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Abstract 

We focus on methods to solve multiclass learn- 
ing problems by using only simple and efficient 
binary learners. We investigate the approach of 
Dietterich and Bakiri [2] based on error-correcting 
codes (which we call ECC). We distill ermr COT- 
relation as one of the key parameters influencing 
the performance of the ECC approach, and prove 
upper and lower bounds on the training error of the 
final hypothesis in terms of the error-correlation 
between the various binary hypotheses. 
Boosting is a powerful and well-studied learning 
technique that appears to annul error correlation 
disadvantages by cleverly weighting training ex- 
amples and hypotheses. An interesting algorithm 
called ADABOOST.OC [12] combines boosting with 
the ECC approach and gives an algorithm that has 
the performance advantages of boosting and at the 
same time relies only on simple binary weak leam- 
ers. We propose a variant of this algorithm, which 
we call ADABoosT.ECC, that, by using a differ- 
ent weighting of the votes of the weak hypotheses, 
is able to improve on the performance of ADA- 
BoosT.OC, both theoretically and experimentally, 
and in addition is arguably a more direct reduction 
of multiclass learning to binary learning problems 
than previous multiclass boosting algorithms. 

1 Introduction 
We focus on methods to solve multiclass learning tasks by 
reducing them to learning binary classification problems. In 
multiclass learning, the concept we seek to learn takes val- 
ues from a discrete set of Ic > 2 “classes.” This notion cap- 
tures many real-world learning problems. For example, in 
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digit recognition, the underlying concept would classify a 
hand-printed digit to one of lc = 10 classes. One difficulty 
that arises in learning a multiclass concept is that most “gen- 
eral purpose” learning algorithms known, such as neural net- 
works, are best suited (or work only) for the case when the 
concept being learned takes on binary values. The theory of 
learning has also tended to focus mostly on binary learning. 
This motivates the question of how one can use and combine 
several binary learners to perform multiclass learning, and it 
is this question which we address in this work. 

Perhaps the most straightforward reduction from multi- 
class learning to binary learning is to use a separate binary 
learner to learn each individual class. Thus we obtain a col- 
lection of hypotheses each of which tries to predict whether 
an instance belongs to one particular class. The final hypoth- 
esis classifies an instance to belong to the class whose as- 
sociated hypothesis labels it positive, if a unique such class 
exists; otherwise ties are broken arbitrarily. Following [2], 
we call this the one-per-class approach. 

Another approach, along the lines of the one used by Se- 
jnowski and Rosenberg [ 141 in their widely known NETtalk 
system, is to associate with each class a unique binary string 
of length n. Then n binary hypotheses are learned, one for 
each of the n bit positions. During training for an example 
from class i, the desired outputs of these n hypotheses are 
specified by the binary string associated with class i. A test 
example is then classified to belong to the class whose as- 
sociated n bit string is closest in Hamming distance to the 
sequence of predictions generated by the n hypotheses. This 
led Dietterich and Bakiri [2] to the beautiful idea of picking 
the strings associated with the classes to belong to an error- 
correcting code so that misclassifications by a few of the bi- 
nary hypotheses can be corrected. We call this approach the 
ECC approach. 

Dietterich and Bakiri [2] consider picking codes with 
strong error-correction properties and experimentally demon- 
strate the rather good performance of this approach on some 
standard multiclass learning data sets. In this work, we at- 
tempt to prove a theoretical statement about the performance 
of the ECC approach. We prove that the worst-case training 
error of the hypothesis produced by the ECC approach is sig- 
nificantly better than that of the one-per-class approach. One 
reason why the powerful theorems from coding theory can- 
not be directly applied to prove stronger bounds on the per- 
formance of the ECC approach is that, unlike in coding the- 
ory where one usually assumes that the errors in the different 
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bit positions occur independently, in our case the errors made 
by the various hypothesis can be (and typically will be) con- 
siderably correlated. We distill “errorcorrelation” as one of 
the key parameters influencing the performance of the ECC 
approach. We prove that given strong error-correction prop- 
erties of the underlying code and a small error-correlation 
between the hypotheses, the ECC approach is guaranteed to 
produce a hypothesis with small error. To complement this 
result, we prove that no matter how good the underlying code 
is, if the error-correlation is high, then the ECC approach can 
give a final hypothesis with very poor performance. 

Another powerful and extensively studied method for learn- 
ing is boosting [ll, 3, 5, 9, 6, 7, 1, 12, 131. This approach, 
which has been pioneered by Freund a.nd Schapire [ 11,3,5, 
6, 121, seems to handle error correlation disadvantages well 
by clever reweighting of the example space. Boosting gives 
a general method to produce a highly accurate combined hy- 
pothesis from simple constituent hypotheses (called “weak 
hypotheses”) which only perform slightly better than ran- 
dom guessing. The combined hypothesis is an appropriately 
weighted vote of the weak hypotheses, and has a strong prov- 
able performance guarantee (in terms of its error). While 
several boosting algorithms [5, 131 lose a lot in terms of 
their run-time efficiency when applied to multiclass learn- 
ing problems, an interesting variant called ADABOOST.OC 
due to Schapire [12], combines boosting with the ECC ap- 
proach, to give an algorithm that has the performance advan- 
tages of boosting while relying only on binary weak learn- 
ers. We propose a variant of this algorithm, which we call 
ADABOOST.ECC , that uses a better weighting of the weak 
hypotheses and in fact chooses the weights purely as a func- 
tion of the error of the binary weak hypotheses, and therefore 
represents a more “direct” reduction of multiclass learning 
to binary learning. This algorithm is the main contribution 
of the paper, and it obtains an improved error convergence 
rate theoretically, and also significantly outperforms ADA- 
BOOST.OC in our experiments. In fact, in one of the ex- 
periments our algorithm achieves an improvement of over 
20% in the test error. It also improves over the reported er- 
ror of Real ADABOOST.MH [ 131, which has been observed 
to perform exceedingly well on several multiclass learning 
problems, for a similar computation time. 

ORGANIZATION. We begin by reviewing some basic prop- 
erties of error-correcting codes that are necessary for under- 
standing the ECC approach. Then, in Section 3, we present 
our results on the ECC approach. In Section 4, we discuss the 
various multiclass boosting algorithms available in the liter- 
ature. We then consider one of them, ADABOOST.OC, in de- 
tail, and then present our boosting algorithm ADABoosT.ECC, 
together with an analysis of its performance. Finally, in Sec- 
tion 5 we describe the experiments we conducted using our 
learning algorithms and report the observed results. 

2 Basics of Error-Correcting Codes 

In this section, we define error-correcting codes (ECC’s) and 
give their most elementary properties. We will also be using 
a particular family of codes called Hadamard-matrix codes. 
These are codes obtained from standard Hadamard matrices. 
For notational convenience, when referring to binary values, 

we prefer to use -1 and 1 instead of 0 and 1 respectively. 

Definition 1 Given two n-bit binary vectors x and y, the 
Hamming distance between x and y is the number of bitpo- 
sitions on which x and y diffeer: 

Definition 2 An (n, K, d) error-correcting code C is a set of 
K binary vectors of dimension n, called codewords, such 
that the Hamming distance between every pair of distinct 
codewords is at least d. 

The simplest error-correction property of an (n, K, d) 
error-correcting code C is that, since every codeword has 
distance at least d from every other codeword, the closed 
Hamming balls of radius [YJ around each codeword are 
disjoint. Hence, if a binary vector v differs from some code- 
word x E C in at most 19 J positions, then x is the unique 
closest codeword in C to v. Hence we say that the code C 
can correct at least 191 errors. Note also that any sub- 
set of size K’ of an (n, K,d) code, called a subcode, is an 
(n, K’, d) code. 
Hadamard-matrix codes: We give an explicit family {Hn} 
of (2n, 2n, 2’+l) codes called the Hadamard-matrix codes. 
These codes have the property that if one writes all the code- 
words as the rows of a 2n by 2n matrix, then in fact the ma- 
trix is symmetric, so in particular the columns also have dis- 
tance 2”-l. In fact, if one takes an (2n, 2n, 2n-1) Hadamard- 
matrix code, and adds all the negations of the codewords 
(that is, for each codeword, replaces each 1 with a -1 and 
vice-versa), then one retains the distance property, i.e. one 
obtains a (2n, 2n+1, 2,-l) code. 
These codes are constructed iteratively. The base case of the 
construction is to create a (2,2,1)-code. This is given by the 
rows of the matrix: 

*1=(: ‘1) 

All the properties of Hadamard-matrix codes given above 
can be readily verified for this code. 
Then *,+I, the matrix for the (2 n-+1, 2n+1, 2n) Hadamard- 
matrix code, is created recursively by the matrix: 

H n+1= 
*n *n 
*n -*n > 

Here, the distance grows by a factor of two because for 
any two given codewords x and y, either the first 2” positions 
of x and y are the same or they are not. If they are the same, 
then the last 2” positions of y are negations of the last 2” 
positions of x, and thus the distance is 2n. If the first 2” 
positions are not the same then by the distance properties of 
H,, both the first 2” positions and the last 2n positions are 
at distance 2n-1 from each other, and so the distance bound 
is established. A similar argument shows that the distance 
property is preserved when the negations of all codewords 
are added. 

3 Using Error-Correcting Codes 
The use of error-correcting codes for reducing multiclass 
learning problems to binary learning problems was intro- 
duced by Dietterich and Bakiri [2]. This approach essen- 
tially proceeds by choosing some (n, Ic, d)-error-correcting 
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code &‘, where k is the number of classes, and assigning to 
each class a codeword from the error-correcting code. We 
imagine creating a k by n binary matrix where the i’th row 
is the codeword corresponding to the i’th class. We then 
build a binary learning problem for each column - in the 
problem for column j of the matrix, we label an instance as 
positive or negative depending on the value of the j’th bit of 
the codeword corresponding to its original class. Now using 
some binary learner to learn each column, we obtain a hy- 
pothesis hj for each column of the matrix. To classify a new 
instance x, we evaluate hl (x), . ..h. (x) to produce an n-bit 
binary vector V. Finally, we classify x as belonging to the 
class whose codeword is closest to v in Hamming distance. 
Because the codewords come from an error-correcting code, 
we know that even if some of the individual hypotheses hj 
were wrong, we will still classify x in the right class. In- 
deed, we know that if at most I%] of the hj were wrong, 
the final classification will be correct. 

Dietterich and Bakiri [2] gave some heuristics for choos- 
ing good codes for this approach’ and ran several experi- 
ments showing that the ECC approach can be quite success- 
ful. 

3.1 Comparing the ECC approach and one-per-class 

We now give theoretical evidence that the ECC approach is 
superior to the one-per-class approach in terms of the per- 
formance of the underlying binary learner. In practice, how- 
ever, since the binary concepts learned in the one-per-class 
approach are more “natural” than the ones produced by the 
ECC method, many binary learners exhibit superior perfor- 
mance when used in the one-per-class approach. In the ex- 
perimental section (see Appendix B), we describe an attempt 
to combine the two approaches which seems to consistently 
outperform each approach alone. 

We first examine the worst-case training performance of 
the one-per-class approach in terms of the performance of 
the binary learner. In the following analyses, we suppose that 
the binary learner is used to output n hypotheses hl , . . . , h,, 
each with (fractional) training error el , . , . , e,, respectively. 
(For the one-per-class approach, n will equal the number of 
classes k.) It is immediate that the error of the final hypothe- 
sis of one-per-class is upper bounded by Cf., ei. However, 
in the worst case the error can in fact be this high. 

Lemma 1 The worst-case training error of one-per-class can 
be as high as min{Ct=, ei, 1); and for randomized one- 
per-class it can be as high as min{ y Et=, ei, 1). 

Proof: The worst case is where each hypothesis makes all its 
errors as “false negatives,” i.e. it classifies positive examples 
as negative. If each hypothesis does so on disjoint sets of 
examples (so the errors are highly uncorrelated), then for a 
min{& ei, 1) fraction of the training examples, none of 
the hypotheses will return a positive value. In the case of a 
deterministic algorithm, in the worst case the wrong choice 
would be made every time, and thus the bound would follow. 
In the randomized version (where a random choice occurs 

‘The issues involved in code design will be discussed further 
later. 

in the case of ties), one would expect a v fraction of the 
mistakes from the deterministic case to be retained. Cl 

The situation significantly improves in the ECC approach: 

Lemma 2 The worst-case training error of the ECCapproach 
using an (n, k, d) code can be no higher than 2n/d times the 
average error A ~~Z1 ei of the binary hypotheses. In partic- 
ular for codes with minimum distance d at least n / 2, this is 
no more than 4 times the average error 

Proof: Suppose that there are N training examples. Then 
the total number of mistakes made by the hypotheses is 
N(Cy=iei).B tb u ecause the error-correcting code can cor- 
rect up to L(d - 1)/2J errors, all misclassified examples must 
have at least d/2 hypothesis errors. Thus, the total number 
of classification errors is bounded by g$! Cy=“=, ei. Thus the 

training error (as a fraction) is bounded by 3 * 
( 1 

@ .cl 

Since codes with minimum distance n/2 are easy to con- 
struct as long as the number of classes k is small enough, this 
shows that the situation for the ECC approach is much better 
than in the one-per-class approach. Indeed we have estab- 
lished a connection between the error of a multiclass learner 
and the error of a binary learner, which is in itself something 
non-trivial. But can we expect the error-correction proper- 
ties of the code to take us further? Can we hope to do better 
than the error of the binary learners? Unfortunately, good er- 
ror correcting properties of the underlying code alone alone 
cannot accomplish this goal: 

Lemma 3 The worst-case training error of the ECC approach 
using an (n, k, n/2) code, where n is a power of two, can be 
as high as 2 times the best errOr of the binary hypotheses. 

Proof: Let n = 2m, and let N be the number of train- 
ing examples. To construct the example which leads to the 
error claimed in the Lemma, we consider the (n,n,n/2) 
Hadamard-matrix code (or any subcode). We note two rele- 
vant properties of the Hadamard-matrix code: 

Claim 1 For any codeword x, inverting the last n/2 posi- 
tions transforms it into another codeword y. Hence, invert- 
ing the last n/4 + 1 positions of x creates a vector closer to 
y than to 2. 

Proof: Immediate from the construction of the Hadamard- 
matrix code. q (Claim I) 

Claim 2 For any codeword x, there is some subset (which 
depends on x) of its jrst n/2 + 1 positions that, when in- 
verted, creates a vector that is closer to some codeword dif- 
ferentfrom x than it is to x. 

Proof: To see this claim, let y be any codeword such that 
its (n/2 + 1)‘th position is the inverse of z(,/~+~), and such 
that its first n/2 positions are not the same as those of X. 

It is immediate from the construction that such a codeword 
exists. Now, since the first n/2 positions of x and y come 
from a Hadamard-matrix code, it must be that this subset of 
positions differ on exactly n/4 positions. Furthermore, the 
same can be said about the last n/2 positions. Hence, if we 
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consider a vector ZI that is equal to y on its first n/2 + 1 posi- 
tions, but equal to z elsewhere, we have that v is at Hamming 
distance n/4 - 1 from y but n/4 + 1 from 2. q (Claim 2) 

Letel,es,..., e, be the errors of the n binary hypothe- 
ses hl,h2,..., h, associated with the columns 1,2,. . . , n 
respectively of the Hadamard-matrix. .Let fi = min{esnj4, 
e3n/4+l, . . . , e,}. Consider the first fi fraction of training 
examples. Suppose the n/4+ 1 hypotheses hsn/4, . . . , h, all 
make errors on these examples. By Claim 1, all these exam- 
ples would be misclassified. Further, let fs = min{er , es, . . . 
en/2+1}. On the next f2 fraction of training examples, for 
each example, by Claim 2, we can find a subset of its first 
n/2 + 1 positions such that if the corresponding hypotheses 
made errors on that example, it would be misclassified. Thus, 
we have a situation where a fi + f2 2: 2 mini ei fraction of 
the training examples are misclassified, and this completes 
the proof. •I (Lemma 3) 

Hence, we see that error-correction properties alone will 
not suffice in establishing a bound that is better than the error 
of the binary hypotheses produced by the binary learner. It 
is interesting to note that a bad case for the ECC method is 
a situation where the errors are highly correlated, whereas 
the worst case for the one-per-class method is the situation 
where errors are extremely uncorrelated. This might suggest 
that some combination of these schemes might work well in 
practice. We have some experimental results supporting this 
view; these are discussed in Appendix B. 

In the ECC method proposed by Dietterich and Bakiri [2], 
an instance is classified by finding the closest codeword in 
Hamming distance to the vector produced by the binary hy- 
potheses. However this ignores the fact that the errors (and 
hence the reliability) of the various hypotheses may vary; 
we propose to use this information by employing variants of 
“soft-decision” decoding in the classification stage. In par- 
ticular, we propose two approaches, which we call symmet- 
ric and asymmetric Maximum Likelihood Decoding. These 
approaches are discussed in Appendix A. 

3.2 Error Correlation 

In the world of communication, error-correcting codes can 
be used to transform a highly noisy channel into one with 
extremely low noise. An analogy of this in the world of 
learning would imply that even if the binary hypotheses have 
high error rates, using an error-correcting code should dra- 
matically reduce the final error. Why then can we construct 
the counterexample of Lemma 3? The answer lies in the cor- 
relations between the errors of the hypotheses. In communi- 
cation theory, it is typically assumed that transmission errors 
will occur independently, or at worst with some local depen- 
dence (e.g. bursty noise); only under such assumptions can 
the powerful theorems in coding theory be established. In 
the learning scenario, correlation between errors in the ECC 
method depend not only on the underlying data set and the 
binary learner, but also on the code itself! This is a situa- 
tion not dealt with in classical communication theory. There 
is strong intuition that it is indeed the correlation of errors 
that could cause problems. Based on this intuition, Diet- 
terich and Bakiri addressed this issue by focusing on codes 
with good column distance properties. Their intuition was 

that if the columns which define the individual binary learn- 
ing problems are quite different, then the correlation between 
hypothesis errors should be reduced. Of course, this is only 
a heuristic, since the example given in Lemma 3 uses the 
Hadamard-matrix code which has excellent column distance 
properties. In our work, we choose instead to attack the prob- 
lem of error correlation directly. First, we attempt to quantify 
the intuition that error correlation is important with the fol- 
lowing Lemma: 

Lemma 4 Let A be an upper bound on Pr, [hi(z) is wrong 
and hj(s) is wrong] for all i, j, 1 5 i < j < n. Then 
the worst-case training errOr of the ECC approach using an 
(n, k, d) code can be no higher than 4wA. In particu- 
lal; for codes with minimum distance d at least n/2 + 2, this 
is no more than 16A. 

Proof: Let N be the number of training examples, and let E 
be the training error of the final ECC hypothesis. We count 
the number of pairs of individual binary hypothesis errors 
made over all examples. For each of the EN examples that 
were misclassified, at least (“,/“) pairs of errors must have 
occurred. On the other hand, by definition of A, the total 
number of pairs of errors made by the hypotheses over all 
examples is at most (T) AN. We therefore have 

cl 

This Lemma can, of course, be generalized to “higher 
moments” of error correlation. Note that it formalizes and 
quantifies our intuition that low error correlation together 
with good distance properties of the underlying code implies 
that the ECC approach will work well. 

4 Boosting 
An Active Approach. Above, we showed that achieving 
small error-correlation in the ECC approach would imply 
small overall error. Dietterich and Bakiri tried to attack this 
problem by tailoring their error-correcting codes to discour- 
age error-correlation; but as we have seen, this is only a 
heuristic approach. Instead, we propose to actively work to 
find binary hypotheses with controlled error-correlation. We 
observe that the powerful method of boosting, by cleverly 
weighting training examples and hypotheses, seems to over- 
come the problem of error correlation in combining many 
hypotheses. Thus, in this section, we investigate how to com- 
bine techniques from boosting and error correcting codes to 
get the advantages of both. We re-interpret an existing al- 
gorithm of this type, called ADABOOST.OC [12], as one 
that uses boosting techniques to find the binary hypotheses, 
but then uses weighted closest-codeword decoding to clas- 
sify instances. With our perspective, we refine the method 
by which the binary hypotheses are found and weighted. We 
obtain a new, somewhat simpler, algorithm which we call 
ADABoosT.ECC, that achieves a stronger theoretical per- 
formance guarantee. We also present some experimental ev- 
idence that our algorithm performs better in practice, as well. 
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4.1 Boosting Overview 

Boosting is a powerful and well-studied method of finding 
a (provably) highly accurate hypothesis (classification rule) 
by combining many “weak” hypotheses generated by a base 
learning algorithm, each of which is only moderately accu- 
rate. Boosting algorithms operate in several rounds. Dur- 
ing each round they reweight examples in the training set 
and rerun the base learning algorithm on these reweighted 
examples. Effectively, boosting forces the weak learning al- 
gorithm to concentrate on the “hardest examples” (the ones 
misclassified so far). One can achieve a sufficiently high ac- 
curacy on the training examples by running a large number 
of rounds of boosting. The final hypothesis is, typically, a 
weighted vote of the weak hypotheses. By keeping each of 
the weak hypotheses to be a simple rule, one can then con- 
trol the complexity of the final hypothesis, and thereby, using 
VC-theory [ 151, expect a low error on the test examples as 
well. 

The first boosting algorithms were discovered by Schapire 
[ 1 l] and later improved by Freund [3]. These algorithms 
are pretty complicated and not suitable for easy implementa- 
tion. A major breakthrough came in the form of Freund and 
Schapire’s ADABOOST algorithm [5] which is extremely ef- 
ficient and also very easy to implement. It has received ex- 
tensive empirical and theoretical study and has been found 
to work very well on several practical binary classification 
problems [ 10,9, 6, I, 7, 131. There have also been boosting 
algorithms for multiclass learning which we discuss next. 

4.2 Boosting for Multiclass problems 

The binary ADABOOST algorithm requires that the accuracy 
of each classification rule produced by the weak learner be 
(non-negligibly) greater than l/2. For binary classification 
problems, this requirement is about as minimal as can be 
hoped for, since random guessing will itself achieve an ac- 
curacy of l/2. For multiclass problems, however, in which 
k > 2 labels are possible, an accuracy of l/2 may be much 
harder to obtain than the random guessing accuracy rate of 
l/k. 

If the underlying weak-learners are fairly powerful (like 
C4.5 for instance [lo]) this is not a big problem since, as ob- 
served in [ 121, they usually get accuracy l/2 even on the diffi- 
cult distributions of examples produced by boosting. While 
the overall training error rate is usually much lower when 
more expressive and powerful weak learners are used, this 
implies a lot more computation time (which is a vital issue, 
especially for large datasets) and a higher complexity of the 
final hypothesis which might result in increased test error. 
Therefore from a practical standpoint, we are more interested 
in the issue of what can be achieved with very simple weak 
learners. 

Along these lines, Freund and Schapire [5] proposed a 
pseudoloss boosting algorithm ADABOOST.M:! for multi- 
class learning, where the weak learner at each round chooses 
a set of plausible labels for each example. For example, in a 
digit recognition problem, the weak hypothesis may predict 
a certain example to be a 0, 4 or 9, rather than just a single 
digit. The hypothesis is then evaluated according to a related 
pseudoloss measure, and boosting proceeds as in the binary 
case except that we now use a distribution on example-label 

pairs in each round. The final hypothesis classifies an in- 
stance according to the single label that occurs most fre- 
quently in the plausible label sets chosen by the weak hy- 
potheses, ties being broken arbitrarily. 

Experiments conducted with this algorithm [6] indicate 
that it performs well, but has some significant drawbacks. 
First of all, it requires weak hypotheses optimized for the 
more complex pseudoloss measure, thus complicating the 
design of the weak learners (eg. most off-the-shelf weak 
learners cannot handle this measure). Secondly, this approach 
is fairly slow as the run-time of the weak learner is roughly 
O(k) times slower than that of a pure error-based simple bi- 
nary weak learner. 

These drawbacks motivated Schapire [12] to design an 
alternative algorithm, called ADABOOST.OC, that combines 
boosting with the ECC approach we saw in Section 3. A for- 
mal description of ADABOOST.OC is provided in Figure 1. 

This algorithm works as follows. As in boosting, in each 
round t of running the weak learner, the examples are re- 
weighted in a manner focusing on the hardest examples by a 
distribution Dt on the set X of training instances. And fol- 
lowing ECC, in round t of boosting a binary coloring pt : 
Y + { -1, +1} of the set Y of labels is picked to create a 
new binary classification problem (by relabeling the train- 
ing examples according to pt). The weak learner is then 
used to obtain a weak hypothesis ht : X + {-1,-l-l}. 
The goal of the weak learner is to minimize the error Et = 
PriNDt [ht(xi) # ,ut (yi)] . A hypothesis &t is then defined 
as ht(x) = (1 E Y : ht(x) = pt(Z)}, its pseudoloss Zt is 
computed, and a weight at for the vote of round t is com- 
puted as a function of ct. 

Finally, the combined hypothesis Hf is computed. This 
is done by, given an instance x, interpreting the binary clas- 
sification ht(x) of round t as a vote for all labels in &t(z) 
and weighting this vote by crt. The label 1 that receives the 
most weighted votes in this scheme is chosen as Hf(x). 

ADABOOST.OC combines the advantages of both the 
boosting and ECC paradigms: it is easy to implement as the 
weak learning algorithm need only be able to handle “pure” 
binary problems, and it comes with a strong theoretical guar- 
antee (Theorem 1 of [ 121) that if the weak learner can consis- 
tently generate weak hypotheses that are slightly better than 
random guessing, then with sufficient number of rounds of 
boosting, the error of the final hypothesis can be made arbi- 
trarily small. 

Subsequent work in [ 131 gives an alternative algorithm, 
called ADABOOST.MH, that handles multiclass problems 
(in fact multilabel problems where each example belongs to 
a certain subset of classes). This algorithm does not rely 
on picking colorings at each round of boosting but instead 
learns weak hypotheses whose domain is X x Y (as op- 
posed to simply X as in ADABoosT.OC). For this reason, 
ADABOOST.MH, while giving improved performance over 
ADABOOST.OC in several cases, runs for roughly a factor 
O(k) time longer (here k = ]Y ( is the number of classes). 

This motivates the attempt to improve the performance 
of ADABOOST.OC in practice (and if possible even in the- 
ory) without sacrificing what is arguably its most compelling 
advantage, namely its, simplicity and run-time efficiency. It 
is this question which we address, and design a variant of 
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Given: (zI~YI.), . . . , (~m,ym) : zi E X,yi E Y, lYl = k 
Initialize: D1 (i, 1) = l/m(k - 1) if I # yi, fir (1, I) = 0 Vl E Y. 

Fort=1,2,...,T: 
Compute coloring pt : Y- --+ { - 1, +l}. 
Let Ut = CL, C,,, wGwt(Yi) #Pm 
Let Dt(i) q = & . C*,y fit(CObt(Yi) # Pt(Ol* 
Get hypothesis ht : X + (-1, +l} from the weak learner for distribution Dt. 
Let Lt(z) == {I E Y : ht(z) = it(Z)}. 
Let Et = i CL, C,,, b,(i,Z) ’ ([Yi $ b(Zi)J + [l E L(G)]). 

Letat = fin(F). 
Update: 

a+1 (4 I) = & . Bt(i, I) exp {at([yi $ b(G)] + 11 E h(zi)])} 

where .& is a normalization factor. 

Output the final hypothesis: 
Hf(2) = wgnaxt,y CT=, 4 E L(z)l. 

Figure 1: A description of ADABOOST.OC [12] 

ADABOOST.OC, which we call ADABoosT.ECC, that is in 
fact slightly simpler than ADABOOST.OC but performs bet- 
ter both in practice and in theory. 

4.3 Our new algorithm ADABOOST.ECC 
Our algorithm (see Figure 2) proceeds along the lines of 
ADABOOST.OC, but the main point of difference in our al- 
gorithm is that instead of picking a weight at based on the 
pseudoloss ~5~ as in ADABOOST.OC, we pick weights at 
and pt for the positive and negative votes of ht : X + 
{ - 1, +l} that are based just on the structure of hi and its 
performance on the binary learning problem of round t; no 
pseudoloss measure is computed or used. (It is possible that 
we may pick one or both of at, Pt to be negative.) We then 
form a new hypothesis gt : X + ZR defined by: 

gt(x) = at ifht(z) = +l 
= -fit if ht(s) = -1. 

Now given an example x, we view gt(x) as providing a vote 
of value gt (z) . pt (1) for the label 1, and the final hypothe- 
sis Hf (2) outputs that label y for which the algebraic sum 
of its votes from the various gt’s is maximum. Note that 
this is exactly a weighted closest codeword decoding for the 
error-correcting code formed by the colorings pt. A formal 
description of the algorithm is given in Figure 2. Note that 
explicit computation of the pseudoloss as is done by ADA- 
BOOST.OC is not performed in this algorithm. We now pro- 
vide a theoretical guarantee on the training error of the hy- 
pothesis produced by ADABOOST.ECC . 

Theorem 1 The training error of the hypothesis Hf under 
the uniform distribution on training examples is at most 

@ - 11 fi St = (k - I> f-J&c; + 1 - Ut). 

Proof: The proof is based on ideas from Theorem 11 of [5]. 
Suppose that the final hypothesis Hf of ADABOOST.ECC 
makes a mistake on instance xi, so that Hf(q) # yi. Then, 
by the definition of Hf, 

2 [gt(+tW~bi)) - gt(+4Yi)] 10 (1) 
t=1 

Now consider the binary problem of learning the all FALSE 
concept f-r on the the domain {zr ,zs, . . . , z,} x Y un- 
der the uniform distribution dr over all pairs (Q, 1) with 
1 E Y - {yi}: i.e f(z,l) = -1 Vx E X,1 E Y. We 
view the update step (for dt(-, .)) in ADABOOST.ECC as 
the update rule of the binary ADABOOST algorithm (see [Sj), 
whose weak learner, at round t, returns the weak hypothesis 

fdxi,O k (l/2) x Mxht(~) - gt(d~t(!d) and we 
choose its weight to be 1. By the analysis of binary ADA- 
BOOST presented in [13], the probability that for a uniformly 
chosen pair (zi,Z) for 1 5 i 5 m and 1 E Y - {yi), we can 
have 

f(Xi,l) 2 S&m& &X&Z)) = 1 
t=1 

(which amounts to an error in learning the concept f-r) is at 
most nT=, &. 

By Equation 1, for any example xi such that Hf (zi) # 
yi in ADABOOST.ECC , we have f(xi, Hf(zi)) = 1. Hence 
if U denotes the uniform distribution on the training exam- 
ples, we have 

Pr,,,v[Hf(xi) # yi)] 5 Pr,,,t@Z # yi : f(%,Z) = l] 

I (k - l)Prc,i,l)wbl [hi7 1) = 11 

5 (k-l&& 
i=l t=1 

where Zt = Cz”=, Dt (i) exp ( - gt (&t (yd). t=1 
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Given: (ZI~YI), . . . , (zm,ym) : zi E X,y; E Y, IYI = Ic 
Initialize: Dl(i, I) = l/m(k - 1) if I # yi, L?,1 (i, 1) = 0 if I = yi. 

Fort=1,2,...,2’: 
Computecoloringpt : Y-3 {-l,+l}. 
Let r-Jt = CL, C&Y Dt(i, W4Yi) # Pt WI. 
Let LA(i) = j$ . &, w, W4Yi) # Pm 
Get hypothesis ht : X --t { -1, +l} from the weak learner for distribution Dt. 
Compute the weight of positive and negative votes at and /?t respectively. 
Define: 

gt(z) = at if ht(z) = +l 

Update: 
= -Pt if ht(z) = -1. 

-t)t+& 1) = & . fit(i) 1) exp { (gt(zi)@(l) - gt(G)Pt(yi))/2} 

where & is a normalization factor. 

Output the final hypothesis: 
Hfbc) = ac+w4Ey CL, d~ht0). 

Figure 2: A description of ADABOOST.ECC 

To complete the proof, it remains to express & in terms of 
Zt and Ut. Now, 

= Ut C Ni> ew [ - d~iht(yi)] + (1 - Ut) 

= u,z,‘+ (1 - Ut). 

The last but one step above follows from the definitions of 
Ut and Dt (.). This completes the proof. cl 

Observe that the specification of ADABOOST.ECC in 
Figure 2 is for the asymmetric version (since the weight of 
the positive vote it is not necessarily equal to the weight 
of the negative vote pt). One can also consider the sym- 
metric version of this algorithm where it = /& for each 
t. It turns out, using the methods from [ 131 on domain- 
partitioning weak hypotheses, that the optimum choice of 
at, ,dt is given by 

at = +l 
( 

Ci:ht(z;)=pt(l;)=l Dt(i) 

) Ci:ht(zi)=l~pt(yi) a(4 ’ 

( 

Ci:ht(z;)=p~(yi)4 a(4 

pt = sn Ci:ht(si)4+pt(y;) a(i) ; ) 

and for the symmetric version, the optimum choice is 

at = pt = : In ( 
Ci:h~(z.)--p&) Ddi) Ci:ht(z;);pt(y;) a(i) ) * (2) 

In the following, we bound the error of the symmetric ver- 
sion of our algorithm. We will then argue that even this 
bound is better than the one proved for ADABOOST.OC in 
[ 121, and of course the asymmetric version will only perform 
even better. We stress here that our algorithm is not simply 
ADABOOST.OC modified to incorporate the methods of [ 131 
to pick the weights of the votes; together with picking the 
weights at, ,& using the methods of [ 131; one significant fea- 
ture that distinguishes our algorithm from ADABOOST.OC 
is that the pseudoloss is never computed or used as in ADA- 
BoosT.OC. Indeed the fact that even the symmetric version 
is able to do better than ADABOOST.OC implies that the im- 
provements shown by our approach come not only from the 
fact that positive and negative votes are weighted differently, 
but also from the fact that we are choosing the weight (Yt for 
the vote of round t directly in terms of the weak hypothesis 
ht ‘s error on Dt without going through a pseudoloss mea- 
sure. Note that this also indicates that ADABOOST.ECC is 
a simpler and an even more faithful reduction of multiclass 
learning to binary learning problems. 

Theorem2 Letpl,pz,..., pt be any sequence of colorings 
andlethl,hz,... , hT be any sequence of weak hypotheses 
produced by the weak learner Let et = l/2 - ^/t be the 
error of ht with respect to the relabeled and reweighted data 
on which it was trained, and let Ut be as in Figure 2. Then 
the training error of the$nal hypothesis Hf output by the 
symmetric version of ADABOOST.ECC is bounded by 

T - 

(k - 1) r-ptj/l - 47; + (1 - Ut)). 
t=1 

Proof: In the case when we use symmetric weights, by Equa- 
tion 2, we have at = /3t = i In . For this choice of 
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at, we have 

zt = C Dt (i) exp[-a&t (+t WI 

= eat&t + e-“’ (1 - Et) 

= 
d- 1 - 47;. 

The statement of the theorem now follows using Theorem 1. 
0 

Lemma 5 For 0 5 Ut 5 1 and 0 5 Tt 5 l/2, we have 

Proof: Indeed if b = &-@r@ and a = Ut dw + 
(1 - Vt), then we can compute 

b2 - a2 = 2Ut(l- Vt)(l-- J1-4r,2) 

2 0 

and the lemma follows. 0 

By the above Lemma and Theorem 2, we have proved 
a better upper bound on the training error of even symmet- 
ric ADABOOST.ECC as compared to that already known 
bound of (k - 1) nT=, dm for ADABOOST.OC 
(see Theorem 1 of [ 121). In the next section, we will see that 
this improvement is also observable in practice in the exper- 
iments we ran. 

5 Experiments 

We performed experiments with our boosting algorithms on 
two multiclass learning problems from the UC1 repository [8]. 
The first problem is handwritten digit recognition, called PEN- 
DIGITS in the sequel, Here, the data set has 7494 training 
examples and 3498 test examples. The number of classes is 
10, one for each of the digits O-9. Each instance has 16 at- 
tributes, each taking an integer value between 0 and 100. The 
second learning problem is a well-studied letter recognition 
problem, which we refer to as LETTER. The associated data 
set has 16000 training examples and 4000 test examples. The 
number of classes is 26, one for each letter of the English al- 
phabet. Each instance has 16 attributes each of which takes 
an integer value between 0 and 15. 

We chose these two data sets to test out our algorithms 
as these are among the more comprehensive and larger data 
sets in the repository. Also, digit and letter recognition tasks 
are interesting learning problems in their own right. 

We use the simplest of weak learners, namely one-level 
decision trees. The weak hypothesis makes its prediction 
based on the result of a single test comparing one of the 
attributes to a threshold value. The best hypothesis of this 
form which optimizes the appropriate learning criterion can 
be found by direct search; we use a more efficient search for 
this hypothesis in our implementation. 

We implemented Schapire’s ADABOOST.OC [ 121, and 
also our boosting algorithms (described in Section 4.3) with 
both asymmetric and symmetric weightings of the various 
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weak hypotheses. All these algorithms give test and train- 
ing errors which are much better than those achieved by the 
plain ECC based approaches. We find that our algorithms 
perform significantly better than [12] on our two data sets: 
we find that both algorithms get nearly 15% improvement 
in the test error for PENDIGITS at 1000 rounds, of boost- 
ing, and for LETTER, the asymmetrically weighted version 
of our algorithm gets over 20% improvement and the sym- 
metric version achieves 8% improvement in the test error at 
4000 rounds of boosting. These results are shown in Figures 
A and B. Another interesting aspect of our results is that 
we get a test error of 14.15% after 4000 rounds of boost- 
ing on LETTER using the asymmetric version of our algo- 
rithm, and this improves by over 15% the best previously 
reported error (16.4%) for boosting methods using the ex- 
tremely simple weak learners we use (this error was achieved 
by ADABOOST.MH [ 131 after 1000 rounds of boosting). On 
the other hand, our algorithm performs only one-sixth of the 
computation required by ADABOOST.MH to achieve this er- 
ror. 
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A Maximum Likelihood Decoding 

In the ECC method as proposed by Dietterich and Bakiri, the 
determination of the classification is done by simply find- 
ing the closest codeword in Hamming distance to the vec- 
tor produced by the binary hypotheses. However, the error 
rates of the binary hypotheses may vary greatly. Rather than 
ignore this information, we first propose to use “Maximum 
Likelihood Decoding” (MLD), under the assumption of er- 
ror independence. Here, rather than simply finding the code- 
word closest in Hamming distance, we attempt to find the 
most likely codeword that could have led to the vector pro- 
duced by the hypotheses. We use the training data to cal- 
culate the probability of error pi for each binary hypothesis 
hi. Then, to classify an instance z which led to the vec- 
torv = (hr(z),hs(z),..., h,(z)), for each codeword 2 we 
calculate the probability (assuming errors were made inde- 
pendently by hypotheses) that z was corrupted into w. If we 
let E be the set of positions i where xi # vi, then this prob- 
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ability would simply be: 

I-b% l--J1 -2-4 
GE i#E 

Then we classify the instance according to the codeword 
for which the above probability turns out to be maximum. 
Note that this can also be viewed as a. weighted decoding. 
In weighted decoding, each hypothesis hi has an associated 
weight w;. To decode, for each codeword x, we compute a 
sum, adding +wi if the i’th hypothesis agrees with xi, and 
-wi otherwise. The codeword which leads to the highest 
sum is then chosen as the best match. It is easy to see that 
the MLD approach above is equivalent to weighted decoding 
with hypothesis weights: 

wi = 
log(1 -Pi> - log(R) 

2 
Note, however, that the example of Lemma 3 can be 

adapted to apply to this decoding procedure. Thus, even 
for “Maximum Likelihood Decoding,” in the worst case, the 
overall error could be as bad as is 2 times the minimum error 
of the individual binary hypotheses. 

Along these lines, we can further refine the decoding by 
considering the probability of each hypothesis misclassify- 
ing a positive example as a negative one and vice versa sepa- 
rately. In this case, decoding would correspond to a weighted 
decoding where the weight would depend on whether the hy- 
pothesis is predicting a positive or negative example. We 
also attempt this type of decoding, which we call asymmet- 
ric MLD, and discuss its performance in Appendix B. We 
note, however, that Lemma 3 could again be made to apply, 
except now with twice the minimum one-sided error proba- 
bility. 

B Experiments based on the ECC approach 
We now discuss our experiments using the algorithms based 
on the ECC approach. The binary hypotheses (correspond- 
ing to each column of the codewords) are obtained by run- 
ning the binary version of ADABOOST for up to a certain 
number of rounds (around 500 in our experiments). Our ob- 
jective here was to improve the performance of the ECC ap- 
proach using better decoding techniques. Figure C shows the 
performance of several of our algorithms on the PENDIGITS 
data set and Figure D on the LETTER data set. For these ex- 
periments we used a random code of blocklength 60 where 
each column has a equal number of -1’s and 1’s. We used 
four kinds of decoding algorithms: the straightforward Ham- 
ming distance based nearest codeword decoding used by Di- 
etterich and Bakiri [2], the Maximum Likelihood Decoding 
and its asymmetric version discussed in Appendix A, and fi- 
nally, a decoding method we propose that tries to account 
for error correlation information. We sketch this (heuristic) 
method now. The method attempts to weight hypotheses ac- 
cording to their correlations with other hypotheses. We first 
calculate the pairwise error correlation on the training exam- 
ples to estimate 

A,,j = c[hi(x) is wrong AND hj(x) is wrong]. 

We then set up the following linear system, in which we 
attempt to force hypotheses with correlated errors to share 

weight, so that several hypotheses that make highly corre- 
lated errors together get a weight that is comparable to the 
weight of a single hypothesis that makes independent uncor- 
related errors. For each i, we have the constraint: 

&,j 

wifCAii+Aj,jwj=l 

j#i ’ 

We find that for PENDIGITS, the above correlation based ap- 
proach improves the test error by over 15% at 500 rounds of 
boosting, and for LETTER, it improves by 13% again at 500 
rounds of boosting. 

Dietterich and Bakiri conjecture that high inter-column 
Hamming distance is useful in controlling the error correla- 
tion of the various hypotheses. We observe that Hadamard- 
matrix codes have this property to almost the best possible 
extent that can be hoped for. For example, for PENDIGITS, 
we picked 10 rows from a 16 x 16 Hadamard matrix, and 
used this as our code in the ECC approach. We observed 
that when combined with asymmetric MLD, this performs 
very well on test error as shown in Figure E. But we observe 
that our error correlation based decoding achieves almost the 
same performance starting with a random code, indicating 
that taking into account correlation information in the decod- 
ing stage has helped us to eliminate some of the bad column 
correlations of the random code. 

One drawback of the ECC approach is that it seems to 
throw away the real world nature of the data by picking ran- 
dom partitions of the labels to create “artificial” binary clas- 
sification problems. The one-per-class method obviously does 
not suffer from this drawback, as the binary problems it cre- 
ates correspond to the real learning problems of whether an 
instance belongs to a particular class or not. Indeed, for the 
recognition data we used, the boosted learners performed 
so much better on the one-per-class learning problems that 
the performance of one-per-class was usually comparable to 
our best ECC-based algorithms. We observed that in the 
one-per-class approach, the errors of the binary hypotheses 
tend to end up being highly uncorrelated. This means that 
when exactly one of the class-hypotheses votes positively 
on an instance, one can be quite confident in the classifi- 
cation. When this does not occur, it means that the instance 
came from one of k almost disjoint sets where the individual 
class-hypotheses fail. The fact that many class-hypotheses 
probably were able to deal with the instance correctly gives 
hope that many of the binary hypotheses generated by the 
ECC approach might also be able to classify the instance 
correctly. Hence, we consider an algorithm combining one- 
per-class and the ECC approach. This algorithm trains bi- 
nary hypotheses for both one-per-class and ECC. Then, to 
classify an instance, it firsts sees if exactly one of the class- 
hypotheses votes positively on the instance. If so, it out- 
puts the corresponding class. Otherwise, we pass to the ECC 
decoding algorithm and answer accordingly. We compare 
each individual approach to the combined approach experi- 
mentally in Figures F (for PENDIGITS) and G (for LETTER). 
Experimentally, we find that this combined approach yields 
test errors that are sometimes over 25% better than those of 
either of the individual approaches. 
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