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ABSTRACT
Clouds hide the complexity of maintaining a physical infrastructure
with a disadvantage: they also hide their internal workings. Should
users need to know about these details e.g., to increase the reliability
or performance of their applications, they would need to detect
slight behavioural changes in the underlying system. Existing
solutions for such purposes o�er limited capabilities. �is paper
proposes a technique for predicting background workload by means
of simulations that are providing knowledge of the underlying
clouds to support activities like cloud orchestration or work�ow
enactment. We propose these predictions to select more suitable
execution environments for scienti�c work�ows. We validate the
proposed prediction approach with a biochemical application.
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1 INTRODUCTION
Infrastructure as a Service (IaaS) clouds became the foundations of
computation/data intensive applications. While IaaSs o�er means to
control a virtual ensemble of resources (i.e., virtual infrastructures),
they provide no means for insight into the state, load, performance
of their physical resources. Due to the multi-tenant environment
of clouds application performance may be signi�cantly a�ected by
other, (from the point of view of a particular user) unknown and
invisible processes, the so-called background workload.

�is paper aims at studying performance issues related to the –
unknown – background load and proposes a methodology for its es-
timation. We envision a scenario where modi�cations in the virtual
infrastructure are needed at runtime and to take right actions the
background load cannot be omi�ed. We made two assumptions on
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the application: (i) it runs long enough so that virtual infrastructure
re-arrangement time is negligible and (ii) it is executed repeatedly.
Scienti�c work�ows are good candidates for exemplifying such
applications. E�cient execution of work�ows requires a precise
scheduling of tasks and resources which furthermore, requires both
timely information on the resources and the ability to control them.

�e recurring nature of work�ows enables the extraction of
performance data. Our work stems from the assumption that by
extracting information from past work�ow executions, one could
identify current and predict future background workloads of the
resources allocated for the work�ow. �e result of this prediction
subsequently enables to steer work�ow enactment. Our workload
prediction aims at �nding historic traces, that likely resemble the
background of workload behind a currently running work�ow.

�e paper’s main contributions are: (i) the concept of a load
prediction method based on the combination of historic traces, (ii)
an algorithm for realising the load prediction at runtime so that
performance constraints are observed, and (iii) a validation of this
approach using a biochemical application with a state of the art
simulator using historic traces from a widely used archive.

�e remainder of this paper is as follows: Section 2 presents
related work, then Section 3 introduces our terminology and as-
sumptions. Section 4 shows our algorithm. Section 5 presents its
validation. Finally, the contributions are summarised in Section 6.

2 RELATEDWORK
In this paper, we examine traces of the past of certain work�ows,
and perform a prediction of the expected background load of the
clouds. Our technique �ts in the autonomous loop of monitor-
analyse-plan-execute [1], where we focus on the analyse phase.

Calheiros et al. [2] o�ers cloud workload prediction using au-
toregressive integrated moving average. �eir model’s accuracy is
evaluated by predicting future workloads of request traces to web
servers. Also, Magalhaes et al. [3] developed a workload model for
the CloudSim simulator using generalised extreme value/lambda
distributions. �ey argue that user behaviour must be considered
in workload modelling. Our approach share this view: we apply a
runtime behaviour analysis to �nd a work�ow enactment plan that
best matches the infrastructure load including user activities.

Caron et al. [4] used workload prediction based on identifying
similar past occurrences of the current short-term workload his-
tory for e�cient resource scaling. It uses real-world traces from
clouds and grids to identify similar usage pa�erns to a current
window of records, and their algorithm predicts the system usage
by extrapolating beyond the identi�ed pa�erns. In contrast, our
work focuses on scienti�c work�ows allowing the analysis and
prediction of recently observed execution time discrepancies by
introducing simulations to the prediction and validation phases.
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3 BACKGROUND
An enactment plan describes the jobs of a scienti�c work�ow, their
schedule to resources and it is processed by a work�ow enactor that
assigns jobs to resources. In our vision, the enactment plan also lists
the projected execution time of each job. Work�ow enactors are
expected to base the projected execution time on historic executions
to represent their expectations according to the job execution speed.

�e virtual infrastructures created by the enactor are hosted at
IaaSs that tend to feature multi tenancy and under provisioning for
optimal costs and resource utilisation. �ese practices, especially
under provisioning, could perturb and potentially hinder the virtual
infrastructure’s performance. �us, the work�ow enactor should
continuously monitor the behaviour of its work�ows running on
the virtual infrastructure. In case of deviations, actions in the
management of the virtual infrastructure should take place.

In this paper, work�owsW ∈ W (whereW is the set of all pos-
sible abstract work�ows) are represented as an ordered set of jobs:
W = {j1 . . . jN }, where the total number of jobs in the work�ow is
N ∈ N. �e job order is set by their projected completion time on
the virtual infrastructure whereas the job dependencies are kept
in the domain of the work�ow enactors. �e projected execution
time of the a job (jx ∈W ) is rex (jx ) – where rex : W → R+.

We refer to a work�ow instance (i.e., an execution of the abstract
work�owW ) with the couple: [W , t] :W × T – i.e., the work�ow
and the start time (t ) of its �rst job [j1, t]. Hence, all instances
of jx ∈ W are also identi�ed as [jx ,T] : jx ∈ [W ,T]. Once the
work�ow started, the enactor’s monitoring facilities will collect the
observed execution times for each job instance. We denote these
as: rob (jx , t) – where rob : W × T → R+.

Using the acquired data from the monitoring facilities, we de�ne
our error function of (partial) work�ow execution time to determine
the deviation in execution time a work�ow su�ered compared to
its enactment plan. It is partial as the work�ow instance is split
into two parts: jobs j1, ...jk already executed whereas jk+1, ...jN
are not yet complete. Hence, (E :W × T × N→ R+):

E(W , t, k ) :=
√∑

1≤i≤k (rex (ji ) − rob (ji , t ))2
k

(1)

where ∀ji ∈W . �e higher the error value the higher the deviation
of the instance from its enactment plan (rex ). �e enactment plan
likely contains projected values that are carefully selected by the
enactor to meet the needs of the work�ow’s user and follow the
capabilities of the used cloud resources. �us, our error function
indicates if the ful�lment of the projected values are at risk.

�e deviation from the projected execution times (as indicated
by the error function) could either be caused by (i) an unforeseen
reaction to a speci�c input or by (ii) the background load behind
the virtual infrastructure of the work�ow. Deviations of case (i)
are rare, because job execution times usually follow a Pareto dis-
tribution [5]. �e long execution times in the slowest 5 % of the
jobs cannot be caused by background load. On the other hand case
(ii), under-provisioning is frequent in cloud environments and can
cause background load variation yielding observable (but minor)
perturbations in job execution times. In this paper, we focus on
case (ii) only. Consequently, when observing a signi�cant increase
in job execution time compared to the projected one, we assume
case (i) and we do not apply our technique.

4 WORKLOAD PREDICTION
Workload prediction is expected to be initiated a�er a job (jk ) com-
pletes, if the error function shows signi�cant deviations: E(W , t ,k) >
Eϵ , where Eϵ is prede�ned by the work�ow developer. �e maxi-
mum time spent on workload prediction is limited by a prede�nedT
(also set by the work�ow developer). Despite deviations, workload
prediction is not performed if

∑N
i=k+1 rex (ji ) < T.

We apply a practical approach: we simulate the work�ow ex-
ecution (according to the enactment plan) on a given cloud in-
frastructure while adding known workloads as background load.
We expect that observed execution times in the simulation would
closely match their real-world counterparts if the added background
load also closely estimates the real-world load. Before the details,
in the next paragraphs, we provide a few de�nitions.

A trace fragment is a list of activities characterised by such run-
time properties (e.g., start time, duration, performance, etc.) that are
usable in simulators. Each fragment represents realistic workloads
i.e., real-world behaviour. Fragments are expected to last for the du-
ration of all past (ji , 1 ≤ i ≤ k) and future (ji ,k+1 ≤ i ≤ N ) jobs, in
a worst case serial execution

∑
i=1...k rob (ji ) +

∑
i=k+1...N rex (ji ).

Apart from their length, fragments are identi�ed by their starting
timestamp denoted as t ∈ T (where T ⊂ T ). Later we refer to
particular fragments by their starting timestamp.

Arbitrary selection of fragment boundaries would result in mil-
lions of trace fragments. �eir analysis would take days for each
work�ow instance. However, work�ow developers typically allow
only a few minutes for prediction – T. To reduce analysis time,
fragments need to be pre-�ltered so only a few of them (Tf il t ⊂ T )
are used. Pre-�ltering can use approaches like pa�ern matching,
runtime behaviour distance minimisation (e.g., by comparing to
past stored work�ow behaviour), or even random selection. �ese
techniques are out of scope of this paper.

Alongside fragments, several error values are also collected and
stored in relation to the past work�ow instances. Just like projected
execution times, these values steer the algorithm. First, as past
errors, we store the values for every possible k from our previously
partial execution time error function (Eq. 1). We also store future
errors: we use the part of the work�ow containing the jobs a�er
jk :W F (W ,k) := {∀ji ∈W : i > k ∧ i ≤ N }, whereW F ∈ W. �us,
the future error function determines how a previously executed
work�ow instance continued a�er a speci�c past error value:

F (W , t, k ) := E(W F (W , k ), t, N − k ). (2)

4.1 Overview of the algorithm
Algorithm 1 searches for a timestamp so that the future estimated

error is minimal, while the simulated past error is the closest to
the actual past error. We assume that similar error values in past
(simulated/real) workloads would result in similar future workloads.

In detail, line 1 randomly picks a starting timestamp (tinit ) of
the fragments from Tf il t . �is fragment will be initial approxima-
tion. In line 16, this tinit is updated so it be�er approximates the
background load (Tl ist stores the updates). �e search window –
R of line 4 – is a set of timestamps within a S/2 radius from tinit .

A simulator calculates (sim(W ,Rex , i, t)) observed execution
times r ′ob for the jobs in the simulated infrastructure (see line 8). �e
E ′(W , t ,k) – error of simulated execution time – function shows
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Algorithm 1 Fi�ing based prediction
Require: S ∈ R+ – the maximum spread for minimum search
Require: I ∈ N – the maximum iteration count
Require: P ∈ R+ – max evaluations for searching in function ϕ(x)
Require: [W , tcurr ] – the current work�ow instance
Require: Rex := {rex (ji ) : {ji ∈W }} – the model execution times
Require: Rob := {rob (tcurr , ji ) : {ji ∈W ∧i ≤ k}} – the observed

execution times
Ensure: ttarдet is around the approximated workload

1: tinit ← t ∈ Tf il t
2: Tl ist ← ∅
3: repeat
4: R ∈ 2(tinit − S/2, tinit + S/2)\{∅} – arbitrary choice
5: for all t ∈ R do
6: for all ji ∈W : i < k do
7: r ′ex (ji ) ← rob (tcurr , ji )
8: r ′ob (ji ) ← sim(W ,Rex , i, t)
9: end for

10: end for
11: ϕ(x) :=

∑
t ∈R

��E ′(W , t ,k) − E(W ,x + t − tinit + S/2,k)��
12: Tr ed ∈ 2(T \Tl ist ) : |Tr ed | = P
13: tmin ← min{t ∈ T |ϕ(t) = min

x ∈{Tr ed }
ϕ(x)}

14: Tl ist ← Tl ist ∪ {tmin }
15: ttarдet (|Tl ist |) ← {tl ∈ T : F (W , tl ,k) =

min
tmin−S/2<t<tmin+S/2

F (W , t ,k)}

16: tinit ← tx ∈ Tf il t : |tx − ttarдet (|Tl ist |)| = mint ∈Tf il t |t −
ttarдet (|Tl ist |)|

17: until (|ttarдet (|Tl ist |)−ttarдet (|Tl ist |−1)| > Π)∧(|Tl ist | < I )
18: return ttareдet (x) :

F (W , ttarдet (x),k) = min
1<i< |Tl ist |

F (W , ttarдet (i),k)

how the simulated workload di�ers from the real process (using
the simulated observed execution times instead of the original rob
values in the function of Eq.1).

Next, line 11-13 searches through the past error values for each
timestamp in Tr ed . With the help of the ϕ(x) function, we look for
tmin where the past error function and its simulated counterpart
are aligned. Next, the we analyse the future error function: Line 15
minimises the future error around tmin within radius S/2. �e
timestamp with minimal future error is ttarдet for the iteration.

Finally, the we repeat until the successive change in ttarдet is
smaller than the precision Π or the iteration count reaches its maxi-
mum – I . �e algorithm returns with the ttarдet (x) value of the iter-
ationx which resulted in the smallest future error F (W , ttarдet (x),k).
�is returned value then could be reused by the work�ow enactor
for the planning and execution phases of the autonomous loop,
where precise details are out of the scope of this paper.

5 VALIDATION
5.1 Simulating the Tinker work�ow
We demonstrate our approach via a biochemical work�ow that uses
the TINKER library [6] in a Conformer Generator (TCG) work�ow
which consists of 6 steps (see Figure 1): (i) G: generating 50000

G

T1

T3

T2 TC C

Figure 1: TINKER Conformer Generator work�ow

input molecule conformers (taking around 12 hours, compressed
into 20 �les); (ii) T1: minimising the initial conformational states
generated at high temperature ( 35 minutes for a group of 2500
conformers); (iii)T2: performing a short low temperature dynamics
( 60 minutes for the group); (iv) T3: cooling the high temperature
states ( 32 minutes for the group); (v) TC: collecting parameter
study results; (vi) C: re-compressing results to a single �le.

�e execution of this work�ow was described for the simulation
(using the open source DISSECT-CF simulator [7]), which included
the model of the cloud of the Laboratory of Parallel and Distributed
Systems: an OpenNebula cloud consisting of 216 cores, 604 GBs of
memory and 70 TBs of storage. �is cloud was used to simulate
TCG while various background load was added (we used the Grid
Workloads Archive as realistic loads – GWA [8]). Each TCG job
had its own VM with 1 CPU core and 1 GB of RAM.

5.2 Evaluation
5.2.1 Analysing our assumptions. First, to understand the rela-

tion between past and future errors (and thus our main assumption),
we simulated the TCG work�ow with every starting timestamp
from GWA. With videos about Sharcnet1 and AuverGrid2, we exem-
plify how simulated past and future error values vary. Here, each
dot represents a single simulation run. We focused on the lower
part of the error range (below 107) omi�ing thousands of values (as
some reach over 3 · 107) to ensure the best view on the near optimal
error values (which are below 2 · 106). Based on our simulated
past and future error values, we observed that the prediction could
improve if the error values are around the minimum. �e videos
also show how the error functions converge towards the optimal
values as a result of the increasing number of completed jobs – k .

Next, we evaluated the simulated time series of past and future
errors. We saw error values between (1.5 · 106 − 4 · 107). �us, to
�nd be�er matching background loads, we limited our search to
fragments with past/future error values below a chosen τ threshold:

T exp
f il t := {t ∈ T : E(W , t, k ) < τ ∨ F (W , t, k ) < τ } (3)

To further understand our assumption on the relations of past and
future errors, we evaluated how likely consecutive (in terms of
t ) fragments with small past error values E(W , t ,k) lead to small
F (W , t ,k) values. First, we prepared T

exp
f il t using τ := 2 · 106. We

selected those subsets that hold more than 80 consecutive times-
tamps of the trace. Next, we observed that in these subsets the
likelihood of having both minimal future and past error values is
65-86%. We also observed that lower τ values notably decrease the
1h�ps://youtu.be/gozmHoCneyU
2h�ps://youtu.be/BzdVcAq4ez8
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Figure 2: �e in�uence of the inputs of the algorithm

simultaneous presence of below-threshold error values (suggesting
over ��ing). Our assumption was proven: past error values indicate
the tendency of future ones.

5.2.2 Selection performance and convergence. To validate the
capabilities of the algorithm in terms of workload approximation,
we �rst de�ned the metrics to quantify the accuracy. We randomly
selected a fragment from GWA (denoted it as tд ) and used it as
the workload to be predicted behind TCG, then we applied our
algorithm to approximate this fragment. We calculate the accuracy
of the load approximation of the received ttarдet , by evaluating the
Mean Absolute Percentage Error (MAPE) of all possible (in terms
of k) past and future execution time error values as follows:

MAPEE (W , tд ) :=
∑

1≤i≤N

|E(W , tд, i) − E(W , ttarдet , i) |
N
100E(W , tд, i)

(4)

for past errors, and for future errors:

MAPEE (W , tд ) :=
∑

2≤i≤N−1

|F (W , tд, i) − F (W , ttarдet , i) |
N−2
100 F (W , tд, i)

. (5)

As our algorithm could be in�uenced its input parameters, we car-
ried out a parameter study. We investigated how does the accuracy
and the approximation time d changes using the most in�uential
parameters : (i) the search range – S –, and (ii) the relative size
of search window – (maxTr ed −minTr ed )/S . For each particular
parameter setup, we have executed 500 random approximations of
with the GWA trace. Finally, to quantify the algorithm’s quality,
we used the average and median values of our accuracy metrics
of these 500 approximations. As a baseline, we evaluated the accu-
racy metrics for random trace selection with the following results:

AVG(MAPEE (W , tд)) = 157.874, AVG(MAPEF (W , tд)) = 166.166,
MED(MAPEE (W , tд)) = 49.18, MED(MAPEF (W , tд)) = 67.825.

�e algorithm’s performance is presented in Figure 2. In total,
each �gure represents over 500 thousand approximations. It can
be seen that in all cases the results of our algorithm yields be�er
results than random selection. Regarding the e�ects of the vari-
ous parameters, increasing any of them obviously introduces more
calculations and hence, the d duration increases monotonously.
Accuracy improves with increasing search range S but it simulta-
neously increases the execution time (Figure 2a). It is important to
notice that the median of MAPEF increases indicating that despite
the improving average values, an increasing number of results lie
out of the desired range. Finally, the relative size of the search win-
dow generally improves the accuracy with accordingly increasing
execution times (Figure 2b).

In general, the duration of the approximation is negligible (in
the range of 31ms-2114ms, with the median of less than 200ms)
compared to our assumed 1 minute maximum time to be spent on
workload prediction. �is leaves enough time for the simulation
needs of the algorithm.

6 CONCLUSIONS
Scienti�c work�ows are long-running applications thus, modi�-
cations in the infrastructure are likely to be necessary at runtime
in order to accommodate changes in the load and maintain per-
formance. A key for such runtime adaptation, information about
the load, is absent in most of the cases. In this paper, we proposed
a novel background load prediction algorithm for cloud-oriented
work�ow enactment. �e principle was demonstrated and vali-
dated using a biochemical work�ow. Tests proved the ability of
our approach to select workload traces that are suitable for predict-
ing background load. In our future work, we consider broadening
the scope of our predictions from private clouds (that could be
easily modelled in feasible time with current simulators) to some
commercial clouds as well.
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