
Multiclass Learning, Boosting, and Error-Correcting Codes

Venkatesan Guruswami’
MIT Laboratory for Computer Science

Cambridge, MA.

Abstract

We focus on methods to solve multiclass learn-
ing problems by using only simple and efficient
binary learners. We investigate the approach of
Dietterich and Bakiri [2] based on error-correcting
codes (which we call ECC). We distill ermr COT-
relation as one of the key parameters influencing
the performance of the ECC approach, and prove
upper and lower bounds on the training error of the
final hypothesis in terms of the error-correlation
between the various binary hypotheses.
Boosting is a powerful and well-studied learning
technique that appears to annul error correlation
disadvantages by cleverly weighting training ex-
amples and hypotheses. An interesting algorithm
called ADABOOST.OC [12] combines boosting with
the ECC approach and gives an algorithm that has
the performance advantages of boosting and at the
same time relies only on simple binary weak leam-
ers. We propose a variant of this algorithm, which
we call ADABoosT.ECC, that, by using a differ-
ent weighting of the votes of the weak hypotheses,
is able to improve on the performance of ADA-
BoosT.OC, both theoretically and experimentally,
and in addition is arguably a more direct reduction
of multiclass learning to binary learning problems
than previous multiclass boosting algorithms.

1 Introduction
We focus on methods to solve multiclass learning tasks by
reducing them to learning binary classification problems. In
multiclass learning, the concept we seek to learn takes val-
ues from a discrete set of Ic > 2 “classes.” This notion cap-
tures many real-world learning problems. For example, in

‘Email: {venkat, amits}@lcs .mit . edu. Supported by a
DOD NDSEG doctoral fellowship and partially by DARPA grant
DABT63-96-C-0018.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first Page.
To copy otherwise, to republish, to post on Sewem Or tO
redistribute to lists, requites prior specific permission and/or B fee.
COLT ‘99 7/99 Santa Cruz, CA, USA
0 ,999 ACM l-581 13.167-4/99/0006...$5.00

Amit Sahai*
MIT Laboratory for Computer Science

Cambridge, MA.

digit recognition, the underlying concept would classify a
hand-printed digit to one of lc = 10 classes. One difficulty
that arises in learning a multiclass concept is that most “gen-
eral purpose” learning algorithms known, such as neural net-
works, are best suited (or work only) for the case when the
concept being learned takes on binary values. The theory of
learning has also tended to focus mostly on binary learning.
This motivates the question of how one can use and combine
several binary learners to perform multiclass learning, and it
is this question which we address in this work.

Perhaps the most straightforward reduction from multi-
class learning to binary learning is to use a separate binary
learner to learn each individual class. Thus we obtain a col-
lection of hypotheses each of which tries to predict whether
an instance belongs to one particular class. The final hypoth-
esis classifies an instance to belong to the class whose as-
sociated hypothesis labels it positive, if a unique such class
exists; otherwise ties are broken arbitrarily. Following [2],
we call this the one-per-class approach.

Another approach, along the lines of the one used by Se-
jnowski and Rosenberg [141 in their widely known NETtalk
system, is to associate with each class a unique binary string
of length n. Then n binary hypotheses are learned, one for
each of the n bit positions. During training for an example
from class i, the desired outputs of these n hypotheses are
specified by the binary string associated with class i. A test
example is then classified to belong to the class whose as-
sociated n bit string is closest in Hamming distance to the
sequence of predictions generated by the n hypotheses. This
led Dietterich and Bakiri [2] to the beautiful idea of picking
the strings associated with the classes to belong to an error-
correcting code so that misclassifications by a few of the bi-
nary hypotheses can be corrected. We call this approach the
ECC approach.

Dietterich and Bakiri [2] consider picking codes with
strong error-correction properties and experimentally demon-
strate the rather good performance of this approach on some
standard multiclass learning data sets. In this work, we at-
tempt to prove a theoretical statement about the performance
of the ECC approach. We prove that the worst-case training
error of the hypothesis produced by the ECC approach is sig-
nificantly better than that of the one-per-class approach. One
reason why the powerful theorems from coding theory can-
not be directly applied to prove stronger bounds on the per-
formance of the ECC approach is that, unlike in coding the-
ory where one usually assumes that the errors in the different

145

http://crossmark.crossref.org/dialog/?doi=10.1145%2F307400.307429&domain=pdf&date_stamp=1999-07-06

bit positions occur independently, in our case the errors made
by the various hypothesis can be (and typically will be) con-
siderably correlated. We distill “errorcorrelation” as one of
the key parameters influencing the performance of the ECC
approach. We prove that given strong error-correction prop-
erties of the underlying code and a small error-correlation
between the hypotheses, the ECC approach is guaranteed to
produce a hypothesis with small error. To complement this
result, we prove that no matter how good the underlying code
is, if the error-correlation is high, then the ECC approach can
give a final hypothesis with very poor performance.

Another powerful and extensively studied method for learn-
ing is boosting [ll, 3, 5, 9, 6, 7, 1, 12, 131. This approach,
which has been pioneered by Freund a.nd Schapire [11,3,5,
6, 121, seems to handle error correlation disadvantages well
by clever reweighting of the example space. Boosting gives
a general method to produce a highly accurate combined hy-
pothesis from simple constituent hypotheses (called “weak
hypotheses”) which only perform slightly better than ran-
dom guessing. The combined hypothesis is an appropriately
weighted vote of the weak hypotheses, and has a strong prov-
able performance guarantee (in terms of its error). While
several boosting algorithms [5, 131 lose a lot in terms of
their run-time efficiency when applied to multiclass learn-
ing problems, an interesting variant called ADABOOST.OC
due to Schapire [12], combines boosting with the ECC ap-
proach, to give an algorithm that has the performance advan-
tages of boosting while relying only on binary weak learn-
ers. We propose a variant of this algorithm, which we call
ADABOOST.ECC , that uses a better weighting of the weak
hypotheses and in fact chooses the weights purely as a func-
tion of the error of the binary weak hypotheses, and therefore
represents a more “direct” reduction of multiclass learning
to binary learning. This algorithm is the main contribution
of the paper, and it obtains an improved error convergence
rate theoretically, and also significantly outperforms ADA-
BOOST.OC in our experiments. In fact, in one of the ex-
periments our algorithm achieves an improvement of over
20% in the test error. It also improves over the reported er-
ror of Real ADABOOST.MH [131, which has been observed
to perform exceedingly well on several multiclass learning
problems, for a similar computation time.

ORGANIZATION. We begin by reviewing some basic prop-
erties of error-correcting codes that are necessary for under-
standing the ECC approach. Then, in Section 3, we present
our results on the ECC approach. In Section 4, we discuss the
various multiclass boosting algorithms available in the liter-
ature. We then consider one of them, ADABOOST.OC, in de-
tail, and then present our boosting algorithm ADABoosT.ECC,
together with an analysis of its performance. Finally, in Sec-
tion 5 we describe the experiments we conducted using our
learning algorithms and report the observed results.

2 Basics of Error-Correcting Codes

In this section, we define error-correcting codes (ECC’s) and
give their most elementary properties. We will also be using
a particular family of codes called Hadamard-matrix codes.
These are codes obtained from standard Hadamard matrices.
For notational convenience, when referring to binary values,

we prefer to use -1 and 1 instead of 0 and 1 respectively.

Definition 1 Given two n-bit binary vectors x and y, the
Hamming distance between x and y is the number of bitpo-
sitions on which x and y diffeer:

Definition 2 An (n, K, d) error-correcting code C is a set of
K binary vectors of dimension n, called codewords, such
that the Hamming distance between every pair of distinct
codewords is at least d.

The simplest error-correction property of an (n, K, d)
error-correcting code C is that, since every codeword has
distance at least d from every other codeword, the closed
Hamming balls of radius [YJ around each codeword are
disjoint. Hence, if a binary vector v differs from some code-
word x E C in at most 19 J positions, then x is the unique
closest codeword in C to v. Hence we say that the code C
can correct at least 191 errors. Note also that any sub-
set of size K’ of an (n, K,d) code, called a subcode, is an
(n, K’, d) code.
Hadamard-matrix codes: We give an explicit family {Hn}
of (2n, 2n, 2’+l) codes called the Hadamard-matrix codes.
These codes have the property that if one writes all the code-
words as the rows of a 2n by 2n matrix, then in fact the ma-
trix is symmetric, so in particular the columns also have dis-
tance 2”-l. In fact, if one takes an (2n, 2n, 2n-1) Hadamard-
matrix code, and adds all the negations of the codewords
(that is, for each codeword, replaces each 1 with a -1 and
vice-versa), then one retains the distance property, i.e. one
obtains a (2n, 2n+1, 2,-l) code.
These codes are constructed iteratively. The base case of the
construction is to create a (2,2,1)-code. This is given by the
rows of the matrix:

*1=(: ‘1)

All the properties of Hadamard-matrix codes given above
can be readily verified for this code.
Then *,+I, the matrix for the (2 n-+1, 2n+1, 2n) Hadamard-
matrix code, is created recursively by the matrix:

H n+1=
*n *n
*n -*n >

Here, the distance grows by a factor of two because for
any two given codewords x and y, either the first 2” positions
of x and y are the same or they are not. If they are the same,
then the last 2” positions of y are negations of the last 2”
positions of x, and thus the distance is 2n. If the first 2”
positions are not the same then by the distance properties of
H,, both the first 2” positions and the last 2n positions are
at distance 2n-1 from each other, and so the distance bound
is established. A similar argument shows that the distance
property is preserved when the negations of all codewords
are added.

3 Using Error-Correcting Codes
The use of error-correcting codes for reducing multiclass
learning problems to binary learning problems was intro-
duced by Dietterich and Bakiri [2]. This approach essen-
tially proceeds by choosing some (n, Ic, d)-error-correcting

146

code &‘, where k is the number of classes, and assigning to
each class a codeword from the error-correcting code. We
imagine creating a k by n binary matrix where the i’th row
is the codeword corresponding to the i’th class. We then
build a binary learning problem for each column - in the
problem for column j of the matrix, we label an instance as
positive or negative depending on the value of the j’th bit of
the codeword corresponding to its original class. Now using
some binary learner to learn each column, we obtain a hy-
pothesis hj for each column of the matrix. To classify a new
instance x, we evaluate hl (x), . ..h. (x) to produce an n-bit
binary vector V. Finally, we classify x as belonging to the
class whose codeword is closest to v in Hamming distance.
Because the codewords come from an error-correcting code,
we know that even if some of the individual hypotheses hj
were wrong, we will still classify x in the right class. In-
deed, we know that if at most I%] of the hj were wrong,
the final classification will be correct.

Dietterich and Bakiri [2] gave some heuristics for choos-
ing good codes for this approach’ and ran several experi-
ments showing that the ECC approach can be quite success-
ful.

3.1 Comparing the ECC approach and one-per-class

We now give theoretical evidence that the ECC approach is
superior to the one-per-class approach in terms of the per-
formance of the underlying binary learner. In practice, how-
ever, since the binary concepts learned in the one-per-class
approach are more “natural” than the ones produced by the
ECC method, many binary learners exhibit superior perfor-
mance when used in the one-per-class approach. In the ex-
perimental section (see Appendix B), we describe an attempt
to combine the two approaches which seems to consistently
outperform each approach alone.

We first examine the worst-case training performance of
the one-per-class approach in terms of the performance of
the binary learner. In the following analyses, we suppose that
the binary learner is used to output n hypotheses hl , . . . , h,,
each with (fractional) training error el , . , . , e,, respectively.
(For the one-per-class approach, n will equal the number of
classes k.) It is immediate that the error of the final hypothe-
sis of one-per-class is upper bounded by Cf., ei. However,
in the worst case the error can in fact be this high.

Lemma 1 The worst-case training error of one-per-class can
be as high as min{Ct=, ei, 1); and for randomized one-
per-class it can be as high as min{ y Et=, ei, 1).

Proof: The worst case is where each hypothesis makes all its
errors as “false negatives,” i.e. it classifies positive examples
as negative. If each hypothesis does so on disjoint sets of
examples (so the errors are highly uncorrelated), then for a
min{& ei, 1) fraction of the training examples, none of
the hypotheses will return a positive value. In the case of a
deterministic algorithm, in the worst case the wrong choice
would be made every time, and thus the bound would follow.
In the randomized version (where a random choice occurs

‘The issues involved in code design will be discussed further
later.

in the case of ties), one would expect a v fraction of the
mistakes from the deterministic case to be retained. Cl

The situation significantly improves in the ECC approach:

Lemma 2 The worst-case training error of the ECCapproach
using an (n, k, d) code can be no higher than 2n/d times the
average error A ~~Z1 ei of the binary hypotheses. In partic-
ular for codes with minimum distance d at least n / 2, this is
no more than 4 times the average error

Proof: Suppose that there are N training examples. Then
the total number of mistakes made by the hypotheses is
N(Cy=iei).B tb u ecause the error-correcting code can cor-
rect up to L(d - 1)/2J errors, all misclassified examples must
have at least d/2 hypothesis errors. Thus, the total number
of classification errors is bounded by g$! Cy=“=, ei. Thus the

training error (as a fraction) is bounded by 3 *
(1

@ .cl

Since codes with minimum distance n/2 are easy to con-
struct as long as the number of classes k is small enough, this
shows that the situation for the ECC approach is much better
than in the one-per-class approach. Indeed we have estab-
lished a connection between the error of a multiclass learner
and the error of a binary learner, which is in itself something
non-trivial. But can we expect the error-correction proper-
ties of the code to take us further? Can we hope to do better
than the error of the binary learners? Unfortunately, good er-
ror correcting properties of the underlying code alone alone
cannot accomplish this goal:

Lemma 3 The worst-case training error of the ECC approach
using an (n, k, n/2) code, where n is a power of two, can be
as high as 2 times the best errOr of the binary hypotheses.

Proof: Let n = 2m, and let N be the number of train-
ing examples. To construct the example which leads to the
error claimed in the Lemma, we consider the (n,n,n/2)
Hadamard-matrix code (or any subcode). We note two rele-
vant properties of the Hadamard-matrix code:

Claim 1 For any codeword x, inverting the last n/2 posi-
tions transforms it into another codeword y. Hence, invert-
ing the last n/4 + 1 positions of x creates a vector closer to
y than to 2.

Proof: Immediate from the construction of the Hadamard-
matrix code. q (Claim I)

Claim 2 For any codeword x, there is some subset (which
depends on x) of its jrst n/2 + 1 positions that, when in-
verted, creates a vector that is closer to some codeword dif-
ferentfrom x than it is to x.

Proof: To see this claim, let y be any codeword such that
its (n/2 + 1)‘th position is the inverse of z(,/~+~), and such
that its first n/2 positions are not the same as those of X.

It is immediate from the construction that such a codeword
exists. Now, since the first n/2 positions of x and y come
from a Hadamard-matrix code, it must be that this subset of
positions differ on exactly n/4 positions. Furthermore, the
same can be said about the last n/2 positions. Hence, if we

147

consider a vector ZI that is equal to y on its first n/2 + 1 posi-
tions, but equal to z elsewhere, we have that v is at Hamming
distance n/4 - 1 from y but n/4 + 1 from 2. q (Claim 2)

Letel,es,..., e, be the errors of the n binary hypothe-
ses hl,h2,..., h, associated with the columns 1,2,. . . , n
respectively of the Hadamard-matrix. .Let fi = min{esnj4,
e3n/4+l, . . . , e,}. Consider the first fi fraction of training
examples. Suppose the n/4+ 1 hypotheses hsn/4, . . . , h, all
make errors on these examples. By Claim 1, all these exam-
ples would be misclassified. Further, let fs = min{er , es, . . .
en/2+1}. On the next f2 fraction of training examples, for
each example, by Claim 2, we can find a subset of its first
n/2 + 1 positions such that if the corresponding hypotheses
made errors on that example, it would be misclassified. Thus,
we have a situation where a fi + f2 2: 2 mini ei fraction of
the training examples are misclassified, and this completes
the proof. •I (Lemma 3)

Hence, we see that error-correction properties alone will
not suffice in establishing a bound that is better than the error
of the binary hypotheses produced by the binary learner. It
is interesting to note that a bad case for the ECC method is
a situation where the errors are highly correlated, whereas
the worst case for the one-per-class method is the situation
where errors are extremely uncorrelated. This might suggest
that some combination of these schemes might work well in
practice. We have some experimental results supporting this
view; these are discussed in Appendix B.

In the ECC method proposed by Dietterich and Bakiri [2],
an instance is classified by finding the closest codeword in
Hamming distance to the vector produced by the binary hy-
potheses. However this ignores the fact that the errors (and
hence the reliability) of the various hypotheses may vary;
we propose to use this information by employing variants of
“soft-decision” decoding in the classification stage. In par-
ticular, we propose two approaches, which we call symmet-
ric and asymmetric Maximum Likelihood Decoding. These
approaches are discussed in Appendix A.

3.2 Error Correlation

In the world of communication, error-correcting codes can
be used to transform a highly noisy channel into one with
extremely low noise. An analogy of this in the world of
learning would imply that even if the binary hypotheses have
high error rates, using an error-correcting code should dra-
matically reduce the final error. Why then can we construct
the counterexample of Lemma 3? The answer lies in the cor-
relations between the errors of the hypotheses. In communi-
cation theory, it is typically assumed that transmission errors
will occur independently, or at worst with some local depen-
dence (e.g. bursty noise); only under such assumptions can
the powerful theorems in coding theory be established. In
the learning scenario, correlation between errors in the ECC
method depend not only on the underlying data set and the
binary learner, but also on the code itself! This is a situa-
tion not dealt with in classical communication theory. There
is strong intuition that it is indeed the correlation of errors
that could cause problems. Based on this intuition, Diet-
terich and Bakiri addressed this issue by focusing on codes
with good column distance properties. Their intuition was

that if the columns which define the individual binary learn-
ing problems are quite different, then the correlation between
hypothesis errors should be reduced. Of course, this is only
a heuristic, since the example given in Lemma 3 uses the
Hadamard-matrix code which has excellent column distance
properties. In our work, we choose instead to attack the prob-
lem of error correlation directly. First, we attempt to quantify
the intuition that error correlation is important with the fol-
lowing Lemma:

Lemma 4 Let A be an upper bound on Pr, [hi(z) is wrong
and hj(s) is wrong] for all i, j, 1 5 i < j < n. Then
the worst-case training errOr of the ECC approach using an
(n, k, d) code can be no higher than 4wA. In particu-
lal; for codes with minimum distance d at least n/2 + 2, this
is no more than 16A.

Proof: Let N be the number of training examples, and let E
be the training error of the final ECC hypothesis. We count
the number of pairs of individual binary hypothesis errors
made over all examples. For each of the EN examples that
were misclassified, at least (“,/“) pairs of errors must have
occurred. On the other hand, by definition of A, the total
number of pairs of errors made by the hypotheses over all
examples is at most (T) AN. We therefore have

cl

This Lemma can, of course, be generalized to “higher
moments” of error correlation. Note that it formalizes and
quantifies our intuition that low error correlation together
with good distance properties of the underlying code implies
that the ECC approach will work well.

4 Boosting
An Active Approach. Above, we showed that achieving
small error-correlation in the ECC approach would imply
small overall error. Dietterich and Bakiri tried to attack this
problem by tailoring their error-correcting codes to discour-
age error-correlation; but as we have seen, this is only a
heuristic approach. Instead, we propose to actively work to
find binary hypotheses with controlled error-correlation. We
observe that the powerful method of boosting, by cleverly
weighting training examples and hypotheses, seems to over-
come the problem of error correlation in combining many
hypotheses. Thus, in this section, we investigate how to com-
bine techniques from boosting and error correcting codes to
get the advantages of both. We re-interpret an existing al-
gorithm of this type, called ADABOOST.OC [12], as one
that uses boosting techniques to find the binary hypotheses,
but then uses weighted closest-codeword decoding to clas-
sify instances. With our perspective, we refine the method
by which the binary hypotheses are found and weighted. We
obtain a new, somewhat simpler, algorithm which we call
ADABoosT.ECC, that achieves a stronger theoretical per-
formance guarantee. We also present some experimental ev-
idence that our algorithm performs better in practice, as well.

148

4.1 Boosting Overview

Boosting is a powerful and well-studied method of finding
a (provably) highly accurate hypothesis (classification rule)
by combining many “weak” hypotheses generated by a base
learning algorithm, each of which is only moderately accu-
rate. Boosting algorithms operate in several rounds. Dur-
ing each round they reweight examples in the training set
and rerun the base learning algorithm on these reweighted
examples. Effectively, boosting forces the weak learning al-
gorithm to concentrate on the “hardest examples” (the ones
misclassified so far). One can achieve a sufficiently high ac-
curacy on the training examples by running a large number
of rounds of boosting. The final hypothesis is, typically, a
weighted vote of the weak hypotheses. By keeping each of
the weak hypotheses to be a simple rule, one can then con-
trol the complexity of the final hypothesis, and thereby, using
VC-theory [151, expect a low error on the test examples as
well.

The first boosting algorithms were discovered by Schapire
[1 l] and later improved by Freund [3]. These algorithms
are pretty complicated and not suitable for easy implementa-
tion. A major breakthrough came in the form of Freund and
Schapire’s ADABOOST algorithm [5] which is extremely ef-
ficient and also very easy to implement. It has received ex-
tensive empirical and theoretical study and has been found
to work very well on several practical binary classification
problems [10,9, 6, I, 7, 131. There have also been boosting
algorithms for multiclass learning which we discuss next.

4.2 Boosting for Multiclass problems

The binary ADABOOST algorithm requires that the accuracy
of each classification rule produced by the weak learner be
(non-negligibly) greater than l/2. For binary classification
problems, this requirement is about as minimal as can be
hoped for, since random guessing will itself achieve an ac-
curacy of l/2. For multiclass problems, however, in which
k > 2 labels are possible, an accuracy of l/2 may be much
harder to obtain than the random guessing accuracy rate of
l/k.

If the underlying weak-learners are fairly powerful (like
C4.5 for instance [lo]) this is not a big problem since, as ob-
served in [121, they usually get accuracy l/2 even on the diffi-
cult distributions of examples produced by boosting. While
the overall training error rate is usually much lower when
more expressive and powerful weak learners are used, this
implies a lot more computation time (which is a vital issue,
especially for large datasets) and a higher complexity of the
final hypothesis which might result in increased test error.
Therefore from a practical standpoint, we are more interested
in the issue of what can be achieved with very simple weak
learners.

Along these lines, Freund and Schapire [5] proposed a
pseudoloss boosting algorithm ADABOOST.M:! for multi-
class learning, where the weak learner at each round chooses
a set of plausible labels for each example. For example, in a
digit recognition problem, the weak hypothesis may predict
a certain example to be a 0, 4 or 9, rather than just a single
digit. The hypothesis is then evaluated according to a related
pseudoloss measure, and boosting proceeds as in the binary
case except that we now use a distribution on example-label

pairs in each round. The final hypothesis classifies an in-
stance according to the single label that occurs most fre-
quently in the plausible label sets chosen by the weak hy-
potheses, ties being broken arbitrarily.

Experiments conducted with this algorithm [6] indicate
that it performs well, but has some significant drawbacks.
First of all, it requires weak hypotheses optimized for the
more complex pseudoloss measure, thus complicating the
design of the weak learners (eg. most off-the-shelf weak
learners cannot handle this measure). Secondly, this approach
is fairly slow as the run-time of the weak learner is roughly
O(k) times slower than that of a pure error-based simple bi-
nary weak learner.

These drawbacks motivated Schapire [12] to design an
alternative algorithm, called ADABOOST.OC, that combines
boosting with the ECC approach we saw in Section 3. A for-
mal description of ADABOOST.OC is provided in Figure 1.

This algorithm works as follows. As in boosting, in each
round t of running the weak learner, the examples are re-
weighted in a manner focusing on the hardest examples by a
distribution Dt on the set X of training instances. And fol-
lowing ECC, in round t of boosting a binary coloring pt :
Y + { -1, +1} of the set Y of labels is picked to create a
new binary classification problem (by relabeling the train-
ing examples according to pt). The weak learner is then
used to obtain a weak hypothesis ht : X + {-1,-l-l}.
The goal of the weak learner is to minimize the error Et =
PriNDt [ht(xi) # ,ut (yi)] . A hypothesis &t is then defined
as ht(x) = (1 E Y : ht(x) = pt(Z)}, its pseudoloss Zt is
computed, and a weight at for the vote of round t is com-
puted as a function of ct.

Finally, the combined hypothesis Hf is computed. This
is done by, given an instance x, interpreting the binary clas-
sification ht(x) of round t as a vote for all labels in &t(z)
and weighting this vote by crt. The label 1 that receives the
most weighted votes in this scheme is chosen as Hf(x).

ADABOOST.OC combines the advantages of both the
boosting and ECC paradigms: it is easy to implement as the
weak learning algorithm need only be able to handle “pure”
binary problems, and it comes with a strong theoretical guar-
antee (Theorem 1 of [121) that if the weak learner can consis-
tently generate weak hypotheses that are slightly better than
random guessing, then with sufficient number of rounds of
boosting, the error of the final hypothesis can be made arbi-
trarily small.

Subsequent work in [131 gives an alternative algorithm,
called ADABOOST.MH, that handles multiclass problems
(in fact multilabel problems where each example belongs to
a certain subset of classes). This algorithm does not rely
on picking colorings at each round of boosting but instead
learns weak hypotheses whose domain is X x Y (as op-
posed to simply X as in ADABoosT.OC). For this reason,
ADABOOST.MH, while giving improved performance over
ADABOOST.OC in several cases, runs for roughly a factor
O(k) time longer (here k =]Y (is the number of classes).

This motivates the attempt to improve the performance
of ADABOOST.OC in practice (and if possible even in the-
ory) without sacrificing what is arguably its most compelling
advantage, namely its, simplicity and run-time efficiency. It
is this question which we address, and design a variant of

149

Given: (zI~YI.), . . . , (~m,ym) : zi E X,yi E Y, lYl = k
Initialize: D1 (i, 1) = l/m(k - 1) if I # yi, fir (1, I) = 0 Vl E Y.

Fort=1,2,...,T:
Compute coloring pt : Y- --+ { - 1, +l}.
Let Ut = CL, C,,, wGwt(Yi) #Pm
Let Dt(i) q = & . C*,y fit(CObt(Yi) # Pt(Ol*
Get hypothesis ht : X + (-1, +l} from the weak learner for distribution Dt.
Let Lt(z) == {I E Y : ht(z) = it(Z)}.
Let Et = i CL, C,,, b,(i,Z) ’ ([Yi $ b(Zi)J + [l E L(G)]).

Letat = fin(F).
Update:

a+1 (4 I) = & . Bt(i, I) exp {at([yi $ b(G)] + 11 E h(zi)])}

where .& is a normalization factor.

Output the final hypothesis:
Hf(2) = wgnaxt,y CT=, 4 E L(z)l.

Figure 1: A description of ADABOOST.OC [12]

ADABOOST.OC, which we call ADABoosT.ECC, that is in
fact slightly simpler than ADABOOST.OC but performs bet-
ter both in practice and in theory.

4.3 Our new algorithm ADABOOST.ECC
Our algorithm (see Figure 2) proceeds along the lines of
ADABOOST.OC, but the main point of difference in our al-
gorithm is that instead of picking a weight at based on the
pseudoloss ~5~ as in ADABOOST.OC, we pick weights at
and pt for the positive and negative votes of ht : X +
{ - 1, +l} that are based just on the structure of hi and its
performance on the binary learning problem of round t; no
pseudoloss measure is computed or used. (It is possible that
we may pick one or both of at, Pt to be negative.) We then
form a new hypothesis gt : X + ZR defined by:

gt(x) = at ifht(z) = +l
= -fit if ht(s) = -1.

Now given an example x, we view gt(x) as providing a vote
of value gt (z) . pt (1) for the label 1, and the final hypothe-
sis Hf (2) outputs that label y for which the algebraic sum
of its votes from the various gt’s is maximum. Note that
this is exactly a weighted closest codeword decoding for the
error-correcting code formed by the colorings pt. A formal
description of the algorithm is given in Figure 2. Note that
explicit computation of the pseudoloss as is done by ADA-
BOOST.OC is not performed in this algorithm. We now pro-
vide a theoretical guarantee on the training error of the hy-
pothesis produced by ADABOOST.ECC .

Theorem 1 The training error of the hypothesis Hf under
the uniform distribution on training examples is at most

@ - 11 fi St = (k - I> f-J&c; + 1 - Ut).

Proof: The proof is based on ideas from Theorem 11 of [5].
Suppose that the final hypothesis Hf of ADABOOST.ECC
makes a mistake on instance xi, so that Hf(q) # yi. Then,
by the definition of Hf,

2 [gt(+tW~bi)) - gt(+4Yi)] 10 (1)
t=1

Now consider the binary problem of learning the all FALSE
concept f-r on the the domain {zr ,zs, . . . , z,} x Y un-
der the uniform distribution dr over all pairs (Q, 1) with
1 E Y - {yi}: i.e f(z,l) = -1 Vx E X,1 E Y. We
view the update step (for dt(-, .)) in ADABOOST.ECC as
the update rule of the binary ADABOOST algorithm (see [Sj),
whose weak learner, at round t, returns the weak hypothesis

fdxi,O k (l/2) x Mxht(~) - gt(d~t(!d) and we
choose its weight to be 1. By the analysis of binary ADA-
BOOST presented in [13], the probability that for a uniformly
chosen pair (zi,Z) for 1 5 i 5 m and 1 E Y - {yi), we can
have

f(Xi,l) 2 S&m& &X&Z)) = 1
t=1

(which amounts to an error in learning the concept f-r) is at
most nT=, &.

By Equation 1, for any example xi such that Hf (zi) #
yi in ADABOOST.ECC , we have f(xi, Hf(zi)) = 1. Hence
if U denotes the uniform distribution on the training exam-
ples, we have

Pr,,,v[Hf(xi) # yi)] 5 Pr,,,t@Z # yi : f(%,Z) = l]

I (k - l)Prc,i,l)wbl [hi7 1) = 11

5 (k-l&&
i=l t=1

where Zt = Cz”=, Dt (i) exp (- gt (&t (yd). t=1

150

Given: (ZI~YI), . . . , (zm,ym) : zi E X,y; E Y, IYI = Ic
Initialize: Dl(i, I) = l/m(k - 1) if I # yi, L?,1 (i, 1) = 0 if I = yi.

Fort=1,2,...,2’:
Computecoloringpt : Y-3 {-l,+l}.
Let r-Jt = CL, C&Y Dt(i, W4Yi) # Pt WI.
Let LA(i) = j$. &, w, W4Yi) # Pm
Get hypothesis ht : X --t { -1, +l} from the weak learner for distribution Dt.
Compute the weight of positive and negative votes at and /?t respectively.
Define:

gt(z) = at if ht(z) = +l

Update:
= -Pt if ht(z) = -1.

-t)t+& 1) = & . fit(i) 1) exp { (gt(zi)@(l) - gt(G)Pt(yi))/2}

where & is a normalization factor.

Output the final hypothesis:
Hfbc) = ac+w4Ey CL, d~ht0).

Figure 2: A description of ADABOOST.ECC

To complete the proof, it remains to express & in terms of
Zt and Ut. Now,

= Ut C Ni> ew [- d~iht(yi)] + (1 - Ut)

= u,z,‘+ (1 - Ut).

The last but one step above follows from the definitions of
Ut and Dt (.). This completes the proof. cl

Observe that the specification of ADABOOST.ECC in
Figure 2 is for the asymmetric version (since the weight of
the positive vote it is not necessarily equal to the weight
of the negative vote pt). One can also consider the sym-
metric version of this algorithm where it = /& for each
t. It turns out, using the methods from [131 on domain-
partitioning weak hypotheses, that the optimum choice of
at, ,dt is given by

at = +l
(

Ci:ht(z;)=pt(l;)=l Dt(i)

) Ci:ht(zi)=l~pt(yi) a(4 ’

(

Ci:ht(z;)=p~(yi)4 a(4

pt = sn Ci:ht(si)4+pt(y;) a(i) ;)

and for the symmetric version, the optimum choice is

at = pt = : In (
Ci:h~(z.)--p&) Ddi) Ci:ht(z;);pt(y;) a(i)) * (2)

In the following, we bound the error of the symmetric ver-
sion of our algorithm. We will then argue that even this
bound is better than the one proved for ADABOOST.OC in
[121, and of course the asymmetric version will only perform
even better. We stress here that our algorithm is not simply
ADABOOST.OC modified to incorporate the methods of [131
to pick the weights of the votes; together with picking the
weights at, ,& using the methods of [131; one significant fea-
ture that distinguishes our algorithm from ADABOOST.OC
is that the pseudoloss is never computed or used as in ADA-
BoosT.OC. Indeed the fact that even the symmetric version
is able to do better than ADABOOST.OC implies that the im-
provements shown by our approach come not only from the
fact that positive and negative votes are weighted differently,
but also from the fact that we are choosing the weight (Yt for
the vote of round t directly in terms of the weak hypothesis
ht ‘s error on Dt without going through a pseudoloss mea-
sure. Note that this also indicates that ADABOOST.ECC is
a simpler and an even more faithful reduction of multiclass
learning to binary learning problems.

Theorem2 Letpl,pz,..., pt be any sequence of colorings
andlethl,hz,... , hT be any sequence of weak hypotheses
produced by the weak learner Let et = l/2 - ^/t be the
error of ht with respect to the relabeled and reweighted data
on which it was trained, and let Ut be as in Figure 2. Then
the training error of the$nal hypothesis Hf output by the
symmetric version of ADABOOST.ECC is bounded by

T -

(k - 1) r-ptj/l - 47; + (1 - Ut)).
t=1

Proof: In the case when we use symmetric weights, by Equa-
tion 2, we have at = /3t = i In . For this choice of

151

at, we have

zt = C Dt (i) exp[-a&t (+t WI

= eat&t + e-“’ (1 - Et)

=
d- 1 - 47;.

The statement of the theorem now follows using Theorem 1.
0

Lemma 5 For 0 5 Ut 5 1 and 0 5 Tt 5 l/2, we have

Proof: Indeed if b = &-@r@ and a = Ut dw +
(1 - Vt), then we can compute

b2 - a2 = 2Ut(l- Vt)(l-- J1-4r,2)

2 0

and the lemma follows. 0

By the above Lemma and Theorem 2, we have proved
a better upper bound on the training error of even symmet-
ric ADABOOST.ECC as compared to that already known
bound of (k - 1) nT=, dm for ADABOOST.OC
(see Theorem 1 of [121). In the next section, we will see that
this improvement is also observable in practice in the exper-
iments we ran.

5 Experiments

We performed experiments with our boosting algorithms on
two multiclass learning problems from the UC1 repository [8].
The first problem is handwritten digit recognition, called PEN-
DIGITS in the sequel, Here, the data set has 7494 training
examples and 3498 test examples. The number of classes is
10, one for each of the digits O-9. Each instance has 16 at-
tributes, each taking an integer value between 0 and 100. The
second learning problem is a well-studied letter recognition
problem, which we refer to as LETTER. The associated data
set has 16000 training examples and 4000 test examples. The
number of classes is 26, one for each letter of the English al-
phabet. Each instance has 16 attributes each of which takes
an integer value between 0 and 15.

We chose these two data sets to test out our algorithms
as these are among the more comprehensive and larger data
sets in the repository. Also, digit and letter recognition tasks
are interesting learning problems in their own right.

We use the simplest of weak learners, namely one-level
decision trees. The weak hypothesis makes its prediction
based on the result of a single test comparing one of the
attributes to a threshold value. The best hypothesis of this
form which optimizes the appropriate learning criterion can
be found by direct search; we use a more efficient search for
this hypothesis in our implementation.

We implemented Schapire’s ADABOOST.OC [121, and
also our boosting algorithms (described in Section 4.3) with
both asymmetric and symmetric weightings of the various

152

weak hypotheses. All these algorithms give test and train-
ing errors which are much better than those achieved by the
plain ECC based approaches. We find that our algorithms
perform significantly better than [12] on our two data sets:
we find that both algorithms get nearly 15% improvement
in the test error for PENDIGITS at 1000 rounds, of boost-
ing, and for LETTER, the asymmetrically weighted version
of our algorithm gets over 20% improvement and the sym-
metric version achieves 8% improvement in the test error at
4000 rounds of boosting. These results are shown in Figures
A and B. Another interesting aspect of our results is that
we get a test error of 14.15% after 4000 rounds of boost-
ing on LETTER using the asymmetric version of our algo-
rithm, and this improves by over 15% the best previously
reported error (16.4%) for boosting methods using the ex-
tremely simple weak learners we use (this error was achieved
by ADABOOST.MH [131 after 1000 rounds of boosting). On
the other hand, our algorithm performs only one-sixth of the
computation required by ADABOOST.MH to achieve this er-
ror.

Acknowledgments

We would like to thank Raj Iyer for many useful discussions
and comments on this draft, as well as for pointing us to sev-
eral references and for kindly giving us some of the code
used in [4]. We are grateful to Leslie Valiant for his encour-
agement, and for his wonderful course which prompted this
research. We also thank all those who contributed to the data
sets used in our experiments.

References

[II

PI

r31

E41

[51

161

[71

PI

PI

E. Bauer and R. Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boosting
and variance. Machine Learning, to appear.
T. G. Dietterich and G. Bakiri. Solving Multi-
class Learning Problems via Error-Correcting Output
Codes. Journal of AI Research, 2 (1995), pp. 263-286.
Y. Freund. Boosting a weak learning algorithm by ma-
jority. Information and Computation, 121 (1995), pp.
256-285.
Y. Freund, R. Iyer, R. E. Schapire and Y. Singer. An ef-
jicient boosting algorithm for combining preferences.
Machine Learning: Proceedings of the 15th Interna-
tional Conference, (1998).
Y. Freund and R. E. Schapire. A Decision-Theoretic
Generalization of On-line Learning and an Application
to Boosting. Journal of Computer and System Sciences,
55 (1997), pp. 119-139.
Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. Machine Learning: Proceedings of
the 13thInternationalConference, (1996), pp. 148-156.
R. Maclin and D. Opitz. An empirical evaluation of
bagging and boosting. In Proceedings of the 14th Na-
tional Conference of Artificial Intelligence, pp. 546-
551,1997.
C. J. Merz and P. M. Murphy. UCZ Repository of Ma-
chine Learning Databases.
http://www.ics.uci.edu/-mlearn/MLRepository.html.

J. R. Quinlan. Bagging, boosting, and C.5. In Proceed-

Figure A.

.-.

UKKl

Figure B.

ings of the the 13th National Conference on Artificial
Intelligence, pp. 725730, 1996.

[lo] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[I 11 R. E. Schapire. The strength of weak learnability. Ma-
chine Learning, 5 (1990), pp. 197-227.

[12] R. E. Schapire. Using Output Codes to Boost Multi-
Class Learning Problems. Machine Learning: Pro-
ceedings of the Fourteenth International Conference,
(1997), pp. 313-321.

[131 R. E. Schapire and Y. Singer. Improved Boosting Algo-
rithms Using Confidence-Rated Predictions. Proceed-
ings of the Eleventh Annual Conference on Computa-
tional Learning Theory, (1998).

[141 T. J. Sejnowski and C. R. Rosenberg. Parallel networks
that learn to pronounce English text. Journal of Com-
plex Systems, 1 (1987), pp. 145168.

[15] V. N. Vapnik. Estimation of Dependences Based on
Empirical Data. Springer Verlag, 1982.

A Maximum Likelihood Decoding

In the ECC method as proposed by Dietterich and Bakiri, the
determination of the classification is done by simply find-
ing the closest codeword in Hamming distance to the vec-
tor produced by the binary hypotheses. However, the error
rates of the binary hypotheses may vary greatly. Rather than
ignore this information, we first propose to use “Maximum
Likelihood Decoding” (MLD), under the assumption of er-
ror independence. Here, rather than simply finding the code-
word closest in Hamming distance, we attempt to find the
most likely codeword that could have led to the vector pro-
duced by the hypotheses. We use the training data to cal-
culate the probability of error pi for each binary hypothesis
hi. Then, to classify an instance z which led to the vec-
torv = (hr(z),hs(z),..., h,(z)), for each codeword 2 we
calculate the probability (assuming errors were made inde-
pendently by hypotheses) that z was corrupted into w. If we
let E be the set of positions i where xi # vi, then this prob-

153

ability would simply be:

I-b% l--J1 -2-4
GE i#E

Then we classify the instance according to the codeword
for which the above probability turns out to be maximum.
Note that this can also be viewed as a. weighted decoding.
In weighted decoding, each hypothesis hi has an associated
weight w;. To decode, for each codeword x, we compute a
sum, adding +wi if the i’th hypothesis agrees with xi, and
-wi otherwise. The codeword which leads to the highest
sum is then chosen as the best match. It is easy to see that
the MLD approach above is equivalent to weighted decoding
with hypothesis weights:

wi =
log(1 -Pi> - log(R)

2
Note, however, that the example of Lemma 3 can be

adapted to apply to this decoding procedure. Thus, even
for “Maximum Likelihood Decoding,” in the worst case, the
overall error could be as bad as is 2 times the minimum error
of the individual binary hypotheses.

Along these lines, we can further refine the decoding by
considering the probability of each hypothesis misclassify-
ing a positive example as a negative one and vice versa sepa-
rately. In this case, decoding would correspond to a weighted
decoding where the weight would depend on whether the hy-
pothesis is predicting a positive or negative example. We
also attempt this type of decoding, which we call asymmet-
ric MLD, and discuss its performance in Appendix B. We
note, however, that Lemma 3 could again be made to apply,
except now with twice the minimum one-sided error proba-
bility.

B Experiments based on the ECC approach
We now discuss our experiments using the algorithms based
on the ECC approach. The binary hypotheses (correspond-
ing to each column of the codewords) are obtained by run-
ning the binary version of ADABOOST for up to a certain
number of rounds (around 500 in our experiments). Our ob-
jective here was to improve the performance of the ECC ap-
proach using better decoding techniques. Figure C shows the
performance of several of our algorithms on the PENDIGITS
data set and Figure D on the LETTER data set. For these ex-
periments we used a random code of blocklength 60 where
each column has a equal number of -1’s and 1’s. We used
four kinds of decoding algorithms: the straightforward Ham-
ming distance based nearest codeword decoding used by Di-
etterich and Bakiri [2], the Maximum Likelihood Decoding
and its asymmetric version discussed in Appendix A, and fi-
nally, a decoding method we propose that tries to account
for error correlation information. We sketch this (heuristic)
method now. The method attempts to weight hypotheses ac-
cording to their correlations with other hypotheses. We first
calculate the pairwise error correlation on the training exam-
ples to estimate

A,,j = c[hi(x) is wrong AND hj(x) is wrong].

We then set up the following linear system, in which we
attempt to force hypotheses with correlated errors to share

weight, so that several hypotheses that make highly corre-
lated errors together get a weight that is comparable to the
weight of a single hypothesis that makes independent uncor-
related errors. For each i, we have the constraint:

&,j

wifCAii+Aj,jwj=l

j#i ’

We find that for PENDIGITS, the above correlation based ap-
proach improves the test error by over 15% at 500 rounds of
boosting, and for LETTER, it improves by 13% again at 500
rounds of boosting.

Dietterich and Bakiri conjecture that high inter-column
Hamming distance is useful in controlling the error correla-
tion of the various hypotheses. We observe that Hadamard-
matrix codes have this property to almost the best possible
extent that can be hoped for. For example, for PENDIGITS,
we picked 10 rows from a 16 x 16 Hadamard matrix, and
used this as our code in the ECC approach. We observed
that when combined with asymmetric MLD, this performs
very well on test error as shown in Figure E. But we observe
that our error correlation based decoding achieves almost the
same performance starting with a random code, indicating
that taking into account correlation information in the decod-
ing stage has helped us to eliminate some of the bad column
correlations of the random code.

One drawback of the ECC approach is that it seems to
throw away the real world nature of the data by picking ran-
dom partitions of the labels to create “artificial” binary clas-
sification problems. The one-per-class method obviously does
not suffer from this drawback, as the binary problems it cre-
ates correspond to the real learning problems of whether an
instance belongs to a particular class or not. Indeed, for the
recognition data we used, the boosted learners performed
so much better on the one-per-class learning problems that
the performance of one-per-class was usually comparable to
our best ECC-based algorithms. We observed that in the
one-per-class approach, the errors of the binary hypotheses
tend to end up being highly uncorrelated. This means that
when exactly one of the class-hypotheses votes positively
on an instance, one can be quite confident in the classifi-
cation. When this does not occur, it means that the instance
came from one of k almost disjoint sets where the individual
class-hypotheses fail. The fact that many class-hypotheses
probably were able to deal with the instance correctly gives
hope that many of the binary hypotheses generated by the
ECC approach might also be able to classify the instance
correctly. Hence, we consider an algorithm combining one-
per-class and the ECC approach. This algorithm trains bi-
nary hypotheses for both one-per-class and ECC. Then, to
classify an instance, it firsts sees if exactly one of the class-
hypotheses votes positively on the instance. If so, it out-
puts the corresponding class. Otherwise, we pass to the ECC
decoding algorithm and answer accordingly. We compare
each individual approach to the combined approach experi-
mentally in Figures F (for PENDIGITS) and G (for LETTER).
Experimentally, we find that this combined approach yields
test errors that are sometimes over 25% better than those of
either of the individual approaches.

154

Figure C Figure D

WT. \
0.m . ‘~-““‘--.... ._._._......,. .,.,_,...,

‘-‘-‘-.“,_...._..._._...... ._.,, ,.,
a.oL 0 am +--O” am ‘=

Figure F

Figure E

.‘,: 1 .“‘--- y~: -._._... .._.. ~. .._._.., 1
0 Irn zm 2% oI sm em

W‘ .
‘x.

I.\
~~----~~..-......... ,,,,,_.......

0.2
0 x4 ID1 mz.~“~

Figure G

155

