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Abstract

We investigate PAC-learning in a situation in which examples (consisting of an
input vector and 0/1 label) have some of the components of the input vector concealed
from the learner. This is a special case of Restricted Focus of Attention (RFA)
learning. Our interest here is in 1-RFA learning, where only a single component of an
input vector is given, for each example. We argue that 1-RFA learning merits special
consideration within the wider field of RFA learning. It is the most restrictive form
of RFA learning (so that positive results apply in general), and it models a typical
“data fusion” scenario, where we have sets of observations from a number of separate
sensors, but these sensors are uncorrelated sources.

Within this setting we study the well-known class of linear threshold functions,
the characteristic functions of Euclidean half-spaces. The sample complexity (i.e.
sample-size requirement as a function of the parameters) of this learning problem is
affected by the input distribution. We show that the sample complexity is always
finite, for any given input distribution, but we also exhibit methods for defining “bad”
input distributions for which the sample complexity can grow arbitrarily fast. We
identify fairly general sufficient conditions for an input distribution to give rise to
sample complexity that is polynomial in the PAC parameters e ! and §—'. We give
an algorithm (using an empirical e-cover) whose sample complexity is polynomial in
these parameters and the dimension (number of inputs), for input distributions that
satisfy our conditions. The runtime is polynomial in e~! and 6~! provided that the
dimension is any constant. We show how to adapt the algorithm to handle uniform
misclassification noise.

*A preliminary version of this paper appeared in the proceedings of the 1999 COLT conference.



1 Introduction

The aim of supervised learning is to find out as much as possible about some unknown
function (called the target function) using observations of its input/output behavior. In
this paper we focus on linear threshold functions. These map vectors of inputs to binary
outputs according to the rule that the output should equal 1 provided that some linear
combination of the inputs exceeds some threshold value, otherwise the output equals 0.
Thus a linear threshold function can be described by a vector of real coefficients, one for
each input, and a real-valued threshold.

Probably Approximately Correct (PAC) learning is a well-known framework for study-
ing supervised learning problems in which outputs of the functions under consideration
may take one of two values (such as 0 and 1), so that any function partitions the input
domain into two sets. We give the basic definitions of PAC learning below in section 1.2;
see textbooks such as [2, 30] for a detailed introduction to the theory.

The problem of learning linear threshold functions in the PAC framework has received
a lot of attention in the literature, some of which is described below. In this paper we
consider a natural variant of the problem in which the algorithm has access to examples
of the target function in which only a single input component (together with the output
value, 0 or 1) are given. It is assumed that for each example of input/output behavior, the
choice of which input has its value given, is made uniformly at random.

The paper is organized as follows. In this section we give background, motivation for
studying this variant in detail, a formal statement of the learning situation, and some
preliminary results. In section 2 we show how the joint distribution of the inputs may
affect the number of examples needed to distinguish the target function from a single
alternative linear threshold function, having some given error. In section 3 we use a general
method identified in section 2 to PAC-learn linear threshold functions, for any constant
number of inputs. In section 4 we consider the special case where inputs are binary-valued.
In section 5 we discuss the significance of the results presented here, and mention open
problems of particular interest.

1.1 Background and Motivation

The topic of missing data, where some of the components of an observation are concealed
from the learner, has received a lot of attention in the statistics literature. Within PAC
learning theory the situation is called Restricted Focus of Attention (RFA) learning, intro-
duced in [5, 6, 8], see [20] for an extensive survey. For query-based learning the associated
framework is the Unspecified Attribute Values learning of [23]. A good example of a data
set that motivates the work here is a medical prognosis problem analysed in Titterington et
al. [37] and Lowe and Webb [33]. The data set represents 1000 head-injured coma patients,
and contains (for each patient) a subset of a set of 6 diagnostic indicators measured on
admission to hospital, and a measure of extent of recovery. The aim is to use the data
to learn to predict recovery given new sets of measurements. In the data set, fewer than
half of the patients had all 6 measurements taken, so there is a problem of how to use the



incomplete vectors of observations effectively.

Most methods for learning from incomplete data use imputation, in which the missing
values in the data set are assigned values according to some rule (for example [33] use
mean imputation, where an unknown component value is given the average of the known
values for that component). In general, imputation biases the data slightly, which is at
odds with the PAC criterion for successful learning, being used here. Linear threshold
functions are an oversimplified model for the data, since there is class overlap (indeed the
data set contains identical pairs of input vectors with distinct recovery levels). However
our algorithm is extendable to a more realistic “misclassification noise” model.

Our simplifying assumption that each example has only a single input attribute value
given has the following motivations:

1. Tt eliminates the strategy of discarding incomplete examples, which is wasteful in
practice. The strategy of discarding incomplete examples may also bias the data if
the missing data mechanism is more likely to conceal some values than others (i.e.
anything other than what Little and Rubin [32] call missing completely at random).

2. The restriction to a constant number of values per example is equivalent to a simple
stochastic missing-data mechanism, as well as being a special case of RFA learning.
The statistical missing data literature usually assumes that there is a stochastic
missing data mechanism, as opposed to RFA learning where unconcealed values are
selected by the learner.

k-RFA learning refers to a setting where £ components of any example are known to
the learner; thus we focus on 1-RFA learning. The equivalence noted above can be
seen by observing that in our setting a learner may gather polynomial-sized collections
of samples for each set of k£ attributes, as easily as it may gather a polynomial-sized
sample, and hence effectively query any given set of k£ attributes. We prefer the term
“fragmented data” over “missing data” in this situation, to emphasise that only a
small proportion of any data vector is given.

3. The 1-RFA setting is the most stringent or restrictive situation, in that positive results
for 1-RFA learning apply in other settings. It also models the “data fusion” problem,
in which collections of examples are generated by a set of independent sources, and
the aim is to combine (or “fuse”) the information derived from the separate sources.

Linear threshold functions are an obvious choice of function class in the context intro-
duced here, because the output value generally depends on all the input values; it is not
generally sufficient to know just a subset of them. But information is still conveyed by an
example in which all but one input value is concealed.

We next motivate the study of distribution-specific learning in this missing-data setting.
This is justified mainly by the results, which show that the learning problem is impossible
in a completely distribution-free setting (fact 1 below) and that the sample complexity
depends on the input distribution (section 2). There has been relevant work on distribution-
specific PAC learning in the standard complete data setting, see section 1.3. Work in RFA



learning generally assumes that the input distribution belongs to some known class, such
as product distributions. It is known from this work that it is necessary to already have
a lot of knowledge of the input distribution, in order to learn the function. We might
reasonably expect to have a parametric model for the input distribution, and then use the
EM algorithm [19] or subsequent related methods that have been devised for learning a
distribution in the presence of missing data.

In section 2 we focus on the question of which distributions are helpful or unhelpful
for 1-RFA learning. The sensitivity of the sample complexity to the nature of the input
distribution (particularly when we do not restrict to product distributions) is a distinctive
novel feature of this computational learning problem, with a lot of theoretical interest.
(By sample complexity we mean the number of examples needed for PAC learning by
a computationally unbounded learner.) Experimental work in the data fusion literature
such as [12, 18] has shown the strong effect that varying assumptions about the input
distribution may have on predictive performance. We aim to provide some theoretical
explanation by identifying features of an input distribution that make it “helpful” and give
associated sample-size bounds.

We mention relationships with other learning frameworks. The RFA setting is more
benign than the “random attribute noise” [24, 36] scenario. A data set with missing
components can be converted to one with random attribute noise by inserting random
values for the missing components (although note that for £-RFA data, with small &, the
associated noise rate would be quite high).

Finally, observe that there is a similarity to the probabilistic concepts framework of [29]
in that, given a stochastic missing data mechanism, we have observations of a mapping
from an input domain consisting of partially observed vectors to outputs whose values are
conditional distributions over {0,1} conditioned on the observed inputs. The difference
is that we do not just want to model the conditional distribution of outputs given any
input, we also want an underlying deterministic function to be well-approximated by our
(deterministic) hypothesis. In this paper we make use of the quadratic loss function of an
observation and hypothesis, as defined in [29].

1.2 Formalization of the Learning Problem

We are interested in algorithms for probably approximately correct (PAC) learning as
introduced by Valiant in [38, 39]. Here we give the basic definitions and introduce some
notation. An algorithm has access to a source of observations of a target function ¢ :
X — {0,1}, in which inputs are chosen according to some fixed probability distribution
D over the domain X, and the correct 0/1 output is given for each input. It is given two
parameters, a target accuracy € and an uncertainty bound §. The goal is to output (in
time polynomial in e ! and §!), with probability at least 1 —¢, a function h: X — {0,1}
with the property that for random input chosen according to D, the probability that the
output of h disagrees with the output of ¢, is at most €. The input distribution D is
usually assumed to be unknown, but the target function is known to belong to some given
class C of functions.



Unlike most work on PAC learning, we assume that D is known completely (as studied
in [7]). The RFA literature gives examples that show that some knowledge of D is necessary
for most learning problems, and it is often assumed that D is a product distribution (each
attribute chosen independently). In this paper we do not address the topic of partial
knowledge of D. In the next section we show that some knowledge is necessary for learning
linear threshold functions (the function class of interest here).

Within the PAC framework, we are studying specifically 1-RFA learnability where for
each example the learner can see one of the input values and the binary output value.
Thus, for domain X = R, an example is a member of R x {1,...,d} x {0,1}, since
it contains a real value, the identity of the coordinate taking that value, and the output
label. As noted, the assumption that the coordinate’s identity is chosen by the learner is
equivalent (for PAC learning) to the assumption that it is chosen at random. This is more
stringent than “missing completely at random” since we have imposed an artificial limit
(of 1) on the number of observed input values. We have observed that this artificial limit
is important to disallow discarding some training examples and using others. Obviously
PAC-learnability of 1-RFA data implies PAC-learnability of k-RFA data for any larger k.

Our aim is to use fragmented data to learn linear threshold functions, that is functions
mapping members of some unknown halfspace of R? to the output 0, and its complement
to 1. These are functions of the form f((zy,...,24)) = 1 iff ¥, a;2; > 7 where a; are
unknown coefficients and 7 is a “threshold” value. Throughout, we use the unit cost
model of real number representation.

Our algorithm is (for a large class of input distributions) polynomial in the PAC pa-
rameters ¢! and §~!, provided that d is constant. In investigating the behavior of the
algorithm as a function of dimension d, we need to consider it with respect to a paramater-
ized class Dy of input distributions, where D, is a probability distribution over R¢. (This
is due to the dependence we have noted of sample complexity on input distribution.) The
algorithm’s runtime is typically exponential in d, but for two classes Dy of interest, the
sample complexity can be shown to be polynomial.

1.3 Related Work on Linear Thresholds and Noise-tolerant Learn-
ing

The domain R? (for constant d) is a widely considered domain in the learning theory lit-
erature. Examples of learning problems over this domain include PAC-learning of boolean
combinations of halfspaces [15], query-based learning of unions of boxes [16], and unions
of halfspaces [9, 4, 13]. A technique of [9] generalized by [15] involves generating a set of
functions that realise all linear partitions of a sample of input vectors. If m is the sample
size then the set of partitions has size O(m?). Our algorithm uses this technique, which
requires d to be constant. Extending the above learning results to general (non constant)
d would solve the well-known open problem of learning disjunction normal form boolean
formulae, introduced in [39]. We explain below why it is likely to be difficult to generalize
the results here to non-constant d.



Linear threshold functions have been studied extensively in the machine learning liter-
ature. We will not review the algorithms here, but see Blum et al. [11] for a good account
of the PAC learning results. It is well-known that in the basic PAC framework, linear
threshold functions are learnable. Finding a consistent hypothesis (a hyperplane that sep-
arates the given inputs with output 1 from those with output 0) can be solved by linear
programming in polynomial time. The well-known results of Blumer et al. [9] show that
any consistent hypothesis achieves PAC-ness, given a sample whose size is proportional to
e !, log(6~1), and d. (This uses the fact that the Vapnik-Chervonenkis (V-C) dimension
of halfspaces of R? is d + 1, see [9] for details.)

As mentioned in the previous subsection, we assume unit cost for representation and
arithmetic operations on real values. The algorithm of [11] PAC-learns linear threshold
functions in the presence of random misclassification noise, and requires the logarithmic
cost model for real value representation. So also does the basic PAC algorithm of [9], since
known algorithms for linear programming that are polynomial in d assume logarithmic
cost. (For unit cost real arithmetic, currently it is known how to do linear programming in
polynomial time for logarithmic d, see Gértner and Welzl [25].) These observations raise
the question of whether we can find an algorithm that is polynomial in d as well as the
PAC parameters, for logarithmic cost real arithmetic. In section 4 where we discuss in
more detail the case where inputs come from the discrete boolean domain, we explain why
this open problem is still likely to be hard.

In this paper we show how to convert our algorithm into a statistical query (SQ) al-
gorithm (as introduced by Kearns [28]), which implies that it can be made noise-tolerant.
(Over the boolean domain {0,1}? a more general result of this kind already exists, namely
that learnability in the k-RFA implies SQ-learnability and hence learnability in the pres-
ence of random classification noise, for k£ logarithmic in d [6].) An extension to RFA
learnability of linear thresholds (in time polynomial in d) would then be a strengthening
of the result of [11].

Note that if we had a method for determining a good approximation of the error of
a hypothesis (using the fragmented data) then we could PAC-learn, using a result of [7],
which says that PAC-learnability with a known distribution D in the standard setting
is equivalent to PAC-learnability with a known distribution when instead of examples,
the learning algorithm has a means of measuring the error of any hypothesis it chooses.
However, we have not found any general way of approximately measuring misclassification
rate of a hypothesis using RFA data, even for the kinds of input distributions that we
identify as implying polynomial sample complexity.

1.4 Technical Preliminaries

We establish some simple facts about the learning situation under consideration. These are
to justify our assumption that the input distribution is not completely unknown. Note that
learning may still be possible if the input distribution is not known completely, but known
to belong to a class of distributions. In previous work on RFA learning, it is assumed that
the input distribution D is an unknown product distribution. This is a strong assumption



which allows RFA data to convey a lot of information about D. It is already known from [5]
that without some information about the input distribution it is often possible to define
pairs of scenarios (a scenario is the combination of an input distribution and classifier)
which are substantially different but are indistinguishable to a RFA learner. We use the
same method for linear threshold functions.

Given a binary-valued function C', define pos(C') to be the positive examples of C, i.e.
{z : C(z) = 1} and neg(C) to be the negative examples, i.e. {x:C(x) = 0}.

Fact 1 It is impossible to learn linear thresholds over R? for a completely unknown input
distribution D, even for a computationally unbounded learner.

.C
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0

figure 1

Different but indistinguishable scenarios described
in proof of fact 1.

Proof:  Define linear threshold functions C', C" over the (z,y)-plane as follows.

pos(C) = {(x,y):y<1l+z/2}
pos(C") = {(z,y):y<4—2x/2}

Define input distributions D, D’ over the (x,y)-plane as follows. D is uniform over the 4
unit squares whose lower-left corners are at (0,0), (4,2), (1,2) and (5,4). D’ is uniform
over the 4 unit squares with lower-left corners at (0,2), (4,0), (1,4) and (5,2). (These are
the shaded regions in figure 1.)

Consider 1-RFA data generated by either C' in combination with D, or C” in combi-
nation with D’. The marginal distributions (that is, the distributions of the separate =
and y coordinates) are the same in both cases, as are the conditional distributions of the
output label given the input (so for example, Pr(label =1 | x € [0,1]) = 1 in both cases,
or Pr(label =1 |y € [2,3]) = 1/2 in both cases). But the two underlying functions are
very different. a



Since the discrete boolean domain X = {0,1}¢ is of special interest, we give a similar
construction in section 4 for that special case, thus showing that some knowledge of D is
still required. (That construction uses 4 input dimensions, rather than just 2.)

The above construction gives indistinguishable scenarios for pairs of input distributions
that differ from each other. We show later that for any known input distribution, there are
no indistinguishable pairs of linear threshold functions (in contrast with function classes
containing, for example, exclusive-or and its negation, [5]). But the following example
shows how a known input distribution may affect sample complexity. Observe first that
for pairwise comparison, the optimal strategy is to maximize the likelihood of the output
labels given the input coordinate values. For an individual example in which the input
coordinate z; takes the value » € R and the output label is [ € {0,1}, this likelihood is
the probability that points generated by D conditioned on x; = r give output value [. For
a collection of such examples the likelihood is the product of the individual likelihoods.

Example 2 Suppose that D is uniform over two line segments in the (x,y)-plane, having
(for some small positive & ) endpoints ((£,0), (1,1=¢€)) and ((0,€), (1=&,1)). Let C(x,y) =
lify<az andlet C'(z,y) =1 iff y > x.

figure 2

C and C" as defined in example 2, which disagree on
all inputs (z,y). D is uniform over the two heavy line
segments in the square.

If the target function is C' (respectively, C'), then a PAC algorithm should have a
probability < § of outputting C’ (respectively, C'), for any error bound ¢ < 1. But
if either C' or C' is the target function, then in order to have any evidence in favor of
one over the other, it is necessary to see an example in which the value assigned to the
given input coordinate lies in the range [0,&] U [1 — &, 1]. Examples of this kind occur
with probability 2¢, and all other points are uninformative (having equal likelihood for
C and C"). So the sample size needed for PAC-learning is proportional to 1/¢, for this
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particular kind of input distribution. Note however that if we put £ =0 (and the domain
becomes the line segment with endpoints at (0,0) and (1, 1)), the associated sample-size
requirements do not become infinite; instead the learning problem reduces to a similar one
in one dimension fewer.

2 Effect of Joint Distribution of Inputs on Sample
Complexity of Pairwise Comparisons

In this section we give results about the way the joint distribution over input components
may affect the sample-size requirements for a restriction of the learning problem. We
assume that only two candidate functions C', C" are given, which disagree with probability
€. One of them is the target function, and the aim is to determine which one is the
target function, with probability 1 — ¢ of correctness. Example 2 showed a class of input
distributions whose members could make arbitrarily large the expected number of examples
needed to distinguish a particular pair of functions. Note, however, that

1. No input distribution gave the requirement that any pair of positive values (e, ) of
target accuracy and confidence required infinite data.

2. The asymptotic behaviour of sample-size requirements is still polynomial. In partic-
ular, we claim that given any pair of linear threshold functions that disagree with
probability €, we need ©(max(e™',£7")) examples in order to distinguish them with
some given probability of success. This is still polynomial in €, for any given £ > 0.

Regarding point 1 above, we show in section 2.1 (theorem 4) that there is no input distribu-
tion whose marginal distributions have well-defined means and variances that allows some
pair of distinct linear threshold functions that differ by some ¢ > 0 to be indistinguishable
in the limit of infinite 1-RFA data. Moreover in corollary 5 we show that a finite upper
bound on sample size can be derived from D, € and  only, and not on the particular choice
of C" and C" which differ by e. Regarding point 2, in section 2.2 we give fairly general
sufficient conditions on an input distribution, for sample complexity to be polynomial. We
do however in section 2.3 identify certain “pathological” distributions where the sample
complexity is not necessarily polynomial in e ! and § .

2.1 Finiteness Results for Sample-size Requirements

In what follows, we assume that all probability distributions have well-defined expectations
and variances for components of input vectors. Regarding point 1 above, we show that
for these probability distributions there is never an infinite sample-size requirement once
a distribution is given, despite the fact that distributions may be arbitrarily bad.

Lemma 3 Let D, D' be probability distributions with domains R and R’ respectively, both
subsets of RY. Suppose moreover that R and R' are convex and do not intersect. Then for



random variables x and ' generated by D and D' respectively, the expected values E(x)
and E(x') are distinct.

Proof:  Since the expected value is a convex combination, we just note that F(x) € R
and F(z') € R, and since RN R’ = (), the expected values are indeed distinct. O

C and C’ as defined in the statement of the following theorem are slightly more general
than linear threshold functions — we use the additional generality in the proof of corol-
lary 5. For a function f: X — {0,1}, let pos(f) denote {x € X : f(x) =1} and let
neg(f) denote {xr € X : f(x)=0}.

Theorem 4 Let D be any probability distribution over RY whose marginal distributions
have well-defined means and variances. Let C and C' be any pair of functions from R? to
{0,1} such that

1. pos(C), neg(C), pos(C"), neg(C") are all conver.

2. with probability 1, a point generated by D lies in pos(C) Uneg(C).

3. with probability 1, a point generated by D lies in pos(C') Uneg(C").

4. with probability €, a point generated by D is given different labels by C' and C".

Then C and C' are distinguishable (using 1-RFA data) with probability 1—§ (for €,0 >0)
for some sufficiently large finite sample size (dependent on D,e,d,C,C").

Proof: ( and C’ divide the domain R? into 4 convex regions defined as follows.

Roy = neg(C) Nneg(C') Ry = neg(C) N pos(C')
Rig = pos(C) Nneg(C')  Ri = pos(C) N pos(C')

Let D(R;;) be the probability that a point generated by D lies in region R;;. The region
of disagreement of C' and C" is Ry U Ry — by assumption 4, D(Ry U Ryg) = €. Let p(R;;)
denote the expectation of points generated by D, restricted to the region R;; — as long as
D(R;;) > 0, pu(R;;) is well-defined by our assumption that components of points generated
by D have well-defined expectations and variances.

The points pu(Rop), pt(Ro1), (Rio), u(Rq1) are all distinct from each other (observing
that the R;; are convex and disjoint, so we can use lemma 3). Next note that the expected
value of negative examples of C' is a weighted average of u(Ry) and u(Ry) (weighted
by probabilities D(Ryy) and D(Rp)). Similarly the expected value of negative examples
of C" is a weighted average of p(Rg) and p(Rip) (weighted by probabilities D(Ryy) and
D(Ryy)).

We use the fact D(Ry) + D(Ry1p) = € > 0 to deduce that the negative examples of C'
and C” have different expectations. If the (distinct) points p(Roo), p(Ro1), p(R1p) do not
lie on a one-dimensional line, this follows. If they lie on a line, the point p(Rg;) cannot be
in the middle, since that would contradict convexity of neg(C"). Similarly p(R9) cannot
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lie in the middle. If u(Ryo) lies between the other two, then observe that since the weights
of the averages are positive, the means u(neg(C)) and u(neg(C')) must lie on opposite
sides of f1(Ry) on the line.

So we can choose a component on which means of negative examples differ, and use the
observed mean of 0-labeled observations of that component to estimate the true expected
value. Given our assumption that the variance is well-defined (finite), there will be a
sufficiently large sample size such that we can with high probability predict which of C or
C'" is labeling the data. O

Corollary 5 Given any input distribution D over R? and any target values €,6 > 0 of
PAC parameters, there exists a sufficiently large finite sample size for which any pair C,C'
of linear threshold functions can be distinguished with probability 1 —§.

Proof:  Suppose otherwise. Then for some D, e, § there would exist a sequence of
pairs (C;,C!), i € N where C; differs from C! by €, and as ¢ increases, the sample-size
required to distinguish C; from C] increases monotonically without limit. We prove by
contradiction that such a sequence cannot exist.

The general strategy is as follows. From the sequence (Cj, C!) extract a subsequence

(ﬁl, C ;) which “converges in the sense that as ¢ increases, the probablhty of disagreement

between C and C’], for any 7 > i, tends to zero, and likewise for C’ and C The sequences

C; and CZ- then converge pointwise to binary classifiers Cy, and C!_ such that pos(Cy),
pos(CL), neg(Cy) and neg(C",) are convex.! Theorem 4 says that Cy, and C’_ should
be distinguishable with any PAC parameters €, > 0, for finite sample-s sme depending on

€, 6. But this will be contradicted by the convergence property of (C’Z, c 2
Define the C-difference between (Cj, C}) and (Cj, C%) (denote d((Cj, CY), (Cy,C}))) to
be the probability Pr( i(x) # C;(x)) for x generated by D. We will construct an infinite

subsequence (Ci,C’i) such that for j > 1,
d((C;,C}), (C;,T,)) < 2"

From a result of Pollard [35] (see also Haussler [26]), for any ¢ > 0, there is a finite (-cover
for any collection of sets having finite V-C dimension (which as we have noted in section 1.3
is d 4+ 1 in this case). (A (-cover of a metric space is a set S of points such that for all
points z in the metric space there is a member of S within distance ¢ of x.)

Construct C; as follows. Let C'; = C;. Now construct C;;; from C; maintaining the
invariant that there are infinitely many elements of the sequence (Cj, C]’) which have C-
difference < 2!~ with (C;, C}). Let S; be a finite 277 L-cover of the class of linear threshold
functions, with respect to input distribution D. Let C; be the (infinitely many) elements
of (C;) that are < 2'7 from C;. S; must have an element whose 27*~'-neighborhood
contains infinitely many elements of C; . Let C;,; be one of those elements, and then

IThese regions are not necessarily open or closed halfspaces even if pos(Cl.) Uneg(Cyo) is all of RY;
such a region could for example be {(z,y) : >0V (z=0Ay > 0)}.
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Ci4q is within 277 of infinitely many elements of C;". Remove all other elements from the
sequence (C;) and continue.

Define the (’-difference between (Cj, C;) and (Cj,C}) (denote d'((Cy, C;), (Cy,CY)))
to be the probability Pr(Cj(x) # Cj(x)) for x generated by D. We may use a similar

- = =
argument to extract from (C;, C;) an infinite subsequence (C;, C,), for which we also have
that for j > 1,

d((C;,C)),(C;,C,) <2

(as well as d((C, C,), (C;,T;)) < 2'77).
Consider the pointwise limit of this sequence, defined as follows. A point x € R
generated by D, with probability 1 has the property that for sufficiently large N, C; (x) =

C’( )forallzy>NandalsoC() C’I( )forallzy>N Let Cy(x) (resp. C. (x))
)

denote the label assigned to x by C’i (resp. C ;) for all sufficiently large i. Let pos(C
and neg(Cy) denote the points which get asymptotic labels 1 and 0 by C;, with similar
definitions for C}. Then pos(Cx), neg(Cx), pos(CL.), neg(CL)) are all convex (that is
easily proved by noting that from the construction of say pos(Cy), given any pair of
points in pos(Cy), any convex combination of those points must also be in pos(Cy)).
Moreover, with probability 1, a point generated by D lies in one of these sets. So they
satisfy the conditions of theorem 4.

Let M < oo denote a sample size sufficient to distinguish C, from C!_ with probability
1 —0/2. Choose N sufficiently large such that for random x generated by D,

d

Pr(Cy(x) = Ci(x)) > 1—0/4M,

Pr(C.(x) =Ci(x)) >1—46/4M,

for all i > N. Then with probability > 1 —0/2, given M samples, C; agrees with C, and
C! agrees with C_ on those samples, for all 7 > N.

Then any method that could distinguish Cy, from C!_ with uncertainty 6/2 using M
samples can be converted directly to a method to distinguish C; from ﬁ; (for all i > N)
with uncertainty at most §. (In particular replace output of Cy with 51 and replace

==
output of C7_ with C,.) This contradicts the assumption of monotonic unlimited increase
in sample complexity for terms of the sequence (C;, CY). O

2.2 Identifying Polynomial Asymptotic Behavior of Sample Com-
plexity

Regarding point 2 noted at the start of this section, we continue by giving some sufficient
conditions on an input distribution to ensure that the asymptotic behavior of sample-size
requirements (for pairwise comparisons) is polynomial. Our sufficient conditions for giving
polynomial sample complexity use two measures of D defined below, which we denote V(D)
and M (D). When these are finite (as they are for many natural continuous distributions)
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this will imply a lower bound on the difference between means of positive (or negative)
examples of pairs of functions that differ by ¢, and the observed mean can then be used to
distinguish the functions, using poly(¢~') examples.

Definition 6 Given input distribution D, let V(D) denote the largest variance of individ-
ual components of vectors generated by D (a quantity which is finite given our assumption
of well-defined means and variances for the marginal distributions of D ).

Now let S(D) be the smallest affine linear subspace such that with probability 1, points
generated by D lie in that subspace. For a I1-dimensional affine line | in S(D), we can
project points generated by D onto | by mapping them to their nearest point on . Now
if points on | are mapped isometrically onto R by fizing an origin on | and a direction
of increase, we have a density p; over R. Let M(D) denote the maximum (over lines I
in S(D) and points in R) of the density p,. Note that M(D) is infinite if D assigns a
non-zero probability to any proper subspace of S(D) (by choosing a line | C S(D) normal
to that subspace).

The measures M (D) and V(D) are motivated by theorem 10 and examples below of
distributions for which we give upper bounds on M and V. The following fact is useful
later:

Observation 7 Given any real-valued continuous random variable with an upper bound
M on its density, its variance is minimized by making it uniform over an interval of length
1/M, and the variance is 1/12M?. From this we obtain V(D) > 1/12v/dM?.

Example 8 Suppose Dy is uniform over an azis-aligned unit cube in R%. Then by ob-
servation 7, V(Dq) = 1/12. To obtain an upper bound on M(D,), suppose | is a line
through the origin, and then points generated by Dy projected onto | can be generated as
sums of random variables uniform over [0,1;] where l; is the scalar product of a unit vec-
tor on | with a unit vector on the i-th aris. The largest of the I; is > 1/v/d hence the
density is < \/d, so M(Dy) < \d. More generally, other distributions D for which the
measures M (D) and V(D) are well-defined include for example, the uniform distribution
over any polytope, including ones of dimension less than d (for which S(D) would be a
proper subspace of RY).

Example 9 If D, is a normal distribution whose covariance matrix is the identity matriz,
then V(Dg) = 1 and M(Dy) = (2r)~Y/2. More generally, any multivariate normal distribu-
tion D also has well-defined M (D) and V' (D), even if its covariance matriz does not have
full rank. (See for example Von. Mises [34] for standard results about multivariate normal
distributions.) For multivariate normal distributions D, S(D) is the space generated by
taking the mean of D and adding linear combinations of the eigenvectors of the covariance
matriz. M(D) is equal to (o(2m)"/?)~" where o is the smallest non-zero eigenvalue of the
covariance matriz.

13



Theorem 10 Given any D for which M (D) and V(D) are defined, the sample size re-
quired to distinguish any pair C,C" of linear threshold functions that differ by e (with
probability 1 — &) is polynomial in €' and 5, (ie the polynomial depends just on D, not
on choice of C,C".) In particular, the sample size is O(log6.M(D)V (D)d/?/?).

Proof: We use the notation introduced in theorem 4:

Ryp = neg(C) Nneg(C’)  Ror = neg(C) N pos(C)
Rig = pos(C) Nneg(C')  Rix = pos(C) N pos(C')

The region of disagreement is Ry; U Ry, and we are assuming that
D(Ry1) + D(Ryg) = e.
We may assume that in addition we have
D(Ry1) > €/4, D(Ry) > €/4

since otherwise for C' and C” there is a difference of at least ¢/2 that a random example is
positive, and C' and C’ could be distinguished with poly(¢~') examples using that property.

As before let j1(Ry;) and u(Ryp) denote the expectations of points lying in these regions.
The marginal variances of points generated by D are upper-bounded by V' (D), so given a
sufficient distance between the means of Ry, and R;q, we should be able to use the observed
means of the positive (or negative) examples to distinguish C' from C” with high confidence.
We claim that there is a lower bound on the Euclidean distance |u(Rg1) — p(R1p)| which
depends on M (D) and V(D), but not C' or C’, and is polynomial in ¢ !.

Suppose for a contradiction that

[1(Ro1) — p(Rao)| < €/16M (D).

Let [ be a 1-dimensional line that is normal to the hyperplane defining C'.
For R C R let I(R) denote the set of points on [ that are closest to some point in R
(the projection of R onto [). Then [(Rgy) NI(Ri) = 0, but

[1({n(Ro1)}) — L({n(R10)})| < €/16M(D).

By Markov’s inequality, for random x € Ry, (x generated by D restricted to Ry ),

Pr([i({x}) = i({n(Ro)})| < ¢/16M (D)) > 1/2

(and similarly for points in Ryy.) Hence the probability of points in the range [[({1(Ro1)})—
¢/16M (D), l({1(Ro1)})+€/16M(D)] is at least 1.< i.e. the density is at least 1.£/(¢/8M (D))
> M (D), a contradiction.

So we conclude that the Euclidean distance between the means of Ry and Ry is
at least €¢/16M (D). Hence in some component, the distance between these means is at

£
4
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least €/16M(D)vd. So the distance between the overall means of say the negative ex-
amples of C' and of C' is > €2/2V/d16M (D) = ¢2/\/d32M (D). The marginal variances
are all upper-bounded by V (D), so the number of observations of that component’s value
needed to identify which of the two alternative means is correct with probability 1 — ¢, is
O(log 6.V (D)M(D)v/d/€*). Given that each component is equally likely to be observed,
the overall sample complexity becomes O(log 8.V (D) M (D)d*?/é?). O

M(D) and V(D) are crude measures in that for distributions D for which they are
large, the actual sample size needed may not be correspondingly large. We consider the
question of when a similar result should exist for probability distributions D which do not
satisfy the condition of theorem 10. For example, finite unions of point probability masses
are of interest, but automatically do not have finite M (D).

Corollary 11 Suppose D is
1. a finite union of point probability masses, or, more generally,

2. a mizture of a finite union of point probability masses and a distribution D' for which
M(D") and V(D') are finite

then the sample size needed to distinguish C and C' (defined in the same way as in theo-
rem 10) is polynomial in the PAC parameters, and independent of C', C".

Proof: It is straightforward to prove the first part of this result, it is in fact a slight
generalization of the argument of Chow [17]. Let o > 0 be the smallest weight assigned to
any of the point probability masses. Clearly if C' # C" then they must have probability at
least « of disagreement.

Since there are only finitely many points in the domain of D, there are only finitely
many pairs of distinct linear threshold functions. Hence there is a non-zero lower bound
on the difference between the means of positive examples of C', and of C’. This provides
a sample complexity that is polynomial in ¢! and § !, and independent of any other
features of C' and C’.

For an extension to the second part of this result, again let o be the smallest weight
of any of the point probability masses, and then for C' and C' which differ by ¢ < «a,
their behavior on points generated by D" will distinguish them (since they cannot disagree
on any of the point probability masses). Since M (D') and V(D') are finite, the sample
complexity is polynomial, by theorem 10.

For any € > «, put § = 1/4 and by corollary 5 there exists a finite positive sam-
ple size m(e, D) sufficient to distinguish any pair C', C’ which differ by e. Let M =
MaXc[q,1)M(€, D), which must be finite, since otherwise we would have a positive € for
which the sample complexity is infinite. Use a sample size of M for ¢ > «. For smaller
values of § we can obtain sample complexity logarithmic in § ! by taking the majority
vote of a logarithmic (in 6~!) number of hypotheses which have confidence parameter 1/4.
(Il

We suspect the set of “good” distributions should be generalizable further; see section 5.
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2.3 Input distributions which lead to super-polynomial Sample
Complexity

Informed by the sufficient conditions identified for polynomial behaviour, we next define
a distribution which does not give rise to polynomial behaviour. That is, for any function
f, we can construct rather artificial input distributions that cause at least f(¢~') 1-RFA
examples to be needed to distinguish certain pairs of linear threshold functions that differ
by €, for all € > 0.

Theorem 12 Let f be some arbitrary increasing function. There exists a bounded input
distribution D(f) on R? such that for all € there exist linear threshold functions Cy and C
which differ by € and require at least f(e™") samples to be distinguishable with confidence
1—4, for § <1/2.

Proof:  The domain of D is restricted to a sequence of pairs of line segments (I;,1})
defined as follows. All the line segments are parallel to the line given by z = y = 2, are of
unit length, and have endpoints in the planes given by 2 +y+2 =0 and z +y + 2 = /3.
We define their exact locations with reference to a set of planes defined as follows.

Define P to be a plane containing the line x = y = 2, and let C' be a linear threshold
function with threshold P. Let P;, : € N, denote a sequence of planes containing z =y =
z, such that their angles with P converge to 0 monotonically. (see figure 3. The point of
intersection of the lines in figure 3 represents the line z = y = 2z.) The sequence P; defines
a sequence of linear threshold functions C; such that the symmetric difference of pos(C;)
and pos(C) strictly contains the symmetric difference of pos(C;) and pos(C), for all j > i.

The locations of line segments [;, I} are specified as follows.

ly lies in neg(C) N neg(Cy).
For i > 1, [; lies in (neg(C) Nneg(C;)) \ neg(Ci_y).
Iy lies in pos(C') N pos(Cy).
For i > 1, [; lies in (pos(C) N pos(C;)) \ pos(Ci—1).

Finally, the distances from [; and [} from the line z = y = 2 are constrained to be 1/2f(2"),
where f is as defined in the statement of this theorem.

We complete our definition of D by assigning probability 2'* to I; U I}, and that
probability is uniformly distributed over those two line segments.

Given this definition of D, we now claim that for target error e, we need to observe
f(e7") random 1-RFA examples from D in order to distinguish C' from an alternative
hypothesis C; chosen such that 7 is as large as possible subject to the constraint that C'
disagrees with C; with probability at least e.

The region of disagreement of C' with Cj is the union U, ,(l;Ul}), so examples from
this set of line segments need to be used in order to distinguish C' from C;. But we now
observe that (by analogy with the construction of example 2) with high probability, any
example generated from this region has the same conditional likelihood for C' as for C;.
In particular, for any point on /; (j > 4) that is > 1/f(e ') from an endpoint of /;, for
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any value observed for one of its 3 coordinates, there exists a corresponding point on l;-
which has equal likelihood of generating the same single-coordinate observation. However
points on [; and [; should receive opposite labels from C' and from Cj, for j > 4. So with

probability at least 1 —1/f(¢™") D fails to generate a point that distinguishes C' from C;.
O

pos(C,)

figure 3

construction of theorem 12 shown in cross — section
using plane given by x +y 4+ 2 =10

The “bad” input distribution defined above has marginal distributions on the input
components z, y and z which have well-defined means and variances (this is obvious from
the fact that the distribution is defined on a bounded region of the domain R3?). If we
dispense with the requirement of well-defined means and variances, then we can define
similar “bad” distributions in two dimensions, as follows.

The domain of D is restricted to the two lines y = x and y = x + 1, for positive values
of x and y. As in the statement of theorem 12, let f be an arbitrary increasing function,
and we define a bad distribution D associated with f as follows. For i € N, let D be
locally uniform over pairs of line segments whose x-coordinates lie in the range

41

Zf Zf 21+1

We let the probability that a random example lies in R; be given by D(R;) =27 1.

Now we can define two linear threshold functions C' and C” (see figure 4) which disagree
on the intervals whose x-coordinates lie in R; and agree elsewhere. We can now argue in
a similar way to before that single-coordinate observations from these regions (the ones
which should allow us to distinguish C' from C”) have (with probability at least 1—1/f(e))
equal likelihood for both functions, where i is chosen to minimize 2% subject to € < 277,
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figure 4

The domain is restricted to the two heavy lines. C' and C" disagree
on points occurring between the two vertical dotted lines. This region
of disagreement has probability 2.

3 A PAC Algorithm

In this section we give a PAC learning algorithm whose runtime is polynomial in ¢ * and

6! provided D has finite measures M (D) and V (D), or satisfies corollary 11. Moreover if
we have a class of distributions Dy over R, d = 1,2,3, ..., for which M(Dy) and V(D,)
are polynomial in d (for example the sequences of distributions in examples 8 and 9) then
the algorithm has sample complexity polynomial in e !, ! and d, but the runtime is
exponential in d. We start by describing the algorithm, then give results to justify the
steps. The algorithm is initially presented in the standard PAC setting. In section 3.3 we
show how to express it as a “statistical query” algorithm, as introduced by Kearns [28],
who showed that such algorithms are noise-tolerant. First we need the following definition.

Definition 13 The quadratic loss [29] of an example (x,1) (with respect to a classifier C')
where x is the input and [ is a binary valued label, is the quantity (I— Pr(label = 1 | z;C))?,
i.e. the square of the difference between | and the probability that C would assign label 1
to input x.
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In our case x consists of a real value that has been assigned to a single (known, randomly-
chosen) component of a vector x in the domain R?, where x was generated by D.

3.1 The Algorithm

1. Generate a set S of O(dlogd/e?) (unlabeled) points in R¢ from the input distribution
D.

2. Generate a set H of candidate hypotheses using the standard method of [9] (see
below), such that for each binary labeling of S consistent with a linear threshold
function, H contains exactly one linear threshold function that induces that labeling.

3. Generate a set of labeled 1-RFA data and for each member H € H, use that data
set to estimate the expected quadratic loss of 1-RFA data w.r.t. H (the average over
all examples of their quadratic losses). We show that a sufficient sample complexity

for this step is
O(d"log 6 M (D)*V (D)% /e**).

4. Output the member of H with the smallest quadratic loss as observed on the 1-RFA
data.

The method of [9] works as follows. Let S = {z1,...,z,}. The set of all sequences
of labels consistent with the first ¢ elements of S is constructed inductively from the set
consistent with the first i—1 elements as follows. For each sequence of labels consistent with
{z1,...,2; 1}, check whether each of the two possible extensions of that label sequence to
a sequence of i labels, is consistent with {x1,...,z;}. If so, add that label sequence to the
collection that is consistent with the first ¢ elements. This method just requires that it be
possible to efficiently test whether a function in the class of interest is consistent with a
particular set of labeled data, which is of course possible for linear threshold functions in
fixed dimension. Finally, for each label sequence for the entire set S, return a consistent
function (in our case, a linear threshold function).

Regarding step 3, in the standard PAC framework we can use the empirical estimate for
the quadratic loss, and in section 3.2 we prove that the sample size used above is sufficient.
In section 3.3 we show how step 3 can be done using statistical queries, which shows that
the algorithm can be made robust to a uniform misclassification noise process.

3.2 Justification of the Algorithm

Using results of Bartlett et al. [3] we can say that H is an empirical e-cover of the set of
linear threshold functions. An empirical e-cover of a class C of functions is a subset of C
constructed from a sufficiently large sample S of unlabeled points; for each binary labeling
of S consistent with some element of C, we need to include a member of C which induces
that labeling. It is shown in [3], that with high probability the resulting set # contains,
for any C' € C, a member which differs from C' by at most €. In particular, it is shown
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that if a sample of size m is randomly generated, then the probability that two functions
exist whose observed disagreement on the sample differs from their true disagreement by
more than €/2, is upper-bounded by

1664) 12dlog, (32.64em/(de)) 6752m/(128.4)
€

16( :
It can be verified that this can be upper-bounded by ¢ if m = ©(dlogd/e*). (Note that in
the bounds of [3], d is the value of the fat-shattering function with parameter €, which for
binary classifiers is equal to the V-C dimension, for any e.)

The next part of the algorithm finds the hypothesis with the smallest quadratic loss.
Since our set of candidate hypotheses is of polynomial size, we could just find an optimal
one using pairwise comparisons. Our reasons for preferring to use quadratic loss are firstly
that we have the problem that the set H of candidate functions does not generally contain
the target function; so far our results for pairwise comparison have assumed that one of the
functions being compared is the target. The second reason is that minimizing the quadratic
loss seems potentially more amenable to heuristics for optimization over an exponentially
large set of candidate hypotheses (eg. when d is not constant).

We can use results of [29] to claim that minimizing quadratic loss is a good strategy.
For our purposes quadratic loss is a good loss function for the following two reasons.

1. Like the negative log likelihood loss function, the expected quadratic loss of a hypoth-
esis is minimized when hypothesis conditional probabilities equal the true conditional
probabilities.

2. Unlike the negative log likelihood, quadratic loss is bounded (takes values in [0, 1]),
so automatically we have a guarantee that (with high probability) observed expected
quadratic loss converges quickly to true expected quadratic loss.

(The disadvantage of quadratic loss by comparison with negative log likelihood is that it
may only be used for 2-class classification, which is what we have here.)

Notation: For a classifier C' let QL(C) denote its expected quadratic loss (on random
examples assumed to be labeled by some target function) and let QL(C) denote observed
expected quadratic loss for some sample of labeled points. We have noted that QL(C’)
converges reasonably quickly to QL(C), since quadratic loss is bounded (lies in [0,1]). We
also need to be able to claim that if C' is any target function we have:

1. If C and C' differ by €, then QL(C") —QL(C') is upper bounded by some polynomial

in €

2. If C and C’ differ by e, then QL(C") — QL(C) is lower bounded by some other

polynomial in €

These two properties will validate the approach of finding minimal quadratic loss over
members of an e-cover. Regarding the first, it is easy to see that QL(C") — QL(C) < e.
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Theorem 18 will prove the second. Finally, theorem 20 uses these properties and also shows
that although we do not have the exact values of quadratic loss for members of the e-cover,
we can still estimate them well enough for our purposes in polynomial time.

Definition 14 The variation distance between two probability distributions D, D' over R
15 defined to be

var(D, D') :/ ID(r) — D'(r)|dr
reR

Our strategy to prove theorem 18 is to relate error of a hypothesis C’ (for target C') to
the variation distance between the marginal distributions on some input component x of
its positive (respectively, negative) examples, and the marginal distributions on z of the
positive (respectively, negative) examples of C' (lemma 15). Then the variation distance
is related to expected quadratic loss using lemma 16 in conjunction with lemma 17. We
assume throughout that continuous densities D(r) and D'(r) are Lebesgue integrable, so
that it follows that |D(r) — D'(r)| and max{0, D'(r) — D(r)} are also Lebesgue integrable
(and integrate to var(D, D') and jvar(D, D') respectively over R).

Lemma 15 Let D and D' be two probability distributions over R, such that the difference
between their means is pu and their variances are both upper-bounded by o*. Then their

variation distance var(D,D') is at least min{1, (u/0)*/8}.

Proof: We may assume that the mean of D is 0 and the mean of D" is u > 0. We
obtain an upper bound on p in terms of var(D, D') and o2, and convert that result into
a lower bound on var(D, D') in terms of u and o2.

Define distribution D" as follows:

2

D(r) = var(D, D')

max{0, D'(r) — D(r)}.

The coefficient m normalizes D" — we are assuming of course that var(D, D’) > 0.

If var(D,D") =0 then =0 and the result holds. The following procedure samples from
D'

1. sample r € R from D
2. if D(r) > D'(r), accept r with probability D’'(r)/D(r), else reject r.
3. If r was rejected above, sample from D".

Observe that the probability that r is rejected in step 2 is %var(D,D’). Let s be the

expected value of rejected points. The upper-bound on variance of D gives an upper
bound on the (absolute value of the) expected value of rejected points as follows:

1
o > 32.§var(D,D')
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Rearranging to get an upper bound on |s|:

|s| < ov/2/var(D,D’).

Now g is equal to the rejection probability %var(D, D'), multiplied by the expected value
of points sampled from D" minus the expected value of rejected points, i.e.

= %var(D, D" (E(D”) — s).

Again using the upper bound on variance, this time variance of D':

E(D") — p < oy/2/var(D, D').

Combining the two expressions above we have

1
< §var(D, D" (m/?/var(D, D)+ pu— s)
Using our upper bound for |s| (in particular —s < 041/2/var(D, D')) and rearranging,

w(2 —var(D,D")) < wvar(D, D")201/2/var(D, D).
Rearranging the above,
232g[var(D, D")]'/?
2 —var(D, D’)

p<
Provided that var(D, D) <1 we have
1 < 23%g[var(D, D'))/?
Hence
var(D, D) > (u/0)?/8 or wvar(D,D') > 1
O

Lemma 16 Let C' be the target linear threshold function and C' some other linear thresh-
old function. Let D(pos(C))|., D(neg(C))|., D(pos(C"))|., D(neg(C"))|., be the distribu-
tions of the x component of positive and negative examples of C' and C'. Suppose that we
have

var (D (pos(C))la, D(pos(C'))]z) > ¢
var(D(neg(C))ls, D(neg(C"))]:) > e.

Then for 1-RFA data for which x is the observed component, we have a lower bound of €/8
on the expected difference between the conditional probabilities of output label 1 for C' and
C', for random values of .
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Proof:  We prove this by contradiction. Suppose for a contradiction that for » € R
distributed according to D|,, the marginal distribution of D on z, that

E(‘Pr(label =1[2z=r;C)— Pr(label =1 |z =r;C")

) < €/8.

Let D(pos(C')) denote the probability that a random vector lies in the region pos(C'). Then
we have

| D(pos(C)) — D(pos(C"))| < ¢/8.

Assume that D(pos(C)) > 1/4 and D(pos(C")) > 1/4. (If not we would have D(neg(C')) >
1/4 and D(neg(C")) > 1/4, and that case would be handled similarly to what follows.)
We have assumed for contradiction that

/ ‘Pr(label =1|x=nr;C)— Pr(label =1 | x = r;C")|D|,(r)dr < ¢/8
reR

(where D], is the marginal distribution of D on z.)
Observe that D(pos(C))|.(r) = P"(l“]bjeé;ls(g):’"c) and similarly for C'. Hence the vari-
ation distance var(D(pos(C))|z, D(pos(C")|,)) is equal to

AER

<4e/8+4 | |Pr(label =1 |z =r;C)— Pr(label =1 | z =r;C")
reR

Pr(label =1 |z =r;C)  Pr(label =1 |z = r;C")

Dpos(C)) Dos(@) 1"

dr

< 4e/8+ 4e/8 = ¢,

which contradicts one of the assumptions made in the lemma.
We have established the lower bound of €/8. O

Lemma 17 Let C be the target function and C' some other function and suppose that €
is the expected difference between the conditional probabilities of output 1 for C and C',
over random inputs from input distribution D. Then

QL(C") = QL(C) > €.

Proof: Let x be an input component, and suppose that for some 1-RFA input x = r,
we have

Pr(label =1 |z =r;C) = p,
Pr(label =1 |z =r;C") = p+E&.
Then the expected quadratic loss of C' for input x = r is

QL(C |z =7)=p(l —p)*+ (L —p)p°
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For C'" we have

QLIC" |z=r) = pl—p—=>+(1—-p)(p+¢)?
= p(I1-p?+(1—-pp*+&
= QL(C |z =r)+¢&

By convexity, the expected quadratic loss of C' averaged over random input values is
minimized by assuming that for all » € R, the difference in conditional probabilities is
uniform, so that for any input z = r,

‘Pr(label =1|z=r;C") = Pr(label =1 | x =r;C")

= €.

So for inputs consisting of observations of x, the difference between expected quadratic
losses of C" and C is at least 2. 0

We now use all these lemmas in the following

Theorem 18 For the class of linear threshold functions over R, suppose that the input
distribution D has finite values M (D) and V(D) as defined in definition 6, and that the
target function has quadratic loss QQ*. Then any function with error € has quadratic loss
at least Q* + p(€) for polynomial p where

68

~ 22642 M (D)AV (D)2

p(e)

Proof: = We consider two cases:
1. for random x € R%, |Pr(C(x) =1) — Pr(C'(x) = 1)| > ¢/2
2. for random x € R%, |Pr(C(x) =1) — Pr(C'(x) =1)| < ¢/2

Case 1: for any input component x,

/ ‘Pr(label =1|xz=r;C)— Pr(label =1 |z =r;C")[.D|y(r)dr > ¢/2.
reR

Hence by lemma 17,

QL(C") — QL(C) > € /4.
Case 2: we use the notation introduced in theorem 4:

Ryp = neg(C) Nneg(C')  Ror = neg(C) N pos(C)
Rig = pos(C) Nneg(C')  Ri = pos(C) N pos(C')

The region of disagreement is Ry; U Ryp, and by the assumption of the theorem,
D(R()l) + D(Rlo) = €.
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In addition, from the assumption of case 2:
D(Rgl) Z 6/4, D(ng) Z 6/4

We continue by lower-bounding | (Ro1) — p(R10)|, upper-bounding the marginal variances

of points from Ry, and Ry, thence getting a lower bound for var(D(Ro)|., D(R1)|.) for

some component z, then use lemmas 16 and 17 to get the lower bound on quadratic loss.
From the proof of theorem 10 we have

[1(Ro1) — p(Rao)| > €/16M (D).

Let u(R)|, and o%(R)|, denote the expectation and variance of z-coordinates of points
generated by D that lie in R C R?. For some component z we have

‘u(Rm)h — u(Ruo)|s| > €/16VdM (D).

We also have . .
o*(Ro1)e < V(D)/7 and o (Rio)s < V(D)/4

using the assumed upper bound on the marginal variances of D and the probabilities of
points lying in Ry, and Ryq. Hence using lemma 15 we have that the variation distance
between the x-value of points lying in Ry; and points lying in R is at least

(. €/256d.M(D)?
min{ 8V (D)/(c/4) }

€ €

’ 213d.M(D)2V(D)} ~ 2834 M(D)2V (D)
using observation 7 and the fact that e < 1. The variation distances between 0-labeled

examples of C' and C’, and between 1-labeled examples of C' and C’ are at least ¢ times
this amount, ie.

= min{l

64

~ 234 M(D)2V(D)’
Hence the expected difference between conditional probabilities of output 1 for C' and C’
is by lemma 16, at least

64

216d.M(D)2V (D)’

Finally, we use lemma 17 to obtain

68

> .
= 2242 M(D)'V(D)?

QL(C") — QL(C)

The lower bound of case 2 can be seen to be strictly weaker than the lower bound for
case 1, so the combination is just the lower bound for case 2. 4

We omit the proof of the following result.
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Theorem 19 For the class of linear threshold functions over R®, suppose that the in-
put distribution D satisfies the criteria of corollary 11, and that the target function has
quadratic loss Q*. Then any function with error € has quadratic loss at least Q* + p(€) for
some positive increasing polynomial p.

This extension to the weaker constraints of theorem 11 just involves bounding the means
of the regions of disagreement away from each other (as done in the proofs of theorem 10
and corollary 11) and then proceeding as in the above proof.

We have now shown how the expected quadratic loss of a hypothesis is polynomially
related to its disagreement with the target function. The following result uses this rela-
tionship to justify the strategy of finding a hypothesis of minimal quadratic loss (over a
¢-cover K that may not necessarily contain the target function), as well as showing that
the observed quadratic losses of elements of K are sufficiently good estimates of the true
quadratic losses.

Theorem 20 Let C be a set of binary classifiers with V-C dimension d, and let Q)L be
the quadratic loss function as defined earlier. Suppose that there are positive increasing
polynomials p, p’ such that if any C € C has error «, we have

Q"+ pla) < QL(C) < Q" +p'(a)

(where Q* is the quadratic loss of the target function.) Then the strategy of minimizing the
observed quadratic loss over an empirical {-cover achieves PAC-ness, for ¢ = p'~'(3p(€))
and sample size O(dlogd/¢?).

Comment: The result would hold for any loss function that had the associated polynomials

p and p’. We have shown in theorem 18 that a suitable p exists for the quadratic loss

function, and observed earlier that for quadratic loss we can put p'(«) = «.

Proof:  Let ¢ = p'*(3p(e€)), so (7! is polynomial in e '. Let K be the ¢-cover. We

have |K| = O((dlogd/¢®)?), and we used O(dlogd/¢?) unlabeled examples to generate it.
Let C' € K have error < (. Then

1

QLIC) < Q" +p () =Q" + 519(6)

Let C' € K have error > €. Then
QL(C") > Q" + ple)

Now choose a sufficiently large sample such that with probability 1 — §, the observed
expected quadratic loss of each element of K is within €/4 of its true expected quadratic
loss. (This ensures that the choice of smallest observed quadratic loss is not a hypothesis
with error > ¢.) We will identify a sample size that ensures this will hold for all members
of K.
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Let v = §/|K|. We want a sample size large enough such that with probability 1 — =
any given element of K has observed expected quadratic loss within €/4 of true. Given m
samples, the probability that some member of K has observed loss differing from true loss
is (by Hoeffding’s inequality) upper bounded by exp(—2m/(e/4)?) = exp(—me?/8).

(Hoeffding’s inequality [27] is as follows: Let X;, 1 < j < m be independent random
variables such that a < X; <b, 1 <j <m for some —oo < a <b <oo. Then

Pr(l SOIX, — B(X,)] > e) < exp [%

=1

where we have a =0, b=1.)
So we need exp(—me?/8) < §/| K|, i.e.

exp(—me?/8) < 3/0((dlogs/¢*)?)

—me? /8 < O(log5 + dlog(¢?) — dlog(dlogé))

The second term dominates, so put
d 1
The overall sample size is
d 1
3
O(dlogs/¢* + glog(g))

where the first term is the samples used to obtain the (-cover and the second term is the
samples used to measure the expected quadratic losses of members of the (-cover. ( < €
so the first term dominates. O

Comment: The runtime is polynomial for constant d. The computational bottleneck is
the generation of a potentially large (-cover K and the measurement of all its elements
individually. Under some conditions there may be potential for heuristic elimination from
consideration of some elements of K.

Putting it all together, we apply theorem 20 in conjuction with theorem 18. We have

O[S

~ 2220 (D) (D)?

Pla)=a, pla)

Hence ¢ = $p(e) = €%/233d? M (D)*V (D)?. The sample complexity is thus

o <d7 log 6M(D)12V(D)6> .

€24

This is polynomial in §=! and €', and also is polynomial in d for the classes of input dis-
tributions identified in examples 8 and 9 (the uniform distribution over the unit hypercube,
or normal distributions with unit covariance matrix).
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3.3 Conversion to Statistical Queries

The study of PAC-learning in the presence of uniform misclassification noise was introduced
in Angluin and Laird [1]. The assumption is that with some fixed probability v < %, any
example presented to the learner has had its class label reversed. This is a more realistic
model for the data set that motivated this work, in view of the known class overlap.
However the algorithm we have presented so far has assumed that the data are noise-free
(so that the 1-RFA data came from vectors that are linearly separable). In the presence
of noise, the algorithm is not generally guaranteed to converge to the target function. It
is shown in [6] how to convert k-RFA learning algorithms to SQ learning algorithms over
the boolean domain {0,1}¢, for k logarithmic in the dimension. Over the real domain
not all learning algorithms are amenable to that conversion. We show how to convert our
algorithm for linear threshold functions.

The statistical query (SQ) learning framework of Kearns [28] is a restriction of the PAC
framework in which the learner has access to unlabeled data, and may make queries of the
following form: Any query specifies a predicate x which takes as input a labeled example
(x should be evaluatable in polynomial time), and an error tolerance «. The response to
the query is an estimate of the probability that a random labeled example satisfies y —
the estimate is accurate to within additive error .. The a’s used in the queries should be
polynomial in the target accuracy e.

Queries of the above form can be answered using a labeled data set in the standard
PAC setting. Kearns shows in [28] that they can moreover be answered using a data set
with uniform misclassification noise as defined above. If v, is a given upper bound on an
unknown noise rate v, then an S algorithm would be polynomial in 1/(% — 1), as well as
other parameters of interest (which is how the definition of PAC learning extends to the
definition of noise-tolerant PAC learning).

We show how step 3 can be re-cast in the SQ framework. That is, for a given linear
threshold function H, estimate its expected quadratic loss with small additive error «.

Let € = €/4|K|, where K is the (-cover constructed by the algorithm. All members H
of K have their expected quadratic losses estimated to within additive error €. For each
interval C [0,1] of the form [ke', (k + 1)€'] where k is an integer, we make the statistical
query: 7y is the property that an example has quadratic loss (w.r.t. H) in the range
[k€', (k + 1)€'], and a = €?. Then the answers to these queries provide a histogram
approximation to the true distribution of quadratic loss of labeled examples w.r.t. H.
This histogram approximates a corresponding histogram of the true distribution to within
variation distance €', so the computed mean is within € of the true mean.

4 The Discrete Boolean Domain
An important special case of the problem is when the input distribution has its domain

of support restricted to the boolean domain {0,1}¢. This restriction affects the learning
problem by making it rather trivial for constant d, but apparently still hard if d is not
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constant. In more detail:

1. The sample complexity is polynomial in the PAC parameters for any fixed d, since the
distribution satisfies the conditions of corollary 11. (That result is known from [17].)
It is unknown whether the sample complexity is also polynomial in d.

2. There are only 4d different observations possible (an observation being the identity
of one of the d coordinates together with two possible input values and two possible
output values, 0 or 1), so the probability of all of them may be learned with additive
error, in time polynomial in d and the reciprocal of the error, by a standard Chernoff
bound analysis.

3. For fixed d, there is a fixed number of distinct linear threshold functions, so there is
no need for discretization, e.g. via an empirical e-cover.

We show that some knowledge of the input distribution D is still required in this
restricted setting. Here we need 4 dimensions to allow a pair of indistinguishable scenarios
to be constructed.

Fact 21 1t is impossible to learn linear thresholds over the discrete boolean domain {0,1}%
(for d > 4), if the input distribution is unknown.

Proof: Put d = 4, it is simple to extend to higher values of d. Let X be the domain
{0,1}*. For i = 0,1,2,3,4, let X; C X be the set of binary vectors containing i ones.

Define
pos(C) = XoUX3U X,
pos(C') = X3U X,

Alternatively, we could say that for input (x,zs,23,24) € X, C and C' respectively
have output value 1 iff Z?Zl x; > 1.5 or respectively 2?21 x; > 2.5. These are two linear
threshold (in fact boolean threshold) functions, which we claim are indistinguishable, for
appropriate choices of input distribution.

Define distributions D and D’ (input distributions over X) as follows. D assigns
probability 1/5 to each X;, with the restriction to X; being uniform. D’ assigns probability
0 to X, and Xy, 3/5 to X3, 1/10 to X5, and 3/10 to Xy, and is also uniform over each
Xi-

Given these definitions, it can be verified that D and D’ have the same marginal
distributions over each input component x; (in both cases, Pr(z; = 1) = Pr(z; = 0) =
0.5). We also claim that the conditional probabilities Pr(l | z; = j;C, D) and Pr(l | z; =
7;C", D) where [ is an binary output label, are also the same. In particular, a calculation
shows that for + =1, 2, 3, 4,

Pr(l=1|z;=0) = 3/10,
Pr(l=1|z;=1) = 9/10.
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For a given input distribution, the problem is fairly trivial for constant dimensionality
d, and in the remainder of this section we consider the problem for general d.

It is unknown how to efficiently learn perceptrons (linear threshold functions where
inputs come from {0, 1}¢) under the uniform input distribution. This is an open problem
which predates learning theory, and is in fact the question of how to approximately recover
a perceptron from approximations to its Chow parameters [17]. (A perceptron is a linear
threshold function over the boolean domain.) The Chow parameters (which are the first-
order Fourier coefficients, see [20]) are the set of conditional probabilities that we see in our
1-RFA setting, with D uniform over the boolean domain. It is known from [14, 17] that
these parameters do determine the threshold function. As the sample size increases, the
2n conditional probabilities will converge to their true values, and it should be possible to
reconstruct the coefficients of a suitable linear threshold function given these true values,
although even then we do not know how to do so in polynomial time. In any case, it does not
follow that it can be done if the observed probabilities have small additive perturbations,
as would happen with a finite-sized sample. Indeed it is apparently an open question [21]
whether a computationally unbounded learner can be sure to have enough information in
a polynomial-sized sample.

Indeed, some hypothesis testing problems are hard in this setting. Suppose we consider
the uniform distribution over the unit hypercube {0,1}". If we have eract data, then it
is #P-hard to test whether a hypothesis is consistent with it [22]. (It is in fact open
whether one can approximate the number of positive examples on one side of a hyperplane
expressed in terms of coefficients and threshold, with small relative error, see [22]. The
problem we have is in fact the 0/1 knapsack problem.) We can however test additively
approximate consistency, by random sampling. Note also that our main problem here is
finding a (approximate) consistent hypothesis as opposed to testing one.

Regarding the question of what subclasses of perceptrons are 1-RFA learnable, it is
known that boolean threshold functions are 1-RFA learnable, for the uniform input distri-
bution. A boolean threshold function is defined by a set of literals and a threshold 7, and
evaluates to 1 provided that at least 7 of the literals are satisfied. This fact is a special
case of the fact from [20] that k-TOP is k-RFA learnable. k-TOP is a class of boolean
functions in which instead of monomials we have parity functions over k of the inputs (and
then the outputs are input to a threshold gate as in the definition of boolean threshold
functions).

5 Conclusion and Open Problems

This paper is the first investigation of restricted focus of attention learning given a known
but unrestricted joint distribution of inputs. We have discovered some interesting effects
that the joint distribution may have on the number of training examples required for a
hypothesis to reach a prescribed level of accuracy. This sensitivity of the sample complexity
to the input distribution is evidence of the novelty of the learning situation that we have
investigated.
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Fundamentally, our algorithm relies on a brute-force approach, which gives the limi-
tation to fixed input dimension d in order to have polynomial runtime. Despite this, it
seemed to require fairly sophisticated techniques to obtain the polynomial behavior (in
terms of ¢! and 6'). At this stage any improvement in efficiency, allowing the dimen-
sionality to be (for example) logarithmic in the PAC parameters, would be particularly
interesting. We have seen that if the dimensionality were allowed to be linear in ¢ ', then
this would solve the “Chow parameters” problem above (even if we work in the logarithmic
cost model for real value representation). Since the sample complexity is still polynomial in
d for certain classes of input distributions, there may well be possibilities for heuristics to
overcome the computational bottleneck. One possibility is elimination of certain members
of the unlabeled sample that seem to be nowhere near the threshold.

We suspect that the sufficient conditions for D to give rise to polynomial sample com-
plexity may be extendable much further. So far we have found only very artificial distri-
butions of section 2.3 which prevent polynomial sample complexity. We conjecture that
finite mixtures of distributions that satisfy theorem 10 should be good, even if the domains
of different distributions in the mixture have different minimal affine subspaces containing
them.

Other open problems include how much knowledge of the input distribution is needed.
We know (from fact 21) that even in the boolean domain we do need some knowledge
of the input distribution in 4 or more dimensions. If the input distribution D is partly-
known, we would like to know to what extent it helps to learn D in the style of [31] if
one also has input/output behaviour in some given model. One special case of particular
interest in when D is known to be a general Gaussian distribution. Then 1-RFA data will
not convey information about the covariances, but 1-RFA data labeled by an unspecified
linear threshold function might be usable to find covariances. Another question of interest
is whether linear threshold functions over the continuous domain can be learned if D is
known to be a product distribution, and whether some product distributions make the
problem harder than others.

Note that for well-behaved input distributions we would expect to have most difficulty
predicting class labels of points near the threshold. We may ask under what circumstances
it may be possible to learn in the sense of [10] for learning in situations where points near
the boundary may be mislabeled.

For practical purposes we would like to extend these results to deal with the presence of
other models of class overlap besides just uniform misclassification noise. The experimental
work of [12, 18] assumes members of different classes are generated by separate Gaussian
sources, and seeks the best linear threshold (minimum misclassification rate). There are
also many possible extensions to other stochastic missing-data mechanisms, which may be
of practical importance while invalidating the general approach presented here. Given the
widespread use of imputation as a practical statistical method to deal with missing data,
it would be interesting to know whether the PAC criterion for successful learning can ever
be achieved by an imputation-based algorithm.
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