-valued fun
tion C , de�ne pos(C) to be the positive examples of C , i.e.fx : C(x) = 1g and neg(C) to be the negative examples, i.e. fx : C(x) = 0g.Fa
t 1 It is impossible to learn linear thresholds over R2 for a 
ompletely unknown inputdistribution D, even for a 
omputationally unbounded learner.
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�gure 1Di�erent but indistinguishable s
enarios des
ribedin proof of fa
t 1:Proof: De�ne linear threshold fun
tions C , C 0 over the (x; y)-plane as follows.pos(C) = f(x; y) : y < 1 + x=2gpos(C 0) = f(x; y) : y < 4� x=2gDe�ne input distributions D, D0 over the (x; y)-plane as follows. D is uniform over the 4unit squares whose lower-left 
orners are at (0; 0), (4; 2), (1; 2) and (5; 4). D0 is uniformover the 4 unit squares with lower-left 
orners at (0; 2), (4; 0), (1; 4) and (5; 2). (These arethe shaded regions in �gure 1.)Consider 1-RFA data generated by either C in 
ombination with D, or C 0 in 
ombi-nation with D0. The marginal distributions (that is, the distributions of the separate xand y 
oordinates) are the same in both 
ases, as are the 
onditional distributions of theoutput label given the input (so for example, Pr(label = 1 j x 2 [0; 1℄) = 1 in both 
ases,or Pr(label = 1 j y 2 [2; 3℄) = 1=2 in both 
ases). But the two underlying fun
tions arevery di�erent. 27



Sin
e the dis
rete boolean domain X = f0; 1gd is of spe
ial interest, we give a similar
onstru
tion in se
tion 4 for that spe
ial 
ase, thus showing that some knowledge of D isstill required. (That 
onstru
tion uses 4 input dimensions, rather than just 2.)The above 
onstru
tion gives indistinguishable s
enarios for pairs of input distributionsthat di�er from ea
h other. We show later that for any known input distribution, there areno indistinguishable pairs of linear threshold fun
tions (in 
ontrast with fun
tion 
lasses
ontaining, for example, ex
lusive-or and its negation, [5℄). But the following exampleshows how a known input distribution may a�e
t sample 
omplexity. Observe �rst thatfor pairwise 
omparison, the optimal strategy is to maximize the likelihood of the outputlabels given the input 
oordinate values. For an individual example in whi
h the input
oordinate xi takes the value r 2 R and the output label is l 2 f0; 1g, this likelihood isthe probability that points generated by D 
onditioned on xi = r give output value l. Fora 
olle
tion of su
h examples the likelihood is the produ
t of the individual likelihoods.Example 2 Suppose that D is uniform over two line segments in the (x; y)-plane, having(for some small positive �) endpoints ((�; 0); (1; 1��)) and ((0; �); (1��; 1)). Let C(x; y) =1 i� y < x and let C 0(x; y) = 1 i� y > x.
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�gure 2C and C 0 as de�ned in example 2; whi
h disagree onall inputs (x; y): D is uniform over the two heavy linesegments in the square:If the target fun
tion is C (respe
tively, C 0), then a PAC algorithm should have aprobability � Æ of outputting C 0 (respe
tively, C), for any error bound � < 1. Butif either C or C 0 is the target fun
tion, then in order to have any eviden
e in favor ofone over the other, it is ne
essary to see an example in whi
h the value assigned to thegiven input 
oordinate lies in the range [0; �℄ [ [1 � �; 1℄. Examples of this kind o

urwith probability 2� , and all other points are uninformative (having equal likelihood forC and C 0). So the sample size needed for PAC-learning is proportional to 1=� , for this8



parti
ular kind of input distribution. Note however that if we put � = 0 (and the domainbe
omes the line segment with endpoints at (0; 0) and (1; 1)), the asso
iated sample-sizerequirements do not be
ome in�nite; instead the learning problem redu
es to a similar onein one dimension fewer.2 E�e
t of Joint Distribution of Inputs on SampleComplexity of Pairwise ComparisonsIn this se
tion we give results about the way the joint distribution over input 
omponentsmay a�e
t the sample-size requirements for a restri
tion of the learning problem. Weassume that only two 
andidate fun
tions C , C 0 are given, whi
h disagree with probability�. One of them is the target fun
tion, and the aim is to determine whi
h one is thetarget fun
tion, with probability 1� Æ of 
orre
tness. Example 2 showed a 
lass of inputdistributions whose members 
ould make arbitrarily large the expe
ted number of examplesneeded to distinguish a parti
ular pair of fun
tions. Note, however, that1. No input distribution gave the requirement that any pair of positive values (�; Æ) oftarget a

ura
y and 
on�den
e required in�nite data.2. The asymptoti
 behaviour of sample-size requirements is still polynomial. In parti
-ular, we 
laim that given any pair of linear threshold fun
tions that disagree withprobability �, we need �(max(��1; ��1)) examples in order to distinguish them withsome given probability of su

ess. This is still polynomial in �, for any given � > 0.Regarding point 1 above, we show in se
tion 2.1 (theorem 4) that there is no input distribu-tion whose marginal distributions have well-de�ned means and varian
es that allows somepair of distin
t linear threshold fun
tions that di�er by some � > 0 to be indistinguishablein the limit of in�nite 1-RFA data. Moreover in 
orollary 5 we show that a �nite upperbound on sample size 
an be derived from D, � and Æ only, and not on the parti
ular 
hoi
eof C and C 0 whi
h di�er by �. Regarding point 2, in se
tion 2.2 we give fairly generalsuÆ
ient 
onditions on an input distribution, for sample 
omplexity to be polynomial. Wedo however in se
tion 2.3 identify 
ertain \pathologi
al" distributions where the sample
omplexity is not ne
essarily polynomial in ��1 and Æ�1.2.1 Finiteness Results for Sample-size RequirementsIn what follows, we assume that all probability distributions have well-de�ned expe
tationsand varian
es for 
omponents of input ve
tors. Regarding point 1 above, we show thatfor these probability distributions there is never an in�nite sample-size requirement on
ea distribution is given, despite the fa
t that distributions may be arbitrarily bad.Lemma 3 Let D, D0 be probability distributions with domains R and R0 respe
tively, bothsubsets of Rd. Suppose moreover that R and R0 are 
onvex and do not interse
t. Then for9



random variables x and x0 generated by D and D0 respe
tively, the expe
ted values E(x)and E(x0) are distin
t.Proof: Sin
e the expe
ted value is a 
onvex 
ombination, we just note that E(x) 2 Rand E(x0) 2 R0 , and sin
e R \ R0 = ;, the expe
ted values are indeed distin
t. 2C and C 0 as de�ned in the statement of the following theorem are slightly more generalthan linear threshold fun
tions | we use the additional generality in the proof of 
orol-lary 5. For a fun
tion f : X �! f0; 1g, let pos(f) denote fx 2 X : f(x) = 1g and letneg(f) denote fx 2 X : f(x) = 0g.Theorem 4 Let D be any probability distribution over Rd whose marginal distributionshave well-de�ned means and varian
es. Let C and C 0 be any pair of fun
tions from Rd tof0; 1g su
h that1. pos(C), neg(C), pos(C 0), neg(C 0) are all 
onvex.2. with probability 1, a point generated by D lies in pos(C) [ neg(C).3. with probability 1, a point generated by D lies in pos(C 0) [ neg(C 0).4. with probability �, a point generated by D is given di�erent labels by C and C 0 .Then C and C 0 are distinguishable (using 1-RFA data) with probability 1� Æ (for �; Æ > 0)for some suÆ
iently large �nite sample size (dependent on D; �; Æ; C; C 0).Proof: C and C 0 divide the domain Rd into 4 
onvex regions de�ned as follows.R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)Let D(Rij) be the probability that a point generated by D lies in region Rij . The regionof disagreement of C and C 0 is R01[R10 { by assumption 4, D(R01[R10) = �. Let �(Rij)denote the expe
tation of points generated by D, restri
ted to the region Rij | as long asD(Rij) > 0, �(Rij) is well-de�ned by our assumption that 
omponents of points generatedby D have well-de�ned expe
tations and varian
es.The points �(R00); �(R01); �(R10); �(R11) are all distin
t from ea
h other (observingthat the Rij are 
onvex and disjoint, so we 
an use lemma 3). Next note that the expe
tedvalue of negative examples of C is a weighted average of �(R00) and �(R01) (weightedby probabilities D(R00) and D(R01)). Similarly the expe
ted value of negative examplesof C 0 is a weighted average of �(R00) and �(R10) (weighted by probabilities D(R00) andD(R10)).We use the fa
t D(R01) +D(R10) = � > 0 to dedu
e that the negative examples of Cand C 0 have di�erent expe
tations. If the (distin
t) points �(R00), �(R01), �(R10) do notlie on a one-dimensional line, this follows. If they lie on a line, the point �(R01) 
annot bein the middle, sin
e that would 
ontradi
t 
onvexity of neg(C 0). Similarly �(R10) 
annot10



lie in the middle. If �(R00) lies between the other two, then observe that sin
e the weightsof the averages are positive, the means �(neg(C)) and �(neg(C 0)) must lie on oppositesides of �(R00) on the line.So we 
an 
hoose a 
omponent on whi
h means of negative examples di�er, and use theobserved mean of 0-labeled observations of that 
omponent to estimate the true expe
tedvalue. Given our assumption that the varian
e is well-de�ned (�nite), there will be asuÆ
iently large sample size su
h that we 
an with high probability predi
t whi
h of C orC 0 is labeling the data. 2Corollary 5 Given any input distribution D over Rd and any target values �; Æ > 0 ofPAC parameters, there exists a suÆ
iently large �nite sample size for whi
h any pair C;C 0of linear threshold fun
tions 
an be distinguished with probability 1� Æ.Proof: Suppose otherwise. Then for some D, �, Æ there would exist a sequen
e ofpairs (Ci; C 0i), i 2 N where Ci di�ers from C 0i by �, and as i in
reases, the sample-sizerequired to distinguish Ci from C 0i in
reases monotoni
ally without limit. We prove by
ontradi
tion that su
h a sequen
e 
annot exist.The general strategy is as follows. From the sequen
e (Ci; C 0i) extra
t a subsequen
e(Ci; C 0i) whi
h \
onverges" in the sense that as i in
reases, the probability of disagreementbetween Ci and Cj , for any j > i, tends to zero, and likewise for C 0i and C 0j . The sequen
esCi and C 0i then 
onverge pointwise to binary 
lassi�ers C1 and C 01 su
h that pos(C1),pos(C 01), neg(C1) and neg(C 01) are 
onvex.1 Theorem 4 says that C1 and C 01 shouldbe distinguishable with any PAC parameters �; Æ > 0, for �nite sample-size depending on�, Æ. But this will be 
ontradi
ted by the 
onvergen
e property of (Ci; C 0i).De�ne the C -di�eren
e between (Ci; C 0i) and (Cj; C 0j) (denote d((Ci; C 0i); (Cj; C 0j))) tobe the probability Pr(Ci(x) 6= Cj(x)) for x generated by D. We will 
onstru
t an in�nitesubsequen
e (Ci; C 0i) su
h that for j > i,d((Ci; C 0i); (Cj; C 0j)) < 21�i:From a result of Pollard [35℄ (see also Haussler [26℄), for any � > 0, there is a �nite � -
overfor any 
olle
tion of sets having �nite V-C dimension (whi
h as we have noted in se
tion 1.3is d + 1 in this 
ase). (A � -
over of a metri
 spa
e is a set S of points su
h that for allpoints x in the metri
 spa
e there is a member of S within distan
e � of x.)Constru
t Ci as follows. Let C1 = C1. Now 
onstru
t Ci+1 from Ci maintaining theinvariant that there are in�nitely many elements of the sequen
e (Cj; C 0j) whi
h have C -di�eren
e � 21�i with (Ci; C 0i). Let Si be a �nite 2�i�1-
over of the 
lass of linear thresholdfun
tions, with respe
t to input distribution D. Let C�i be the (in�nitely many) elementsof (Cj) that are � 21�i from Ci. Si must have an element whose 2�i�1-neighborhood
ontains in�nitely many elements of C�i . Let Ci+1 be one of those elements, and then1These regions are not ne
essarily open or 
losed halfspa
es even if pos(C1) [ neg(C1) is all of Rd ;su
h a region 
ould for example be f(x; y) : x > 0 _ (x = 0 ^ y > 0)g.11



Ci+1 is within 2�i of in�nitely many elements of C�i . Remove all other elements from thesequen
e (Cj) and 
ontinue.De�ne the C 0-di�eren
e between (Ci; C 0i) and (Cj; C 0j) (denote d0((Ci; C 0i); (Cj; C 0j)))to be the probability Pr(C 0i(x) 6= C 0j(x)) for x generated by D. We may use a similarargument to extra
t from (Ci; C 0i) an in�nite subsequen
e (Ci; C 0i), for whi
h we also havethat for j > i, d0((Ci; C 0i); (Cj; C 0j)) < 21�i(as well as d((Ci; C 0i); (Cj; C 0j)) < 21�i).Consider the pointwise limit of this sequen
e, de�ned as follows. A point x 2 Rdgenerated by D, with probability 1 has the property that for suÆ
iently large N , Ci(x) =Cj(x) for all i; j > N and also C 0i(x) = C 0j(x) for all i; j > N . Let C1(x) (resp. C 01(x))denote the label assigned to x by Ci (resp. C 0i) for all suÆ
iently large i. Let pos(C1)and neg(C1) denote the points whi
h get asymptoti
 labels 1 and 0 by Ci, with similarde�nitions for C 0i . Then pos(C1), neg(C1), pos(C 01), neg(C 01) are all 
onvex (that iseasily proved by noting that from the 
onstru
tion of say pos(C1), given any pair ofpoints in pos(C1), any 
onvex 
ombination of those points must also be in pos(C1)).Moreover, with probability 1, a point generated by D lies in one of these sets. So theysatisfy the 
onditions of theorem 4.Let M <1 denote a sample size suÆ
ient to distinguish C1 from C 01 with probability1� Æ=2. Choose N suÆ
iently large su
h that for random x generated by D,Pr(C1(x) = Ci(x)) > 1� Æ=4M;Pr(C 01(x) = C 0i(x)) > 1� Æ=4M;for all i � N . Then with probability > 1� Æ=2, given M samples, Ci agrees with C1 andC 0i agrees with C 01 on those samples, for all i � N .Then any method that 
ould distinguish C1 from C 01 with un
ertainty Æ=2 using Msamples 
an be 
onverted dire
tly to a method to distinguish Ci from C 0i (for all i � N )with un
ertainty at most Æ. (In parti
ular repla
e output of C1 with Ci and repla
eoutput of C 01 with C 0i.) This 
ontradi
ts the assumption of monotoni
 unlimited in
reasein sample 
omplexity for terms of the sequen
e (Ci; C 0i). 22.2 Identifying Polynomial Asymptoti
 Behavior of Sample Com-plexityRegarding point 2 noted at the start of this se
tion, we 
ontinue by giving some suÆ
ient
onditions on an input distribution to ensure that the asymptoti
 behavior of sample-sizerequirements (for pairwise 
omparisons) is polynomial. Our suÆ
ient 
onditions for givingpolynomial sample 
omplexity use two measures of D de�ned below, whi
h we denote V (D)and M(D). When these are �nite (as they are for many natural 
ontinuous distributions)12



this will imply a lower bound on the di�eren
e between means of positive (or negative)examples of pairs of fun
tions that di�er by �, and the observed mean 
an then be used todistinguish the fun
tions, using poly(��1) examples.De�nition 6 Given input distribution D, let V (D) denote the largest varian
e of individ-ual 
omponents of ve
tors generated by D (a quantity whi
h is �nite given our assumptionof well-de�ned means and varian
es for the marginal distributions of D).Now let S(D) be the smallest aÆne linear subspa
e su
h that with probability 1, pointsgenerated by D lie in that subspa
e. For a 1-dimensional aÆne line l in S(D), we 
anproje
t points generated by D onto l by mapping them to their nearest point on l. Nowif points on l are mapped isometri
ally onto R by �xing an origin on l and a dire
tionof in
rease, we have a density pl over R. Let M(D) denote the maximum (over lines lin S(D) and points in R) of the density pl. Note that M(D) is in�nite if D assigns anon-zero probability to any proper subspa
e of S(D) (by 
hoosing a line l � S(D) normalto that subspa
e).The measures M(D) and V (D) are motivated by theorem 10 and examples below ofdistributions for whi
h we give upper bounds on M and V . The following fa
t is usefullater:Observation 7 Given any real-valued 
ontinuous random variable with an upper boundM on its density, its varian
e is minimized by making it uniform over an interval of length1=M , and the varian
e is 1=12M2. From this we obtain V (D) � 1=12pdM2 .Example 8 Suppose Dd is uniform over an axis-aligned unit 
ube in Rd. Then by ob-servation 7, V (Dd) = 1=12. To obtain an upper bound on M(Dd), suppose l is a linethrough the origin, and then points generated by Dd proje
ted onto l 
an be generated assums of random variables uniform over [0; li℄ where li is the s
alar produ
t of a unit ve
-tor on l with a unit ve
tor on the i-th axis. The largest of the li is � 1=pd hen
e thedensity is � pd, so M(Dd) � pd. More generally, other distributions D for whi
h themeasures M(D) and V (D) are well-de�ned in
lude for example, the uniform distributionover any polytope, in
luding ones of dimension less than d (for whi
h S(D) would be aproper subspa
e of Rd).Example 9 If Dd is a normal distribution whose 
ovarian
e matrix is the identity matrix,then V (Dd) = 1 and M(Dd) = (2�)�1=2. More generally, any multivariate normal distribu-tion D also has well-de�ned M(D) and V (D), even if its 
ovarian
e matrix does not havefull rank. (See for example Von. Mises [34℄ for standard results about multivariate normaldistributions.) For multivariate normal distributions D, S(D) is the spa
e generated bytaking the mean of D and adding linear 
ombinations of the eigenve
tors of the 
ovarian
ematrix. M(D) is equal to (�(2�)1=2)�1 where �2 is the smallest non-zero eigenvalue of the
ovarian
e matrix. 13



Theorem 10 Given any D for whi
h M(D) and V (D) are de�ned, the sample size re-quired to distinguish any pair C;C 0 of linear threshold fun
tions that di�er by � (withprobability 1� Æ) is polynomial in ��1 and Æ�1, (ie the polynomial depends just on D, noton 
hoi
e of C;C 0.) In parti
ular, the sample size is O(log Æ:M(D)V (D)d3=2=�2).Proof: We use the notation introdu
ed in theorem 4:R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)The region of disagreement is R01 [ R10 , and we are assuming thatD(R01) +D(R10) = �:We may assume that in addition we haveD(R01) � �=4; D(R10) � �=4sin
e otherwise for C and C 0 there is a di�eren
e of at least �=2 that a random example ispositive, and C and C 0 
ould be distinguished with poly(��1) examples using that property.As before let �(R01) and �(R10) denote the expe
tations of points lying in these regions.The marginal varian
es of points generated by D are upper-bounded by V (D), so given asuÆ
ient distan
e between the means of R01 and R10 , we should be able to use the observedmeans of the positive (or negative) examples to distinguish C from C 0 with high 
on�den
e.We 
laim that there is a lower bound on the Eu
lidean distan
e j�(R01) � �(R10)j whi
hdepends on M(D) and V (D), but not C or C 0, and is polynomial in ��1 .Suppose for a 
ontradi
tion thatj�(R01)� �(R10)j < �=16M(D):Let l be a 1-dimensional line that is normal to the hyperplane de�ning C .For R � Rd let l(R) denote the set of points on l that are 
losest to some point in R(the proje
tion of R onto l). Then l(R01) \ l(R10) = ;, butjl(f�(R01)g)� l(f�(R10)g)j < �=16M(D):By Markov's inequality, for random x 2 R01 (x generated by D restri
ted to R01),Pr�jl(fxg)� l(f�(R01)g)j < �=16M(D)� > 1=2(and similarly for points in R10 .) Hen
e the probability of points in the range [l(f�(R01)g)��=16M(D); l(f�(R01)g)+�=16M(D)℄ is at least 12 : �4 i.e. the density is at least 12 : �4=(�=8M(D))> M(D), a 
ontradi
tion.So we 
on
lude that the Eu
lidean distan
e between the means of R01 and R10 isat least �=16M(D). Hen
e in some 
omponent, the distan
e between these means is at14



least �=16M(D)pd. So the distan
e between the overall means of say the negative ex-amples of C and of C 0 is � �2=2pd16M(D) = �2=pd32M(D). The marginal varian
esare all upper-bounded by V (D), so the number of observations of that 
omponent's valueneeded to identify whi
h of the two alternative means is 
orre
t with probability 1� Æ, isO(log Æ:V (D)M(D)pd=�2). Given that ea
h 
omponent is equally likely to be observed,the overall sample 
omplexity be
omes O(log Æ:V (D)M(D)d3=2=�2). 2M(D) and V (D) are 
rude measures in that for distributions D for whi
h they arelarge, the a
tual sample size needed may not be 
orrespondingly large. We 
onsider thequestion of when a similar result should exist for probability distributions D whi
h do notsatisfy the 
ondition of theorem 10. For example, �nite unions of point probability massesare of interest, but automati
ally do not have �nite M(D).Corollary 11 Suppose D is1. a �nite union of point probability masses, or, more generally,2. a mixture of a �nite union of point probability masses and a distribution D0 for whi
hM(D0) and V (D0) are �nitethen the sample size needed to distinguish C and C 0 (de�ned in the same way as in theo-rem 10) is polynomial in the PAC parameters, and independent of C , C 0.Proof: It is straightforward to prove the �rst part of this result, it is in fa
t a slightgeneralization of the argument of Chow [17℄. Let � > 0 be the smallest weight assigned toany of the point probability masses. Clearly if C 6= C 0 then they must have probability atleast � of disagreement.Sin
e there are only �nitely many points in the domain of D, there are only �nitelymany pairs of distin
t linear threshold fun
tions. Hen
e there is a non-zero lower boundon the di�eren
e between the means of positive examples of C , and of C 0. This providesa sample 
omplexity that is polynomial in ��1 and Æ�1 , and independent of any otherfeatures of C and C 0.For an extension to the se
ond part of this result, again let � be the smallest weightof any of the point probability masses, and then for C and C 0 whi
h di�er by � < �,their behavior on points generated by D0 will distinguish them (sin
e they 
annot disagreeon any of the point probability masses). Sin
e M(D0) and V (D0) are �nite, the sample
omplexity is polynomial, by theorem 10.For any � > �, put Æ = 1=4 and by 
orollary 5 there exists a �nite positive sam-ple size m(�;D) suÆ
ient to distinguish any pair C , C 0 whi
h di�er by �. Let M =max�2[�;1℄m(�;D), whi
h must be �nite, sin
e otherwise we would have a positive � forwhi
h the sample 
omplexity is in�nite. Use a sample size of M for � > �. For smallervalues of Æ we 
an obtain sample 
omplexity logarithmi
 in Æ�1 by taking the majorityvote of a logarithmi
 (in Æ�1) number of hypotheses whi
h have 
on�den
e parameter 1=4.2 We suspe
t the set of \good" distributions should be generalizable further; see se
tion 5.15



2.3 Input distributions whi
h lead to super-polynomial SampleComplexityInformed by the suÆ
ient 
onditions identi�ed for polynomial behaviour, we next de�nea distribution whi
h does not give rise to polynomial behaviour. That is, for any fun
tionf , we 
an 
onstru
t rather arti�
ial input distributions that 
ause at least f(��1) 1-RFAexamples to be needed to distinguish 
ertain pairs of linear threshold fun
tions that di�erby �, for all � > 0.Theorem 12 Let f be some arbitrary in
reasing fun
tion. There exists a bounded inputdistribution D(f) on R3 su
h that for all � there exist linear threshold fun
tions C0 and C1whi
h di�er by � and require at least f(��1) samples to be distinguishable with 
on�den
e1� Æ, for Æ < 1=2.Proof: The domain of D is restri
ted to a sequen
e of pairs of line segments (li; l0i)de�ned as follows. All the line segments are parallel to the line given by x = y = z , are ofunit length, and have endpoints in the planes given by x+ y + z = 0 and x+ y + z = p3.We de�ne their exa
t lo
ations with referen
e to a set of planes de�ned as follows.De�ne P to be a plane 
ontaining the line x = y = z , and let C be a linear thresholdfun
tion with threshold P . Let Pi, i 2 N, denote a sequen
e of planes 
ontaining x = y =z , su
h that their angles with P 
onverge to 0 monotoni
ally. (see �gure 3. The point ofinterse
tion of the lines in �gure 3 represents the line x = y = z .) The sequen
e Pi de�nesa sequen
e of linear threshold fun
tions Ci su
h that the symmetri
 di�eren
e of pos(Ci)and pos(C) stri
tly 
ontains the symmetri
 di�eren
e of pos(Cj) and pos(C), for all j > i.The lo
ations of line segments li, l0i are spe
i�ed as follows.l0 lies in neg(C) \ neg(C0):For i � 1; li lies in (neg(C) \ neg(Ci)) n neg(Ci�1):l00 lies in pos(C) \ pos(C0):For i � 1; li lies in (pos(C) \ pos(Ci)) n pos(Ci�1):Finally, the distan
es from li and l0i from the line x = y = z are 
onstrained to be 1=2f(2i),where f is as de�ned in the statement of this theorem.We 
omplete our de�nition of D by assigning probability 21�i to li [ l0i , and thatprobability is uniformly distributed over those two line segments.Given this de�nition of D, we now 
laim that for target error �, we need to observef(��1) random 1-RFA examples from D in order to distinguish C from an alternativehypothesis Ci 
hosen su
h that i is as large as possible subje
t to the 
onstraint that Cdisagrees with Ci with probability at least �.The region of disagreement of C with Ci is the union [1j=i+1(lj [ l0j), so examples fromthis set of line segments need to be used in order to distinguish C from Ci. But we nowobserve that (by analogy with the 
onstru
tion of example 2) with high probability, anyexample generated from this region has the same 
onditional likelihood for C as for Ci.In parti
ular, for any point on lj (j > i) that is > 1=f(��1) from an endpoint of lj , for16



any value observed for one of its 3 
oordinates, there exists a 
orresponding point on l0jwhi
h has equal likelihood of generating the same single-
oordinate observation. Howeverpoints on lj and l0j should re
eive opposite labels from C and from Ci, for j > i. So withprobability at least 1� 1=f(��1) D fails to generate a point that distinguishes C from Ci.2
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�gure 3
onstru
tion of theorem 12 shown in 
ross � se
tionusing plane given by x+ y + z = 0The \bad" input distribution de�ned above has marginal distributions on the input
omponents x, y and z whi
h have well-de�ned means and varian
es (this is obvious fromthe fa
t that the distribution is de�ned on a bounded region of the domain R3). If wedispense with the requirement of well-de�ned means and varian
es, then we 
an de�nesimilar \bad" distributions in two dimensions, as follows.The domain of D is restri
ted to the two lines y = x and y = x+1, for positive valuesof x and y. As in the statement of theorem 12, let f be an arbitrary in
reasing fun
tion,and we de�ne a bad distribution D asso
iated with f as follows. For i 2 N, let D belo
ally uniform over pairs of line segments whose x-
oordinates lie in the rangeRi = [ iXr=1 f(2i); i+1Xr=1 f(2i+1)℄We let the probability that a random example lies in Ri be given by D(Ri) = 2�i�1.Now we 
an de�ne two linear threshold fun
tions C and C 0 (see �gure 4) whi
h disagreeon the intervals whose x-
oordinates lie in Ri and agree elsewhere. We 
an now argue ina similar way to before that single-
oordinate observations from these regions (the oneswhi
h should allow us to distinguish C from C 0) have (with probability at least 1�1=f(�))equal likelihood for both fun
tions, where i is 
hosen to minimize 2�i subje
t to � � 2�i.17
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i+1�gure 4The domain is restri
ted to the two heavy lines: C and C 0 disagreeon points o

urring between the two verti
al dotted lines: This regionof disagreement has probability 2�i:3 A PAC AlgorithmIn this se
tion we give a PAC learning algorithm whose runtime is polynomial in ��1 andÆ�1 provided D has �nite measures M(D) and V (D), or satis�es 
orollary 11. Moreover ifwe have a 
lass of distributions Dd over Rd, d = 1; 2; 3; : : :, for whi
h M(Dd) and V (Dd)are polynomial in d (for example the sequen
es of distributions in examples 8 and 9) thenthe algorithm has sample 
omplexity polynomial in ��1 , Æ�1 and d, but the runtime isexponential in d. We start by des
ribing the algorithm, then give results to justify thesteps. The algorithm is initially presented in the standard PAC setting. In se
tion 3.3 weshow how to express it as a \statisti
al query" algorithm, as introdu
ed by Kearns [28℄,who showed that su
h algorithms are noise-tolerant. First we need the following de�nition.De�nition 13 The quadrati
 loss [29℄ of an example (x; l) (with respe
t to a 
lassi�er C)where x is the input and l is a binary valued label, is the quantity (l�Pr(label = 1 j x;C))2,i.e. the square of the di�eren
e between l and the probability that C would assign label 1to input x. 18



In our 
ase x 
onsists of a real value that has been assigned to a single (known, randomly-
hosen) 
omponent of a ve
tor x in the domain Rd, where x was generated by D.3.1 The Algorithm1. Generate a set S of �(d log Æ=�3) (unlabeled) points in Rd from the input distributionD.2. Generate a set H of 
andidate hypotheses using the standard method of [9℄ (seebelow), su
h that for ea
h binary labeling of S 
onsistent with a linear thresholdfun
tion, H 
ontains exa
tly one linear threshold fun
tion that indu
es that labeling.3. Generate a set of labeled 1-RFA data and for ea
h member H 2 H, use that dataset to estimate the expe
ted quadrati
 loss of 1-RFA data w.r.t. H (the average overall examples of their quadrati
 losses). We show that a suÆ
ient sample 
omplexityfor this step is O(d7 log ÆM(D)12V (D)6=�24):4. Output the member of H with the smallest quadrati
 loss as observed on the 1-RFAdata.The method of [9℄ works as follows. Let S = fx1; : : : ; xmg. The set of all sequen
esof labels 
onsistent with the �rst i elements of S is 
onstru
ted indu
tively from the set
onsistent with the �rst i�1 elements as follows. For ea
h sequen
e of labels 
onsistent withfx1; : : : ; xi�1g, 
he
k whether ea
h of the two possible extensions of that label sequen
e toa sequen
e of i labels, is 
onsistent with fx1; : : : ; xig. If so, add that label sequen
e to the
olle
tion that is 
onsistent with the �rst i elements. This method just requires that it bepossible to eÆ
iently test whether a fun
tion in the 
lass of interest is 
onsistent with aparti
ular set of labeled data, whi
h is of 
ourse possible for linear threshold fun
tions in�xed dimension. Finally, for ea
h label sequen
e for the entire set S , return a 
onsistentfun
tion (in our 
ase, a linear threshold fun
tion).Regarding step 3, in the standard PAC framework we 
an use the empiri
al estimate forthe quadrati
 loss, and in se
tion 3.2 we prove that the sample size used above is suÆ
ient.In se
tion 3.3 we show how step 3 
an be done using statisti
al queries, whi
h shows thatthe algorithm 
an be made robust to a uniform mis
lassi�
ation noise pro
ess.3.2 Justi�
ation of the AlgorithmUsing results of Bartlett et al. [3℄ we 
an say that H is an empiri
al �-
over of the set oflinear threshold fun
tions. An empiri
al �-
over of a 
lass C of fun
tions is a subset of C
onstru
ted from a suÆ
iently large sample S of unlabeled points; for ea
h binary labelingof S 
onsistent with some element of C , we need to in
lude a member of C whi
h indu
esthat labeling. It is shown in [3℄, that with high probability the resulting set H 
ontains,for any C 2 C , a member whi
h di�ers from C by at most �. In parti
ular, it is shown19



that if a sample of size m is randomly generated, then the probability that two fun
tionsexist whose observed disagreement on the sample di�ers from their true disagreement bymore than �=2, is upper-bounded by16�16:64� �12d log2(32:64em=(d�))e��2m=(128:4):It 
an be veri�ed that this 
an be upper-bounded by Æ if m = �(d log Æ=�3). (Note that inthe bounds of [3℄, d is the value of the fat-shattering fun
tion with parameter �, whi
h forbinary 
lassi�ers is equal to the V-C dimension, for any �.)The next part of the algorithm �nds the hypothesis with the smallest quadrati
 loss.Sin
e our set of 
andidate hypotheses is of polynomial size, we 
ould just �nd an optimalone using pairwise 
omparisons. Our reasons for preferring to use quadrati
 loss are �rstlythat we have the problem that the set H of 
andidate fun
tions does not generally 
ontainthe target fun
tion; so far our results for pairwise 
omparison have assumed that one of thefun
tions being 
ompared is the target. The se
ond reason is that minimizing the quadrati
loss seems potentially more amenable to heuristi
s for optimization over an exponentiallylarge set of 
andidate hypotheses (eg. when d is not 
onstant).We 
an use results of [29℄ to 
laim that minimizing quadrati
 loss is a good strategy.For our purposes quadrati
 loss is a good loss fun
tion for the following two reasons.1. Like the negative log likelihood loss fun
tion, the expe
ted quadrati
 loss of a hypoth-esis is minimized when hypothesis 
onditional probabilities equal the true 
onditionalprobabilities.2. Unlike the negative log likelihood, quadrati
 loss is bounded (takes values in [0; 1℄),so automati
ally we have a guarantee that (with high probability) observed expe
tedquadrati
 loss 
onverges qui
kly to true expe
ted quadrati
 loss.(The disadvantage of quadrati
 loss by 
omparison with negative log likelihood is that itmay only be used for 2-
lass 
lassi�
ation, whi
h is what we have here.)Notation: For a 
lassi�er C let QL(C) denote its expe
ted quadrati
 loss (on randomexamples assumed to be labeled by some target fun
tion) and let Q̂L(C) denote observedexpe
ted quadrati
 loss for some sample of labeled points. We have noted that Q̂L(C)
onverges reasonably qui
kly to QL(C), sin
e quadrati
 loss is bounded (lies in [0; 1℄). Wealso need to be able to 
laim that if C is any target fun
tion we have:1. If C and C 0 di�er by �, then QL(C 0)�QL(C) is upper bounded by some polynomialin �2. If C and C 0 di�er by �, then QL(C 0) � QL(C) is lower bounded by some otherpolynomial in �These two properties will validate the approa
h of �nding minimal quadrati
 loss overmembers of an �-
over. Regarding the �rst, it is easy to see that QL(C 0) � QL(C) � �.20



Theorem 18 will prove the se
ond. Finally, theorem 20 uses these properties and also showsthat although we do not have the exa
t values of quadrati
 loss for members of the �-
over,we 
an still estimate them well enough for our purposes in polynomial time.De�nition 14 The variation distan
e between two probability distributions D, D0 over Ris de�ned to be var(D;D0) = Zr2R jD(r)�D0(r)jdrOur strategy to prove theorem 18 is to relate error of a hypothesis C 0 (for target C) tothe variation distan
e between the marginal distributions on some input 
omponent x ofits positive (respe
tively, negative) examples, and the marginal distributions on x of thepositive (respe
tively, negative) examples of C (lemma 15). Then the variation distan
eis related to expe
ted quadrati
 loss using lemma 16 in 
onjun
tion with lemma 17. Weassume throughout that 
ontinuous densities D(r) and D0(r) are Lebesgue integrable, sothat it follows that jD(r)�D0(r)j and maxf0; D0(r)�D(r)g are also Lebesgue integrable(and integrate to var(D;D0) and 12var(D;D0) respe
tively over R).Lemma 15 Let D and D0 be two probability distributions over R, su
h that the di�eren
ebetween their means is � and their varian
es are both upper-bounded by �2. Then theirvariation distan
e var(D;D0) is at least minf1; (�=�)2=8g.Proof: We may assume that the mean of D is 0 and the mean of D0 is � � 0. Weobtain an upper bound on � in terms of var(D;D0) and �2, and 
onvert that result intoa lower bound on var(D;D0) in terms of � and �2.De�ne distribution D00 as follows:D00(r) = 2var(D;D0) maxf0; D0(r)�D(r)g:The 
oeÆ
ient 2var(D;D0) normalizes D00 | we are assuming of 
ourse that var(D;D0) > 0.If var(D;D0) = 0 then � = 0 and the result holds. The following pro
edure samples fromD0:1. sample r 2 R from D2. if D(r) > D0(r), a

ept r with probability D0(r)=D(r), else reje
t r.3. If r was reje
ted above, sample from D00.Observe that the probability that r is reje
ted in step 2 is 12var(D;D0). Let s be theexpe
ted value of reje
ted points. The upper-bound on varian
e of D gives an upperbound on the (absolute value of the) expe
ted value of reje
ted points as follows:�2 � s2:12var(D;D0)21



Rearranging to get an upper bound on jsj:jsj � �q2=var(D;D0):Now � is equal to the reje
tion probability 12var(D;D0), multiplied by the expe
ted valueof points sampled from D00 minus the expe
ted value of reje
ted points, i.e.� = 12var(D;D0)�E(D00)� s�:Again using the upper bound on varian
e, this time varian
e of D0:E(D00)� � � �q2=var(D;D0):Combining the two expressions above we have� � 12var(D;D0)��q2=var(D;D0) + �� s�Using our upper bound for jsj (in parti
ular �s � �q2=var(D;D0)) and rearranging,�(2� var(D;D0)) � var(D;D0)2�q2=var(D;D0):Rearranging the above, � � 23=2�[var(D;D0)℄1=22� var(D;D0)Provided that var(D;D0) � 1 we have� � 23=2�[var(D;D0)℄1=2Hen
e var(D;D0) � (�=�)2=8 or var(D;D0) > 1 2Lemma 16 Let C be the target linear threshold fun
tion and C 0 some other linear thresh-old fun
tion. Let D(pos(C))jx, D(neg(C))jx, D(pos(C 0))jx, D(neg(C 0))jx, be the distribu-tions of the x 
omponent of positive and negative examples of C and C 0. Suppose that wehave var(D(pos(C))jx; D(pos(C 0))jx) > �var(D(neg(C))jx; D(neg(C 0))jx) > �:Then for 1-RFA data for whi
h x is the observed 
omponent, we have a lower bound of �=8on the expe
ted di�eren
e between the 
onditional probabilities of output label 1 for C andC 0, for random values of x. 22



Proof: We prove this by 
ontradi
tion. Suppose for a 
ontradi
tion that for r 2 Rdistributed a

ording to Djx, the marginal distribution of D on x, thatE����Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���� < �=8:Let D(pos(C)) denote the probability that a random ve
tor lies in the region pos(C). Thenwe have ���D(pos(C))�D(pos(C 0))��� < �=8:Assume that D(pos(C)) > 1=4 and D(pos(C 0)) > 1=4. (If not we would have D(neg(C)) >1=4 and D(neg(C 0)) > 1=4, and that 
ase would be handled similarly to what follows.)We have assumed for 
ontradi
tion thatZr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���Djx(r)dr < �=8(where Djx is the marginal distribution of D on x.)Observe that D(pos(C))jx(r) = Pr(label=1 j x=r;C)D(pos(C)) and similarly for C 0. Hen
e the vari-ation distan
e var(D(pos(C))jx; D(pos(C 0)jx)) is equal toZr2R����Pr(label = 1 j x = r;C)D(pos(C)) � Pr(label = 1 j x = r;C 0)D(pos(C 0)) ����dr� 4:�=8 + 4 Zr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���dr< 4�=8 + 4�=8 = �;whi
h 
ontradi
ts one of the assumptions made in the lemma.We have established the lower bound of �=8. 2Lemma 17 Let C be the target fun
tion and C 0 some other fun
tion and suppose that �is the expe
ted di�eren
e between the 
onditional probabilities of output 1 for C and C 0,over random inputs from input distribution D. ThenQL(C 0)�QL(C) � �2:Proof: Let x be an input 
omponent, and suppose that for some 1-RFA input x = r,we have Pr(label = 1 j x = r;C) = p;Pr(label = 1 j x = r;C 0) = p+ �:Then the expe
ted quadrati
 loss of C for input x = r isQL(C j x = r) = p(1� p)2 + (1� p)p223



For C 0 we have QL(C 0 j x = r) = p(1� p� �)2 + (1� p)(p+ �)2= p(1� p)2 + (1� p)p2 + �2= QL(C j x = r) + �2By 
onvexity, the expe
ted quadrati
 loss of C 0 averaged over random input values isminimized by assuming that for all r 2 R, the di�eren
e in 
onditional probabilities isuniform, so that for any input x = r,���Pr(label = 1 j x = r;C 0)� Pr(label = 1 j x = r;C 0)��� = �:So for inputs 
onsisting of observations of x, the di�eren
e between expe
ted quadrati
losses of C 0 and C is at least �2 . 2We now use all these lemmas in the followingTheorem 18 For the 
lass of linear threshold fun
tions over Rd, suppose that the inputdistribution D has �nite values M(D) and V (D) as de�ned in de�nition 6, and that thetarget fun
tion has quadrati
 loss Q� . Then any fun
tion with error � has quadrati
 lossat least Q� + p(�) for polynomial p wherep(�) = �8226d2:M(D)4V (D)2 :Proof: We 
onsider two 
ases:1. for random x 2 Rd, jPr(C(x) = 1)� Pr(C 0(x) = 1)j > �=22. for random x 2 Rd, jPr(C(x) = 1)� Pr(C 0(x) = 1)j � �=2Case 1: for any input 
omponent x,Zr2R���Pr(label = 1 j x = r;C)� Pr(label = 1 j x = r;C 0)���:Djx(r)dr > �=2:Hen
e by lemma 17, QL(C 0)�QL(C) > �2=4:Case 2: we use the notation introdu
ed in theorem 4:R00 = neg(C) \ neg(C 0) R01 = neg(C) \ pos(C 0)R10 = pos(C) \ neg(C 0) R11 = pos(C) \ pos(C 0)The region of disagreement is R01 [ R10 , and by the assumption of the theorem,D(R01) +D(R10) = �:24



In addition, from the assumption of 
ase 2:D(R01) � �=4; D(R10) � �=4:We 
ontinue by lower-bounding j�(R01)��(R10)j, upper-bounding the marginal varian
esof points from R01 and R10 , then
e getting a lower bound for var(D(R01)jx; D(R10)jx) forsome 
omponent x, then use lemmas 16 and 17 to get the lower bound on quadrati
 loss.From the proof of theorem 10 we havej�(R01)� �(R10)j � �=16M(D):Let �(R)jx and �2(R)jx denote the expe
tation and varian
e of x-
oordinates of pointsgenerated by D that lie in R � Rd. For some 
omponent x we have����(R01)jx � �(R10)jx��� � �=16pdM(D):We also have �2(R01)jx � V (D)= �4 and �2(R10)jx � V (D)= �4using the assumed upper bound on the marginal varian
es of D and the probabilities ofpoints lying in R01 and R10 . Hen
e using lemma 15 we have that the variation distan
ebetween the x-value of points lying in R01 and points lying in R10 is at leastminn1; �2=256d:M(D)28V (D)=(�=4) o= minn1; �3213d:M(D)2V (D)o = �3213d:M(D)2V (D)using observation 7 and the fa
t that � � 1. The variation distan
es between 0-labeledexamples of C and C 0 , and between 1-labeled examples of C and C 0 are at least � timesthis amount, ie. = �4213d:M(D)2V (D) :Hen
e the expe
ted di�eren
e between 
onditional probabilities of output 1 for C and C 0is by lemma 16, at least �4216d:M(D)2V (D) :Finally, we use lemma 17 to obtainQL(C 0)�QL(C) � �8232d2:M(D)4V (D)2 :The lower bound of 
ase 2 
an be seen to be stri
tly weaker than the lower bound for
ase 1, so the 
ombination is just the lower bound for 
ase 2. 2We omit the proof of the following result.25



Theorem 19 For the 
lass of linear threshold fun
tions over Rd, suppose that the in-put distribution D satis�es the 
riteria of 
orollary 11, and that the target fun
tion hasquadrati
 loss Q� . Then any fun
tion with error � has quadrati
 loss at least Q�+ p(�) forsome positive in
reasing polynomial p.This extension to the weaker 
onstraints of theorem 11 just involves bounding the meansof the regions of disagreement away from ea
h other (as done in the proofs of theorem 10and 
orollary 11) and then pro
eeding as in the above proof.We have now shown how the expe
ted quadrati
 loss of a hypothesis is polynomiallyrelated to its disagreement with the target fun
tion. The following result uses this rela-tionship to justify the strategy of �nding a hypothesis of minimal quadrati
 loss (over a� -
over K that may not ne
essarily 
ontain the target fun
tion), as well as showing thatthe observed quadrati
 losses of elements of K are suÆ
iently good estimates of the truequadrati
 losses.Theorem 20 Let C be a set of binary 
lassi�ers with V-C dimension d, and let QL bethe quadrati
 loss fun
tion as de�ned earlier. Suppose that there are positive in
reasingpolynomials p, p0 su
h that if any C 2 C has error �, we haveQ� + p(�) � QL(C) � Q� + p0(�)(where Q� is the quadrati
 loss of the target fun
tion.) Then the strategy of minimizing theobserved quadrati
 loss over an empiri
al � -
over a
hieves PAC-ness, for � = p0�1(12p(�))and sample size O(d log Æ=�3).Comment: The result would hold for any loss fun
tion that had the asso
iated polynomialsp and p0. We have shown in theorem 18 that a suitable p exists for the quadrati
 lossfun
tion, and observed earlier that for quadrati
 loss we 
an put p0(�) = �.Proof: Let � = p0�1(12p(�)), so ��1 is polynomial in ��1 . Let K be the � -
over. Wehave jKj = O((d log Æ=�3)d), and we used O(d log Æ=�3) unlabeled examples to generate it.Let C 2 K have error � � . ThenQL(C) � Q� + p0(�) = Q� + 12p(�)Let C 0 2 K have error > �. Then QL(C 0) � Q� + p(�)Now 
hoose a suÆ
iently large sample su
h that with probability 1 � Æ, the observedexpe
ted quadrati
 loss of ea
h element of K is within �=4 of its true expe
ted quadrati
loss. (This ensures that the 
hoi
e of smallest observed quadrati
 loss is not a hypothesiswith error > �.) We will identify a sample size that ensures this will hold for all membersof K . 26



Let 
 = Æ=jKj. We want a sample size large enough su
h that with probability 1� 
any given element of K has observed expe
ted quadrati
 loss within �=4 of true. Given msamples, the probability that some member of K has observed loss di�ering from true lossis (by Hoe�ding's inequality) upper bounded by exp(�2m(�=4)2) = exp(�m�2=8):(Hoe�ding's inequality [27℄ is as follows: Let Xj , 1 � j � m be independent randomvariables su
h that a � Xj � b, 1 � j � m for some �1 � a � b � 1. ThenPr� 1m mXi=1[Xi � E(Xi)℄ � �� � exp� �2m�2(b� a)2 �where we have a = 0, b = 1.)So we need exp(�m�2=8) � Æ=jKj, i.e.exp(�m�2=8) � Æ=O((d log Æ=�3)d)�m�2=8 � O�log Æ + d log(�3)� d log(d log Æ)�The se
ond term dominates, so putm = O� d�2 log( 1�3 )�The overall sample size is O�d log Æ=�3 + d�2 log( 1�3 )�where the �rst term is the samples used to obtain the � -
over and the se
ond term is thesamples used to measure the expe
ted quadrati
 losses of members of the � -
over. � < �so the �rst term dominates. 2Comment: The runtime is polynomial for 
onstant d. The 
omputational bottlene
k isthe generation of a potentially large � -
over K and the measurement of all its elementsindividually. Under some 
onditions there may be potential for heuristi
 elimination from
onsideration of some elements of K .Putting it all together, we apply theorem 20 in 
onju
tion with theorem 18. We havep0(�) = �; p(�) = �8232d2M(D)4V (D)2Hen
e � = 12p(�) = �8=233d2M(D)4V (D)2. The sample 
omplexity is thusO�d7 log ÆM(D)12V (D)6�24 �:This is polynomial in Æ�1 and ��1 , and also is polynomial in d for the 
lasses of input dis-tributions identi�ed in examples 8 and 9 (the uniform distribution over the unit hyper
ube,or normal distributions with unit 
ovarian
e matrix).27



3.3 Conversion to Statisti
al QueriesThe study of PAC-learning in the presen
e of uniformmis
lassi�
ation noise was introdu
edin Angluin and Laird [1℄. The assumption is that with some �xed probability � < 12 , anyexample presented to the learner has had its 
lass label reversed. This is a more realisti
model for the data set that motivated this work, in view of the known 
lass overlap.However the algorithm we have presented so far has assumed that the data are noise-free(so that the 1-RFA data 
ame from ve
tors that are linearly separable). In the presen
eof noise, the algorithm is not generally guaranteed to 
onverge to the target fun
tion. Itis shown in [6℄ how to 
onvert k-RFA learning algorithms to SQ learning algorithms overthe boolean domain f0; 1gd, for k logarithmi
 in the dimension. Over the real domainnot all learning algorithms are amenable to that 
onversion. We show how to 
onvert ouralgorithm for linear threshold fun
tions.The statisti
al query (SQ) learning framework of Kearns [28℄ is a restri
tion of the PACframework in whi
h the learner has a

ess to unlabeled data, and may make queries of thefollowing form: Any query spe
i�es a predi
ate � whi
h takes as input a labeled example(� should be evaluatable in polynomial time), and an error toleran
e �. The response tothe query is an estimate of the probability that a random labeled example satis�es � |the estimate is a

urate to within additive error �. The �'s used in the queries should bepolynomial in the target a

ura
y �.Queries of the above form 
an be answered using a labeled data set in the standardPAC setting. Kearns shows in [28℄ that they 
an moreover be answered using a data setwith uniform mis
lassi�
ation noise as de�ned above. If �b is a given upper bound on anunknown noise rate � , then an SQ algorithm would be polynomial in 1=(12 � �b), as well asother parameters of interest (whi
h is how the de�nition of PAC learning extends to thede�nition of noise-tolerant PAC learning).We show how step 3 
an be re-
ast in the SQ framework. That is, for a given linearthreshold fun
tion H , estimate its expe
ted quadrati
 loss with small additive error �.Let �0 = �=4jKj, where K is the � -
over 
onstru
ted by the algorithm. All members Hof K have their expe
ted quadrati
 losses estimated to within additive error �0 . For ea
hinterval � [0; 1℄ of the form [k�0; (k + 1)�0℄ where k is an integer, we make the statisti
alquery: � is the property that an example has quadrati
 loss (w.r.t. H ) in the range[k�0; (k + 1)�0℄, and � = �02 . Then the answers to these queries provide a histogramapproximation to the true distribution of quadrati
 loss of labeled examples w.r.t. H .This histogram approximates a 
orresponding histogram of the true distribution to withinvariation distan
e �0 , so the 
omputed mean is within �0 of the true mean.4 The Dis
rete Boolean DomainAn important spe
ial 
ase of the problem is when the input distribution has its domainof support restri
ted to the boolean domain f0; 1gd. This restri
tion a�e
ts the learningproblem by making it rather trivial for 
onstant d, but apparently still hard if d is not28




onstant. In more detail:1. The sample 
omplexity is polynomial in the PAC parameters for any �xed d, sin
e thedistribution satis�es the 
onditions of 
orollary 11. (That result is known from [17℄.)It is unknown whether the sample 
omplexity is also polynomial in d.2. There are only 4d di�erent observations possible (an observation being the identityof one of the d 
oordinates together with two possible input values and two possibleoutput values, 0 or 1), so the probability of all of them may be learned with additiveerror, in time polynomial in d and the re
ipro
al of the error, by a standard Cherno�bound analysis.3. For �xed d, there is a �xed number of distin
t linear threshold fun
tions, so there isno need for dis
retization, e.g. via an empiri
al �-
over.We show that some knowledge of the input distribution D is still required in thisrestri
ted setting. Here we need 4 dimensions to allow a pair of indistinguishable s
enariosto be 
onstru
ted.Fa
t 21 It is impossible to learn linear thresholds over the dis
rete boolean domain f0; 1gd(for d � 4), if the input distribution is unknown.Proof: Put d = 4, it is simple to extend to higher values of d. Let X be the domainf0; 1g4. For i = 0; 1; 2; 3; 4, let Xi � X be the set of binary ve
tors 
ontaining i ones.De�ne pos(C) = X2 [X3 [X4pos(C 0) = X3 [X4Alternatively, we 
ould say that for input (x1; x2; x3; x4) 2 X , C and C 0 respe
tivelyhave output value 1 i� P4i=1 xi > 1:5 or respe
tively P4i=1 xi > 2:5. These are two linearthreshold (in fa
t boolean threshold) fun
tions, whi
h we 
laim are indistinguishable, forappropriate 
hoi
es of input distribution.De�ne distributions D and D0 (input distributions over X ) as follows. D assignsprobability 1=5 to ea
h Xi, with the restri
tion to Xi being uniform. D0 assigns probability0 to X4 and X1, 3=5 to X3 , 1=10 to X2 , and 3=10 to X0 , and is also uniform over ea
hXi.Given these de�nitions, it 
an be veri�ed that D and D0 have the same marginaldistributions over ea
h input 
omponent xi (in both 
ases, Pr(xi = 1) = Pr(xi = 0) =0:5). We also 
laim that the 
onditional probabilities Pr(l j xi = j;C;D) and Pr(l j xi =j;C 0; D0) where l is an binary output label, are also the same. In parti
ular, a 
al
ulationshows that for i = 1; 2; 3; 4, Pr(l = 1 j xi = 0) = 3=10;P r(l = 1 j xi = 1) = 9=10: 229



For a given input distribution, the problem is fairly trivial for 
onstant dimensionalityd, and in the remainder of this se
tion we 
onsider the problem for general d.It is unknown how to eÆ
iently learn per
eptrons (linear threshold fun
tions whereinputs 
ome from f0; 1gd) under the uniform input distribution. This is an open problemwhi
h predates learning theory, and is in fa
t the question of how to approximately re
overa per
eptron from approximations to its Chow parameters [17℄. (A per
eptron is a linearthreshold fun
tion over the boolean domain.) The Chow parameters (whi
h are the �rst-order Fourier 
oeÆ
ients, see [20℄) are the set of 
onditional probabilities that we see in our1-RFA setting, with D uniform over the boolean domain. It is known from [14, 17℄ thatthese parameters do determine the threshold fun
tion. As the sample size in
reases, the2n 
onditional probabilities will 
onverge to their true values, and it should be possible tore
onstru
t the 
oeÆ
ients of a suitable linear threshold fun
tion given these true values,although even then we do not know how to do so in polynomial time. In any 
ase, it does notfollow that it 
an be done if the observed probabilities have small additive perturbations,as would happen with a �nite-sized sample. Indeed it is apparently an open question [21℄whether a 
omputationally unbounded learner 
an be sure to have enough information ina polynomial-sized sample.Indeed, some hypothesis testing problems are hard in this setting. Suppose we 
onsiderthe uniform distribution over the unit hyper
ube f0; 1gn. If we have exa
t data, then itis #P -hard to test whether a hypothesis is 
onsistent with it [22℄. (It is in fa
t openwhether one 
an approximate the number of positive examples on one side of a hyperplaneexpressed in terms of 
oeÆ
ients and threshold, with small relative error, see [22℄. Theproblem we have is in fa
t the 0/1 knapsa
k problem.) We 
an however test additivelyapproximate 
onsisten
y, by random sampling. Note also that our main problem here is�nding a (approximate) 
onsistent hypothesis as opposed to testing one.Regarding the question of what sub
lasses of per
eptrons are 1-RFA learnable, it isknown that boolean threshold fun
tions are 1-RFA learnable, for the uniform input distri-bution. A boolean threshold fun
tion is de�ned by a set of literals and a threshold � , andevaluates to 1 provided that at least � of the literals are satis�ed. This fa
t is a spe
ial
ase of the fa
t from [20℄ that k-TOP is k-RFA learnable. k-TOP is a 
lass of booleanfun
tions in whi
h instead of monomials we have parity fun
tions over k of the inputs (andthen the outputs are input to a threshold gate as in the de�nition of boolean thresholdfun
tions).5 Con
lusion and Open ProblemsThis paper is the �rst investigation of restri
ted fo
us of attention learning given a knownbut unrestri
ted joint distribution of inputs. We have dis
overed some interesting e�e
tsthat the joint distribution may have on the number of training examples required for ahypothesis to rea
h a pres
ribed level of a

ura
y. This sensitivity of the sample 
omplexityto the input distribution is eviden
e of the novelty of the learning situation that we haveinvestigated. 30



Fundamentally, our algorithm relies on a brute-for
e approa
h, whi
h gives the limi-tation to �xed input dimension d in order to have polynomial runtime. Despite this, itseemed to require fairly sophisti
ated te
hniques to obtain the polynomial behavior (interms of ��1 and Æ�1). At this stage any improvement in eÆ
ien
y, allowing the dimen-sionality to be (for example) logarithmi
 in the PAC parameters, would be parti
ularlyinteresting. We have seen that if the dimensionality were allowed to be linear in ��1 , thenthis would solve the \Chow parameters" problem above (even if we work in the logarithmi

ost model for real value representation). Sin
e the sample 
omplexity is still polynomial ind for 
ertain 
lasses of input distributions, there may well be possibilities for heuristi
s toover
ome the 
omputational bottlene
k. One possibility is elimination of 
ertain membersof the unlabeled sample that seem to be nowhere near the threshold.We suspe
t that the suÆ
ient 
onditions for D to give rise to polynomial sample 
om-plexity may be extendable mu
h further. So far we have found only very arti�
ial distri-butions of se
tion 2.3 whi
h prevent polynomial sample 
omplexity. We 
onje
ture that�nite mixtures of distributions that satisfy theorem 10 should be good, even if the domainsof di�erent distributions in the mixture have di�erent minimal aÆne subspa
es 
ontainingthem.Other open problems in
lude how mu
h knowledge of the input distribution is needed.We know (from fa
t 21) that even in the boolean domain we do need some knowledgeof the input distribution in 4 or more dimensions. If the input distribution D is partly-known, we would like to know to what extent it helps to learn D in the style of [31℄ ifone also has input/output behaviour in some given model. One spe
ial 
ase of parti
ularinterest in when D is known to be a general Gaussian distribution. Then 1-RFA data willnot 
onvey information about the 
ovarian
es, but 1-RFA data labeled by an unspe
i�edlinear threshold fun
tion might be usable to �nd 
ovarian
es. Another question of interestis whether linear threshold fun
tions over the 
ontinuous domain 
an be learned if D isknown to be a produ
t distribution, and whether some produ
t distributions make theproblem harder than others.Note that for well-behaved input distributions we would expe
t to have most diÆ
ultypredi
ting 
lass labels of points near the threshold. We may ask under what 
ir
umstan
esit may be possible to learn in the sense of [10℄ for learning in situations where points nearthe boundary may be mislabeled.For pra
ti
al purposes we would like to extend these results to deal with the presen
e ofother models of 
lass overlap besides just uniform mis
lassi�
ation noise. The experimentalwork of [12, 18℄ assumes members of di�erent 
lasses are generated by separate Gaussiansour
es, and seeks the best linear threshold (minimum mis
lassi�
ation rate). There arealso many possible extensions to other sto
hasti
 missing-data me
hanisms, whi
h may beof pra
ti
al importan
e while invalidating the general approa
h presented here. Given thewidespread use of imputation as a pra
ti
al statisti
al method to deal with missing data,it would be interesting to know whether the PAC 
riterion for su

essful learning 
an everbe a
hieved by an imputation-based algorithm.31
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