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ABSTRACT

The Breadth-First Search (BFS) algorithm is an important
building block for graph analysis of large datasets. The BFS
parallelisation has been shown to be challenging because
of its inherent characteristics, including irregular memory
access patterns, data dependencies and workload imbalance,
that limit its scalability. We investigate the optimisation and
vectorisation of the hybrid BFS (a combination of top-down
and bottom-up approaches for BFS) on the Xeon Phi, which
has advanced vector processing capabilities. The results show
that our new implementation improves by 33%, for a one
million vertices graph, compared to the state-of-the-art.
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1 INTRODUCTION

Modern applications process impressive amounts of data.
Graph analysis has emerged as a key area for the analysis of
this data as graphs can represent entities in terms of vertices
and their relationships in terms of edges. It is common to
look for patterns within these relationships, aiming to extract
information to be further analysed.

The Breadth-First Search (BFS) is one of the main graph
search algorithms used for graph analysis and its optimisa-
tion has been widely researched using different parallel and
distributed systems. From these studies, the BFS parallelisa-
tion has been shown to be challenging because of its inherent
characteristics, including irregular memory access patterns,
data dependencies and workload imbalance, that limit its
scalability. However, only 6 papers (see Table 1) have looked
at recent parallel architectures using advanced vector units;
e.g. SIMD Intel AVX-512.

This paper investigates the optimisation and vectorisation
of the BFS on the Xeon Phi, which is a parallel architecture
containing advanced vector capabilities within the experi-
mental framework of the Graph 500 benchmark. As a result,
an novel optimised parallel version of the hybrid BFS is pre-
sented using vectorisation, building on top of the vectorised
top-down BFS introduced by Paredes et al. [15]. Note that
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the concept of the hybrid BFS algorithm was introduced by
Beamer et al. [2]. Our novel hybrid BFS outperforms the
state-of-the-art implementation on the Xeon Phi by 33% for
one million vertices graphs. This paper presents the vectorisa-
tion of the bottom-up approach of the hybrid BFS algorithm
at first sight is not vector friendly. The vectorisation of the
algorithm was implemented by designing an algorithm that
restructures the data in a vector friendly manner. For this
reason, we believe this paper can be useful for future investi-
gations into new techniques to better exploit vectorisation
for irregular data problems. Furthermore, the paper can be
a guide for researchers undertaking research on graph algo-
rithms.

The structure of the paper is as follows. Related work is
discussed in Section 2. The Xeon Phi architecture is pre-
sented in Section 3. We introduce the hybrid BFS algorithm
in Section 4. We describe the vectorisation of the bottom-
up BFS algorithm in Section 5.1 using the optimization
techniques presented in [15]. Section 5 shows an analysis
of the bottom-up by using the data taken from hardware
performance counters for events related to the instructions,
cache access and vector instructions counters. We present
performance comparisons between the non-SIMD and SIMD
versions and explore the impact of parallelism at two levels of
granularity (OpenMP threading and the vector unit), achiev-
ing better results for the native hybrid BFS algorithm on
the Xeon Phi than those previously presented in [5] and [6].
The experimental setup and analysis of our results are shown
in Section 6. Conclusions and future work are discussed in
Section 9.

2 RELATED WORK

Table 1 presents a summary that conveys previous studies
aiming at the vectorisation of graph algorithms on the Intel
Xeon Phi.

Year Reference Approach optimisation vectorisation

2012 Saule and Çatalyürek [17] top-down no optimisation automatic
2013 Gao et al. [19] top-down bitmaps intrinsics
2013 Stanic et al. [18] top-down prefetching intrinsics

2014 Gao et al. [5] hybrid
bitmaps

prefetching
intrinsics

2014 Golovina et al. [6] hybrid
loop unrolling
prefetching

automatic

2015 Wang et al. [20] hybrid
vertex degree
processing

intrinsics

Table 1: Previous studies related with the vectorisa-
tion of BFS algorithm on the Intel Xeon Phi.

The key contribution of this work builds on the studies
carried out by Gao et al. in [19] and [5]. In the first study,
they present the vectorisation of the top-down BFS algorithm
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using vector intrinsic functions, which was outperformed by
[15], which clarified the impact of prefetching, thread affinity
and vector unit usage rate. The second study is related with
the vectorisation of the hybrid BFS algorithm. Similarly to
the top-down BFS implementation in the first study, Gao
et al. [19] present the process of vectorising not only the
top-down but also the bottom-up approach of the hybrid
BFS algorithm. Again, little detail of their implementation
is provided, so in Section 5 we present our vectorisation
of the bottom-up approach of the hybrid BFS algorithm,
including a systematic analysis of the vector unit utilisation.
The results of our hybrid BFS algorithm are better in terms
of performance compared against those presented in [5].

In addition, the work done by [6] for the vectorisation
of the BFS algorithm is listed in the June 2016 Graph 500
list [1]. The experiments were conducted in an Intel Xeon
Phi (5110P) platform, similar to the one used in this paper,
resulting in 1.80 GTEPS. Section 8 presents a comparison
between these results with the results of the vectorisation of
the hybrid BFS algorithm implemented in this work.

3 THE XEON PHI ARCHITECTURE

The Intel ® Xeon Phi TM coprocessor used in this paper is
composed of 60, 4 way-SMT Pentium-based cores [16] and a
shared main memory of 8 GB. Each core contains a powerful
512-bits vector processing unit and a cache memory divided
into L1 (32KB) and L2 (512KB) kept fully coherent by a
global-distributed tag directory (TD), coordinated by the
cache coherency MESI protocol. Cores are interconnected
through a high-speed bi-directional ring bus [16] as it is
shown in Figure 1. Maximum memory bandwidth is quoted
as 320GB/s.
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Figure 1: The Intel ® Xeon Phi Microarchitecture.

The vector process unit (VPU) is composed of vector
registers and 16-bit mask registers. Each vector register can
process either 16 (32-bit) operations or 8 (64-bit) operations
at a time. A vector mask consists of 16 bits that control the
update of the vector elements. Only those elements whose
bits are set to 1 are updated into the vector register, the ones
with 0 value in the mask remaining unchanged. The Xeon
Phi contains both hardware (HWP) and software (SWP)

prefetching, which in some cases can help to reduce memory
latency.

The programming environment of the Xeon Phi includes
multi-threading and the vector units. OpenMP is a versatile
interface to program shared-memory multi-threaded systems
[4] supported by the Xeon Phi. Programming the vector
unit can be done at two levels: automatic and manual. For
automatic vectorization, the compiler identifies and optimizes
all parts of the code that can be vectorized without the
intervention of the programmer. However, there are some
obstacles that can limit the vector unit utilization, such as
non-contiguous memory accesses or data dependencies [10].
In such cases, manual vectorization can be used allowing
the user to force the compiler to vectorize certain parts in
the code. Manual vectorization can be set by using SIMD
pragma directives supported also using OpenMP library. The
compiler also supports a wide range of intrinsics which allow
a programmer low-level control of the vector unit.

The performance optimisation of a program is a complex
task that involves different levels of knowledge [8]. To help this
process, there are tools to get access to real-time hardware
performance information such as the PAPI (Performance
Application Programming Interface) library [14]. This library
provides access to various hardware performance counters by
tracing different events, while the program is being executed.
Five of the PAPI counters were used for the performance
analysis of the experiments in Section 7.2.

4 THE HYBRID BFS ALGORITHM

The conventional way to traverse the graph is by layers. A
layer consists of a set of all vertices with the same distance
from the source vertex. Processing vertices by layers allows
vertices to be explored in any order as long as they are in the
same layer; a key feature for further parallelisation. However,
each layer has to be processed in sequence. All vertices with
distance 𝑘, (layer 𝐿𝑘) are processed before those in layer
𝐿𝑘+1, which is the reason why the algorithm is often referred
to as layer-synchronous. The layer-synchronous algorithm
uses two lists to represent the concept of a layer. The first
list contains all the vertices to be processed in the current
layer and it will be called frontier. The second list is the
output list, but which for consistency with the literature will
also be sometimes referred to as the output queue, holds
a sequence of vertices that after processing the layer will
be swapped with the frontier to be processed in the next
layer. When a vertex has been processed it is marked as
visited, otherwise, it remains non-visited. Each vertex has an
associated set of adjacent vertices to which it is connected by
an edge, known as an adjacency list. Only the vertices that
were found to be non-visited vertices are put into the output
queue. The result of the algorithm is a BFS tree represented
by a list of the predecessors or parents (P) of the traversed
vertices.

Processing vertices in each layer to explore the adjacency
list of vertices related to them (parent-child relation) is called
top-down approach. This is in contrast to the bottom-up
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approach, which is based on processing non-visited vertices
to find their parents in the frontier (child-parent relation).
A combination of both approaches top-down and bottom-
up, called hybrid, is the state-of-the-art BFS algorithm [2].
Algorithms 1 and 2 present the top-down and the bottom-
up approaches for the exploration per layer of the BFS,
respectively, where in refers to the input list or frontier, out
to the output queue, vis to the visited array and P to the
predecessor array.

Algorithm 1 top-down-BFS(𝑖𝑛, 𝑜𝑢𝑡, 𝑣𝑖𝑠, 𝑃 )

1: for 𝑢 ∈ 𝑖𝑛 do

2: for parallel 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do ◁ Adjacency list exploration
3: if 𝑣𝑖𝑠.𝑇𝑒𝑠𝑡(𝑣) = 0 then ◁ If v is not visited

4: 𝑣𝑖𝑠.𝑆𝑒𝑡(𝑣)

5: 𝑜𝑢𝑡.𝑎𝑑𝑑(𝑣)
6: 𝑃 [𝑣] = 𝑢

7: end if

8: end for
9: end for

Algorithm 2 bottom-up-BFS(𝑖𝑛, 𝑜𝑢𝑡, 𝑣𝑖𝑠, 𝑃 )

1: for parallel 𝑣 /∈ 𝑣𝑖𝑠 do ◁ All the non-visited vertices

2: for 𝑛 ∈ 𝐴𝑑𝑗[𝑣] do ◁ Iterating the adjacency list
3: if 𝑛 ∈ 𝑖𝑛 then ◁ A parent was found

4: 𝑣𝑖𝑠.𝑆𝑒𝑡(𝑣)
5: 𝑜𝑢𝑡.𝑎𝑑𝑑(𝑣)

6: 𝑃 [𝑣] = 𝑛

7: break
8: end if

9: end for

10: end for

Whether a layer is processed using the top-down or bottom-
up approach is dictated by an online heuristic based on three
metrics; the number of edges to check in the frontier, 𝑒𝑓 ,
the number of vertices in the frontier ,𝑣𝑓 , and the number
of edges to check in the non-visited vertices, 𝑒𝑢. These are
variables which are updated during the traversal of each layer.
The 𝑒𝑓 adds up the degree of every node in the layer, 𝑣𝑓 sums
the number of vertices added to the layer and 𝑣𝑢 counts the
number of edges of the non-visited vertices. The heuristic
compares these metrics at the end of each layer and the
resulting information is used to determine whether the layer
should be processed using the top-down or the bottom-up
approach.

The pseudocode of the hybrid BFS algorithm is presented
in Algorithm 3, showing the switching points to transition
between the top-down and the bottom-up algorithms. Partic-
ularly, the vectorisation of the hybrid involves the vectorised
version of both algorithms. The vectorisation of the top-down
algorithm is described and analysed in [15], whereas the vec-
torisation of the bottom-up is described further in Section
5.

Table 2 shows an example of the switching points to swap
between the top-down and the bottom-up approaches of the

Algorithm 3 hybrid-BFS(𝐺, 𝑠)

1: topdown=true

2: while 𝑖𝑛 ̸= 0 do
3: if |𝑖𝑛| > 𝑓(𝑛, 𝑒𝑓 , 𝑣𝑓 , 𝑒𝑢) then ◁ function f is architecture

specific

4: topdown = false
5: else if |𝑖𝑛| < 𝑔(𝑛, 𝑒𝑓 , 𝑣𝑓 , 𝑒𝑢) then ◁ function g is

architecture specific

6: topdown = true
7: end if

8: if topdown then
9: top-down-BFS(in, vis, out, P)

10: else

11: bottom-up-BFS(in, vis, out, P)
12: end if

13: 𝑒𝑓 , 𝑣𝑓 , 𝑒𝑢,←getCounters()

14: swap(in, out)
15: 𝑜𝑢𝑡← 0

16: end while

hybrid BFS algorithm for a graph created by the Graph 500
graph generator introduced in Section 6. The graph size is
defined by two parameters: SCALE and edgefactor. The total
number of vertices in the graph is calculated by 2𝑆𝐶𝐴𝐿𝐸

and the total number of edges is calculated by 2𝑆𝐶𝐴𝐿𝐸 *
𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟.

Layers 𝑣𝑓 𝑒𝑢 𝑓 𝑔 Approach

1 1 262,143 255 4,096 top-down

2 554 261,589 255 4,096 bottom-up

3 97,725 163,864 160 4,096 bottom-up

4 77,711 86,153 84 4,096 bottom-up

5 868 85,285 83 4,096 top-down

6 5 85,280 83 4,096 top-down

TEPS 1,009,411,193

Table 2: Example execution of the hybrid BFS for a
graph size SCALE=18 and edgefactor = 16.

5 THE BOTTOM-UP VECTORISATION

The bottom-up approach consists of stepping through each
of the non-visited vertices in a layer to find the first vertex
in their adjacency list in the frontier. In general, the vectori-
sation of an algorithm can be tricky in the sense that input
data need to be structured in a way that increases vector unit
utilisation. Specifically, the vectorisation of the bottom-up
algorithm does not follow the same principle of vectorising
the adjacency list as is used in the top-down, which consists
of processing the adjacency list in chunks of 16 elements. This
is mainly because while the top-down approach intends to
process the largest number of vertices at the same time, the
bottom-up aims only to find one parent of each vertex to be
processed. For that reason, the vectorisation of the bottom-up
involves an extra step to gather the input vertices in a layout
that better utilises the vector unit, allowing to set multiple
parents at a time. This algorithm is presented next.
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5.1 Setting Multiple Parents

While the bottom-up in Algorithm 2 looks to set one parent
of each non-visited vertex at a time, the vectorised algorithm
looks to set parents for multiple vertices at a time. The
algorithm consists of the following four steps to process 16
input vertices at a time aiming to find a parent for each by
iterating through their adjacency lists.

(1) Load input vertices. A sequence of 16 consecutive
vertices is loaded to a vector register in a loop over
all vertices, starting with vertex 0.

(2) Filtering non-visited vertices. The input vertices
are filtered, so that the only vertices being processed
are the non-visited vertices. This filtering can be
done by using a bit vector mask formed from the
visited bitmap array.

(3) Adjacent vertices iterations. Each of the adja-
cent vertices of the non-visited vertices are gathered
over a number of iterations. In the first iteration, the
first vertex in the adjacency list for each non-visited
vertex is gathered. Subsequent iterations gather the
next adjacent vertex. The number of iterations is
determined by a statically set threshold related with
the average number of iterations required before a
parent is found. Figure 2 illustrates the gathering
of the adjacent vertices of the 𝑛𝑡ℎ iteration. After
the adjacent vertices are gathered, they are tested
to verify if they have been visited previously. The
adjacent vertices that are in the frontier of the layer
will be set as the parents of their respective vertex
and they are no longer considered for processing in
the next iteration. After the threshold is reached,
the vectorised version is no longer efficient and the
algorithm swaps to the non-SIMD version.

(4) Execute the non-SIMD version. After the thresh-
old in the adjacent vertices is achieved, the input ver-
tices that have not yet found a parent are processed
by the using the non-SIMD bottom-up algorithm
introduced in Algorithm 2.

Algorithm 4 shows the pseudocode of the vectorisation of
the bottom-up BFS algorithm. The process starts by loading
a sequence of 16 consecutive vertices to be processed, starting
with vertex zero up to the total number of vertices in the
graph. Thus, the vertices are filtered so only the non-visited
vertices are going to be processed. Then, to do so the visited
bitmap array is iterated through stepping every word (32-bits
integer) as it is shown in line 1. Since each word is 32 bits
in length, but only 16 (32-bit) elements can be loaded into
the vector register, the word is processed in two halves as
shown in lines 3 to 5. The function LoadVertices transforms
a single half word into a vector of 16 vertices, with the word
parameter specifying whether the upper or lower half word
should be processed. Function GetHalf loads the 16 bits of a
half word into the bit mask 𝑚𝑎𝑠𝑘𝑣𝑖𝑠. This bitmask is used
further to filter the visited vertices out.

1 2 3

adjacent vertices 
iteration number 1 

input

adjacency list

vertices

10 20 30

16 32-bits elements

 . . .

10 20 30  . . .

 . . .

Pointers to the start of the
adjacency list for a vertex.

Figure 2: Example of gathering the adjacent vertices
for the iteration number 1 of the search through the
adjacency list for specific input vertices.

Algorithm 4 bottom-up-multiple-set(𝑖𝑛, 𝑣𝑖𝑠, 𝑜𝑢𝑡, 𝑃 )

1: for 𝑢 ∈ 𝑣𝑖𝑠 do ◁ Stepping through every word (32-bits) in vis.
2: 𝑤𝑜𝑟𝑑 = 0
3: while word < 2 do
4: vertices ← LoadVertices(u, word) ◁ Loading 16 vertices.
5: 𝑚𝑎𝑠𝑘𝑣𝑖𝑠 ← GetHalf(u, word)
6: word = word + 1
7: 𝑝𝑜𝑠 = 0
8: for pos < MAX POS do
9: 𝐿𝑜𝑜𝑘𝑖𝑛𝑔𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑖𝑛, 𝑣𝑖𝑠, 𝑜𝑢𝑡, 𝑃, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑝𝑜𝑠, 𝑤𝑜𝑟𝑑,
10: 𝑚𝑎𝑠𝑘𝑣𝑖𝑠,𝑚𝑎𝑠𝑘)
11: 𝑝𝑜𝑠 = 𝑝𝑜𝑠 + 1
12: end for
13: 𝑖 = 0
14: while 𝑚𝑎𝑠𝑘.𝑔𝑒𝑡𝐵𝑖𝑡(𝑖) == 0 AND 𝑖 < 16 do ◁ Every bit in flag.
15: bottom-up-noSIMD()
16: 𝑖 + +
17: end while
18: end while
19: end for

The process continues by iterating through the adjacent
vertices of each vertex in the input vertices. The maxi-
mum number of iterations is delimited by a threshold called
MAX POS. This threshold is a constant calculated based on
the minimum number of iterations within which a parent
is most likely to be found. In each iteration the function
𝐿𝑜𝑜𝑘𝑖𝑛𝑔𝑃𝑎𝑟𝑒𝑛𝑡𝑠() is called to process the 16 input vertices
simultaneously aiming to find their parents. If no parent ver-
tex is found up to the threshold, the search continues using
the non-SIMD bottom-up algorithm presented in Algorithm
2.

5.2 Setting the threshold 𝑀𝐴𝑋 𝑃𝑂𝑆

The threshold that determines the number of iterations to
be processed is related to the average number of iterations
through the adjacency list before a parent is found. Table
3 shows the average number of edges processed per visited
vertex per layer during the 64 iterations of the bottom-up BFS
algorithm. Notice that the average was calculated by taking
into account only the starting vertices that lead to connected
subgraphs, unconnected starting vertices were ignored. Also,
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during the 64 iterations, the number of layers varied between
5 and 6 for different starting vertices, hence the average for
the sixth layer was calculated based on only the non-zero
values. The results in Table 3 show that the middle layers
(layers 3, 4 and 5) have smaller averages of 34.0, 1.06 and 2.51,
respectively, implying that the bottom-up BFS algorithm is
more effective for the middle layers. However, the average
for the third layer is above the average for the fourth and
the fifth layers. Due to the high variability of the number of
edges per visited vertex for the third layer, where most of the
cases is under 8, the value of the 𝑀𝐴𝑋 𝑃𝑂𝑆 threshold used
for the further experiments of the bottom-up BFS algorithm
is statically set to 8.

Layer Avg Edges/Visited

1 2,879,193

2 30,910

3 34

4 1.06

5 2.51

6 41.06

Table 3: Average of the number of edges processed
per visited vertex using the the bottom-up BFS algo-
rithm per layer. The graph size is 𝑆𝐶𝐴𝐿𝐸 = 18 and
the 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16.

Algorithm 5 shows the pseudocode of the 𝐿𝑜𝑜𝑘𝑖𝑛𝑔𝑃𝑎𝑟𝑒𝑛𝑡𝑠
function used for processing the adjacent vertices.

(1) Firstly the 16 adjacent vertices of the “input vertices”
are loaded into the vector register using the 𝐿𝑜𝑎𝑑𝐴𝑑𝑗
function (line 1). This function gathers the 𝑛𝑡ℎ adja-
cent vertices of the input vertices, only the ones set
to zero in the bitmask 𝑚𝑎𝑠𝑘𝑣𝑖𝑠 are candidates to be
processed. The starts and ends input lists are the
starting and the ending indexes in the adjacency list
of each vertex and pos is the 𝑛𝑡ℎ location within this
range. If pos exceeds this range, a mask (𝑚𝑎𝑠𝑘𝑝𝑜𝑠)
is set so as to not take into account that vertex for
further processing in the next iteration. The return
value is a vector that holds a list of 16 adjacent
vertices.

(2) Secondly, the frontier of the adjacent vertices is gath-
ered by the function 𝐺𝑎𝑡ℎ𝑒𝑟 (line 2). This function
gathers the respective values in the frontier of the
current adjacent vertices in the vector 𝑣𝑎𝑑𝑗, only for
the vertices set to zero in the input mask 𝑚𝑎𝑠𝑘𝑝𝑜𝑠.
The result of this function is a 16-bits mask, in which
each bit indicates whether an adjacent vertex in vadj
is in the frontier or not.

(3) Thirdly, the bitmask is tested to verify whether at
least one of the adjacent vertices has been found to
be in the frontier of the current layer (line 3).

(4) Finally, the parents found are scattered back to the
predecessor array (P) and the visited and output
queue bitmap arrays. Additionally, a mask, which

is received as input parameter of the function, is
updated each time new parents have been found.
This mask is used in further iterations to identify
the vertices that have already had a parent found
to prevent them from being processed in further
iterations.

Listing 1 shows the source code of the LookingParents

function. The half-word of the input visited array is passed
as parameter (𝑚𝑎𝑠𝑘𝑣𝑖𝑠) to filter out the visited vertices, so
only the non-visited vertices are loading as in line 1. The
frontier (𝑖𝑛) of the adjacent vertices is gathered and test, so
only the vertices that are set to one in the frontier are the
ones to be updated (lines 2 and 3). Hence, the predecessor
array, P, the visited and the output queue bitmap arrays are
updated. Additionally, a mask (input parameter) is updated
every time new parents have found.

Algorithm 5 LookingParents(𝑖𝑛, 𝑣𝑖𝑠, 𝑜𝑢𝑡, 𝑃, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑝𝑜𝑠,
𝑚𝑎𝑠𝑘𝑣𝑖𝑠,𝑚𝑎𝑠𝑘𝑝𝑜𝑠)

1: vadj← LoadAdj(vertices, starts, ends, pos, 𝑚𝑎𝑠𝑘𝑝𝑜𝑠, 𝑚𝑎𝑠𝑘𝑣𝑖𝑠)
2: frontier ← in.Gather(vadj, 𝑚𝑎𝑠𝑘𝑝𝑜𝑠)

3: if 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟.𝑇𝑒𝑠𝑡()! = 0𝑥0000 then ◁ At least there is one
parent in the frontier.

4: 𝑃.𝑆𝑐𝑎𝑡𝑡𝑒𝑟(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑣𝑎𝑑𝑗, 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟)

5: 𝑣𝑖𝑠← 𝑣𝑖𝑠 ∪ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟
6: 𝑜𝑢𝑡← 𝑜𝑢𝑡 ∪ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟

7: 𝑚𝑎𝑠𝑘 ← 𝑚𝑎𝑠𝑘 ∪ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟

8: end if

6 EXPERIMENTAL SETUP

6.1 Hardware platform

First we evaluate the non-SIMD presented in Algorithm 2
and the vectorized version, SIMD, of the bottom-up BFS al-
gorithm on the Intel Xeon Phi, also known as Knights Corner
(5110P). After this step, we evaluate the overall performance
of our hybrid BFS. We use OpenMP as a thread parallel
platform and IntelAVX-512 intrinsics for the vectorization.
We compiled our code with the Intel C++ compiler (version
14.0.0) with the optimization flag -02 that allows to execute
manual vectorisation using intrinsic functions and -fopenmp
to link the OpenMP library.

6.2 Input graph and Settings

Our implementation uses different modules of the Graph500
benchmark [21], including the graph generator, the BFS
path validator, the experimental design and the ability to
run our parallel BFS implementation. Firstly, the graph
generator creates synthetic scalable large Kronecker graphs
[12] and is based on the R-MAT random graph model [3].
These graphs aim to naturally generate graphs with common
real network properties in order to be able to analyse them.
The graph size is defined by the SCALE and the edgefactor
values. The total number of vertices in the graph is calculated
by 2𝑆𝐶𝐴𝐿𝐸 and the total number of edges generated by
2𝑆𝐶𝐴𝐿𝐸 *𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 * 2 (the factor of 2 reflects the fact that
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__inline void SBFS_2QBM_hybrid_SIMD::LookingParents(int vis_mask,

bitmap_t *frontier, bitmap_t *queue, bitmap_t *explored, int pword,

int psegment, int &fend, int pos,__m512i vstart, __m512i vend, __m512i\

vvertices){

__m512i vtmp = _mm512_set1_epi32(pos);

__m512i vadd = _mm512_add_epi32(vstart, vtmp);

__mmask16 vcmp = _mm512_cmpgt_epi32_mask(vend, vadd);

__m512i vneig = _mm512_mask_i32gather_epi32(_mm512_set1_epi32(0), vcmp,

vadd, rows, sizeof(word_t));

int res = 0;

//Getting the high part of the word (16-bits)

vis_mask = (explored->start[pword]>>(psegment*VNELE8))&0xFFFF;

__mmask16 mask1 = _mm512_kand(_mm512_knot(_mm512_int2mask(vis_mask)),vcmp);

//2.- filter visited adjacent vertices according to vis and out

//Getting WORD offset and BIT offset

__m512i vword = _mm512_srlv_epi32(vneig, _mm512_set1_epi32(5));

_mm512_set1_epi32(BITS_PER_WORD));

__m512i vbits = _mm512_and_epi32(vneig,_mm512_set1_epi32(0x1F));

__m512i fron_words = _mm512_mask_i32gather_epi32(_mm512_set1_epi32(0), mask1,

vword, frontier->start, sizeof(word_t));

//Shifting 1 to the left indexes position in the vneig array

__m512i bits= _mm512_sllv_epi32(_mm512_set1_epi32(1), vbits);

//Filtering with the unvisited mask

__mmask16 mask = _mm512_mask_test_epi32_mask(mask1 ,fron_words, bits);

res = _mm512_mask2int(mask);

if(mask != 0x0000 ){ //at least one neighbour is in the frontier

_mm512_mask_prefetch_i32scatter_ps(bfs_tree, mask, vvertices,sizeof(word_t),

_MM_HINT_T0);

_mm512_mask_i32scatter_epi32(bfs_tree, mask, vvertices, vneig, sizeof(word_t));

explored->start[pword] |= res<<(psegment*VNELE8);

queue->start[pword] |= res<<(psegment*VNELE8);

}

//flag used to indicate the end of the processing

fend |= (res | ((explored->start[pword]>>(psegment*VNELE8))&0xFFFF));

}

Listing 1: Source code of the LookingParents() SIMD
function.

the edges are bidirectional). The generator uses four initiator
parameters (A, B, C and D), which are the probabilities
that determine how edges are distributed in the adjacency
matrix representing the graph. We used the standard set of
parameters defined by Graph500 (A=0.57, B=0.19, C=0.19
and D=0.05).

The evaluation consists of comparing the performance in
terms of number of TEPS, which is a Graph500 performance
metric amply used by other BFS implementations in different
architectures to compare them. The input parameters for the
experiments are for graph sizes of SCALE (18,19 and 20) and
edgefactor (16, 32 and 64), a number of threads of 228 with
balanced affinity.

6.3 Implementation details

Firstly, the input graph is efficiently represented by a Com-
pressed Sparse Row (CSR) matrix format. Secondly, the
experimental design comprises of 64 BFS executions by ran-
domly choosing different starting vertices. For each execution
we measure its execution time. After the completion of those
executions some statistics related with time and Traversed
Edges Per Second (TEPS) are collected. During the experi-
ments we found out that out of the 64 graph500 iterations,
some of the starting points are unconnected, which turns out
into zero TEPS results in those iterations. This ends up in
having a harmonic mean, calculated by Graph500, higher

than the maximum number of TEPS. Our results show har-
monic mean of the TEPS across the 64 executions to compare
with other ranked systems such as [5] and [2].

7 BOTTOM-UP ANALYSIS

The previous performance analysis of the vectorisation of the
bottom-up algorithm is one of the contributions of this work
and it consists of a systematic comparison of two versions of
the bottom-up, the non-SIMD and the SIMD. This compari-
son is based not only in terms of performance (TEPS) but
also in terms of the effectiveness of the utilisation of resources
of the Xeon Phi architecture, including counting instructions
and cache access. Firstly, to be able to compare the PAPI
events for the function calls related to the bottom-up algo-
rithm, a specific starting vertex was selected by using the
criterion explained below. Secondly, the PAPI events for the
instructions counters and the cache access are gathered for
the two bottom-up implementations and analysed. Finally,
a performance analysis in terms of TEPS is presented in
Section 8.

7.1 Selecting a starting vertex

Each one of the 64 executions computes the BFS with a
randomly chosen starting vertex. Despite the 64 starting
vertices being selected by a random process, they remain the
same across different executions of the experiment as each
experiment is generated by the same seed [13].

This variability between iterations is due to the parallel
execution of BFS being non deterministic [11], which implies
that different executions with the same starting vertex can
lead to different valid output BFS trees.

For this reason, based on experiments as means to control
the variation, the following results for the bottom-up analysis
focus on the fourth execution as it presents low variation
from run-to-run.

7.2 PAPI Counters Analysis

The two bottom-up implementations: the non-SIMD and the
SIMD version were instrumented to have direct access to
some of the hardware events of the Xeon Phi processor using
the PAPI library. By monitoring these events, it is possible
to use the performance counters to help analyse each of the
two implementations in terms of the usage of the resources
on the Xeon Phi architecture. PAPI counters are turned on
and off around the code segments that are to be analysed.
Despite the Xeon Phi having several performance counters,
in this analysis five of them were selected to monitor the
instructions of the program, cache memory accesses and
the vector unit. The counters are divided in two sets, the
instructions counters and those related to cache access. First,
the instructions counters include the total number of cycles
and the total number of instructions, and the CPI (cycles
per instruction) is calculated based on them, Tables 4 and
5. The CPI can be seen as a metric to measure performance
consisting of calculating the average number of clock cycles
per instruction for a program [7]. Second, the cache access
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counters include the L1 data cache misses and the L2 load
misses. In addition, an extra hardware counter relevant to
analyse the vector unit utilisation is the number of vector
or SIMD instructions, Tables 6 and 7. The analysis of the
five counters is presented next. To have a clear analysis of
the data, the experiments in the following sections were
conducted by executing only one thread. Tables 4, 5 list the
layers of the hybrid algorithm, followed by the approach used
to traverse each layer. Specifically, the highlighted rows in
grey are the layers processed by the bottom-up and those are
the ones to focus on this analysis. Additionally, the results
show the number of non-visited vertices in each layer which is
relevant to the bottom-up approach. Finally, the performance
counters for cycles and instructions are displayed as well as
the CPI calculation.

Based on the results, we can see whether in all cases the
middle layers (3-5) use the non-SIMD or a vectorised/SIMD
version of the bottom-up. Despite the fact that there is only
a single layer where the bottom-up approach is found to be
applied, the impact on this layer is beneficial to the final
performance.

Layer Approach NV Time(sec) Cycles Inst. CPI(cyc/inst)

1 TD-SIMD 262,143 0.000092 105,945 15,772 6.72
2 TD-SIMD 262,142 0.000458 471,431 84,169 5.60
3 BU-noSIMD 259,153 0.000844 903,366 175,435 5.15
4 BU-noSIMD 96,758 0.000271 295,299 43,854 6.73
5 BU-noSIMD 62,373 0.000128 140,088 26,673 5.25
6 TD-SIMD 62,295 0.000086 96,070 14,091 6.82

Table 4: Hybrid BFS execution for starting vertex 12,
119 using the bottom-up non-SIMD version. PAPI was
used to get the hardware counters for cycles, instruc-
tions and CPI(cycles/instructions). 𝑆𝐶𝐴𝐿𝐸 = 18 and
𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 32.

Layer Approach NV Time(sec) Cycles Inst. CPI(cyc/inst)

1 TD-SIMD 262,143 0.000085 96,417 14,269 6.76
2 TD-SIMD 262,142 0.00045 462,515 81,132 5.70
3 BU-SIMD 259,153 0.00063 687,282 99,539 6.90
4 BU-noSIMD 96,758 0.000272 302,230 40,385 7.48
5 BU-noSIMD 62,373 0.000123 135,862 25,139 5.40
6 TD-SIMD 62,295 0.000086 94,236 12,818 7.35

Table 5: Hybrid BFS execution for starting vertex
12, 119 using the bottom-up BFS vectorised version
(SIMD). PAPI was used to get the hardware counters
for cycles, instructions and CPI(cycles/instructions).
𝑆𝐶𝐴𝐿𝐸 = 18 and 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 32.

Focusing first on the PAPI instruction counters, we can
observe in the third layer in Table 5 that the cycles and
instructions are better than in Table 4, even though the
CPI is worse in Table 5. The cycles count for the non-SIMD
and the SIMD are in the same proportion as the time, as
expected, since the clock rate of the Xeon Phi is the same.
Comparing the number of instructions, in the SIMD version is
the number is lower than that for the non-SIMD but the CPI
for SIMD is higher than that for the non-SIMD, suggesting
that the instructions executed for SIMD are not as efficient
as for non-SIMD version. This may be caused as a result of
the SIMD version using vector instructions.

Layer Approach NV Time(sec) L1 misses L2 misses Vec. Inst.

1 TD-SIMD 262,143 0.000088 212 210 45

2 TD-SIMD 262,142 0.000448 323 189 181
3 BU-noSIMD 259,153 0.000881 1,877 2,168 24
4 BU-noSIMD 96,758 0.000261 774 752 24
5 BU-noSIMD 62,373 0.000126 435 151 24
6 TD-SIMD 62,295 0.000083 204 118 45

Table 6: Hybrid BFS execution for starting vertex
12, 119 using the bottom-up non-SIMD version. PAPI
was used to get the hardware counters for L1 and L2
cache misses and vector instructions. The graph size is
𝑆𝐶𝐴𝐿𝐸 = 18 and 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 32.

Layer Approach NV Time(sec) L1 misses L2 misses Vec. Inst.

1 TD-SIMD 262,143 0.000089 216 183 45

2 TD-SIMD 262,142 0.000458 350 271 181
3 BU-SIMD 259,153 0.000627 2,329 2,828 18,099
4 BU-noSIMD 96,758 0.000273 793 870 24
5 BU-noSIMD 62,373 0.000124 423 224 24
6 TD-SIMD 62,295 0.000086 235 215 45

Table 7: Hybrid BFS execution for starting vertex
12, 119 using the bottom-up vectorising by layers algo-
rithm. PAPI was used to get the hardware counters
for L1 and L2 cache misses and vector instructions. The
graph size is 𝑆𝐶𝐴𝐿𝐸 = 18 and 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 32.

Focusing on the PAPI Cache Access and Vector Instruc-
tions Counters, we can identify that the cache accesses coun-
ters (labeled L1 and L2 misses) are generally lower for the
non-SIMD version than the vectorised version (BU-SIMD).
For instance, for the third layer of the non-SIMD version in
Table 6, the L1 and L2 misses are 1,877 and 2,168 respectively,
which are lower than the ones from the vectorised version
either using the SIMD (2,329) in Tables 7.

There is also a strong correlation between the cache access
and the vector instructions counters. Comparing the vector
instructions counters between the non-SIMD version in Table
6 and the counters for the vectorised version, in Table 7, the
number of vector instructions is much higher using BU-SIMD
version and remains constant for the layers using the BU-
noSIMD version. For those layers using the BU-SIMD version,
the number of L1 and L2 misses is higher than the ones using
the BU-noSIMD version.

8 HYBRID BFS ANALYSIS

Previous section has compared the non-SIMD and SIMD
versions of the bottom-up BFS implementations and thus
we have shown the benefit of using vectorisation for the
bottom-up approach.

In this section a second set of results compare our hybrid
BFS algorithm using vectorisation against the state-of-the-art
hybrid BFS described by Gao et al. [5] targeting the Xeon
Phi.

No-SIMD versus SIMD. Figure 3 shows the results of the
hybrid BFS algorithm using the non-SIMD version and the
SIMD bottom-up versions for different graph sizes varying
the 𝑆𝐶𝐴𝐿𝐸 from 14 up to 22 and for 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 16, 32 and
64 (a, b and c in the figure).

(1) For the three cases in Figure 3 (a, b and c), the perfor-
mance of the SIMD version (red line) is higher than
the non-SIMD (blue line), as was expected as a result
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(a) 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16
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(b) 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 32

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
   15	
   16	
   17	
   18	
   19	
   20	
  

G
TE
PS
	
  

SCALE	
  

SIMD	
   "Gao	
  Tao	
  et.	
  al"	
  

(c) 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 64

Figure 3: Hybrid BFS performance results for the
SIMD-range version and the state-of-the-art results
presented by Gao et al. [5] for different graph sizes,
using 𝑆𝐶𝐴𝐿𝐸 from 14 up to 20 and edgefactor of 16,
32 and 64, generated by Graph 500.

of exploiting the vector unit. The speedup is approx-
imated around 250 MTEPS (7.14%), 500 MTEPS

(9.09%) and 790 MTEPS (8.98%) respectively. More-
over, the higher the edgefactor, the wider is the gap
between both versions, keeping a similar shape as
long as the graph size increases. The reason for this
is that the vectorisation for the bottom-up algorithm
does not apply the same strategy for vectorising the
adjacency list as the top-down does, which is affected
by the edgefactor. Instead, the bottom-up sets up
a threshold, introduced in Section 5.1, to only it-
erate through certain number of adjacent vertices.
Thus, even though the edgefactor might be bigger,
which means that the number of adjacent vertices is
larger, the bottom-up cuts off iterating through all
the adjacent vertices due to this static threshold.

(2) In the three plots, there is a “hump” around 𝑆𝐶𝐴𝐿𝐸
17 and 18 for the graphs in Figure 3 a, b and c
respectively. In particular the same “hump” can be
observed in the implementation of the state-of-the-
art Gao et al. [5] in Figure 3. This hump might be
caused as an artifact of the Graph 500 during the
graph generation, its analysis will part of the future
work.

SIMD versus the State-of-the-Art. Figure 3 shows the re-
sults of the hybrid BFS algorithm using the SIMD-range
bottom-up version and the results from the state-of-the-art
vectorised hybrid BFS algorithm Gao et al. [5] for different
graph sizes varying the 𝑆𝐶𝐴𝐿𝐸 from 14 up to 22 and for
𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 16, 32 and 64 (a, b and c in the figure). For
the three cases in Figure 3 (a, b and c), the performance
of the SIMD version of this work (red line) is higher than
the state-of-the-art SIMD hybrid BFS algorithm (green line).
The state-of-the-art BFS algorithm is published by Gao et
al. [5] and the results shown in Figure 3 (a, b and c) are the
approximate values manually taken from the data presented
in the paper. The approximate maximum speedup in each
of the figures (a, b, c) is around 950 MTEPS (33%), 500
MTEPS (6.90%) and 1.50 GTEPS (22%).

Note that the source code of the Gao et al. implementation
is not available, and thus it is not possible to make a direct
analysis and comparison between our results and theirs.

The official Graph 500 web-based ranking keeps an up-
dated record of the performance of parallel computers. The
performance is measured by running the BFS in different par-
allel architectures and according to the performance (number
of TEPS) the computers are ranked. According to the most
recently published list (June 2016) [1], an implementation of
the hybrid BFS algorithm created by Golovina et al. [6] is
executed on the same model of the Intel Xeon Phi used in
this work (5110P), which is ranked in the 147th place in the
list. This implementation is based on automatic vectorisation
with two main optimisations: loop unrolling and prefetching,
resulting in a performance of 1.80143 GTEPS for a graph size
of 𝑠𝑐𝑎𝑙𝑒 = 23 and 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16, using 60 cores. Despite
the fact that in this work it is not possible to get the results
for that graph size, due to the increment that the data struc-
tures utilised for vectorisation cause, our TEPS for a graph of
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𝑠𝑐𝑎𝑙𝑒 = 22 and 𝑒𝑑𝑔𝑒𝑓𝑎𝑐𝑡𝑜𝑟 = 16 is approximately 6 GTEPS,
which is indicative of a better scaling than the results from
Golovina et al. for the 𝑠𝑐𝑎𝑙𝑒 = 23. Though, the difference is
that Golovina et al. used automatic vectorisation whereas in
this work vectorisation is handled manually used by using
intrinsic functions which implies the manual utilisation of
the vector units.

9 CONCLUSIONS AND FUTURE
WORK

The contributions of this work are, first, the development of
an independent vectorisation of the hybrid BFS algorithm,
which consists of both the SIMD top-down and the SIMD
bottom-up that outperforms not only the state-of-the-art
BFS algorithm developed by Gao et al. 1 but also overpasses
Golovina’s [6] BFS algorithm development listed in 147th
position in the Graph 500 list. Second, a systematic analysis
of the vectorised version of the bottom-up BFS algorithm
performance based on hardware performance counters using
PAPI library is presented, despite the fact that Gao et al. also
implemented the vectorisation of the bottom-up algorithm, the
performance they achieved was not fully understood because
they left the impact of the vectorisation of the bottom-up BFS
algorithm unclear. As a future work, the performance analysis
of the vectorised version of the bottom-up BFS algorithm
conducted in Section 7.2, using the PAPI library, raises some
points to be investigated. For example, according to [9] the
threshold for the CPI (cycles per instruction) in the Xeon
Phi architecture should be investigated if it is higher than
4.0, which is in our results. Further analysis could help to
understand more about the Xeon Phi architecture and the use
of its features, including the vector unit and cache memory,
which are crucial for graph traversals.
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