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ABSTRACT

We introduce CitySearcher, a vertical search engine that searches

for cities when queried for an interest. Generally in search engines,

utilization of semantics between words is favorable for performance

improvement. Even though ambiguous query words have multiple

semantic meanings, search engines can return diversified results

to satisfy different users’ information needs. But for CitySearcher,

mismatched semantic relationships can lead to extremely unsatis-

factory results. For example, the city Sale would incorrectly rank

high for the interest shopping because of semantic interpretations

of the words. Thus in our system, the main challenge is to eliminate

the mismatched semantic relationships resulting from the side ef-

fect of the semantic models. In the previous case, we aim to ignore

the semantics of a city’s name which is not indicative of the city’s

characteristics. In CitySearcher, we use word2vec, a very popular

word embedding technique to estimate the semantics of the words

and create the initial ranks of the cities. To reduce the effect of the

mismatched semantic relationships, we generate a set of features

for learning based on a novel clustering-based method. With the

generated features, we then utilize learning to rank algorithms to

rerank the cities for return. We use the English version of Wikivoy-

age dataset for evaluation of our system, where we sample a very

small dataset for training. Experimental results demonstrate the

performance gain of our system over various standard retrieval

techniques.
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1 INTRODUCTION

In this paper, we present CitySearcher, a vertical search engine that

generates a ranking of cities in response to an interest given by the

user. The interest acts as a query on a travel document corpus, which

mostly contains documents that represent and contain information

about a particular city. For example, for the interest ‘History’ the

top 3 cities presented are ‘Rome’, ‘Lviv’ and ‘Oslo’.

Generally in search engines, utilization of semantics between

words is beneficial for an information retrieval system for perfor-

mance improvement. To illustrate, the presence of sentences like

‘The city has bright sea shores’ in a document should contribute in

giving it a high ranking score for the query ‘sunny beach’. Even

though the sentence and the query have no common words, but

there is semantic similarity between the words ‘bright’ and ‘sunny’

as well as ‘shores’ and ‘beach’. Even though ambiguous query words

have multiple semantic meanings, search engines can return diver-

sified results to satisfy different users’ information needs.

However in CitySearcher, mismatched semantic relationships can

lead to extremely unsatisfactory results. This happens particularly

when the city names gets incorrectly semantically interpreted. As an

example, the city ‘Sale’ would incorrectly rank high for an interest

like ‘shopping’, because of semantic relationships between the two

words as well as repetition of the city’s name in its document. Thus

for CitySearcher, the main challenge is to eliminate the mismatched

semantic relationships resulting from the side effect of the semantic

models. In the previous case, it is rather desired that the semantics of

city name are ignored completely for matching it with the interest.

This is because, the meaning of a city name if any, can be completely

unrelated to its characteristics.

In CitySearcher, we we use word2vec [7, 8] to estimate the se-

mantics of the words.Word2vec is a widely used word embedding

technique, and it is shown that the vectors generated by word2vec

preserve the semantic relations between the words, e.g. vec(‘Paris’)

- vec(‘France’) + vec(‘Italy’) is very close to vec(‘Rome’) [7].

With the semantic vectorizations of the words, the CitySearcher

algorithm firstly represents each city as the words in the corre-

sponding document describing the target city, and then calculates

the initial ranking scores for each city-interest pair with the sim-

ilarities between the vectors of the words in the city document

and the interest. While word2vec provides semantic interpretations

in retrieval for CitySearcher, it also introduces the issue of certain

mismatched semantic similarities, especially between interest and

city names. Thus besides the initial ranking scores between cities

and interest queries, we also propose a set of new features for rank-

ing of the cities with the given interest queries. In particular, we

create a set of topics by clustering all of the vectors of words in

the vocabulary. For each interest, we choose a subset of closest

topics and calculate the similarity from the city to the topics as new



(a) The semantic relationships between words are beneficial for

retrieval, and hence should be utilized.

Solution:Create vector representations of thewords in corpus

using word2vec (that preserves semantic relationships) and

then use them for retrieval.

(b) However, consideration of semantic similarity between cer-

tain words, especially city and interest, lead to irrelevant

results. Such effect mismatched of semantic relationships

needs to be reduced.

Solution: To reduce the effect of the undesired semantic re-

lationships, train a ranking model using machine learning.

For the training process, collection of ratings from the users

for city-document pairs is a prerequisite.

(c) There are few features for city-document pairs as well as

limited number of ratings from the users. This limits the

efficiency of training.

Solution: Generate new features for city-document pairs us-

ing vector representations of words in the vocabulary.

3 METHOD

Mokolov et al [7, 8] introduced word2vec, a prominent procedure

to generate vector representations of words. They introduced the

continuous skip-gram, which is a neural network model consisting

of input, projection and output layers that predict the surrounding

words. This is achieved by maximizing the average log probability

for the words (w1,w2...wN ) present in the corpus:

1

N

N∑

i=1

∑

j ∈Sur (i,z )
loд p (w j |wi ) (1)

1https://en.wikivoyage.org/wiki/Main_Page

Here, Sur (i,z) represents a context window for training con-

sisting of z words that surround the word i . Also, p (w j |wi ) is the
hierarchical softmax of the respectiveword vectorsv (w j ) andv (wi ).
One of the key benefits of generating word vectors is that the train-

ing is completely unsupervised. Moreover, the generated vectors

enable the calculation of similarities between words, by simply

calculating the similarity of vectors.

CitySearcher utilizes word2vec on a corpus comprised mainly

of travel destination documents (each document has information

about a particular city), so that vector representations of each word

present in the vocabulary is computed. That is to say, for all the

words present in the corpus:w1,w2...wN , the corresponding vector

representations: v (w1),v (w2)...v (wN ) are generated. The sections
that follow, describe how these vector representations are used to

generate ranking of cities for an interest.

3.1 Basic Algorithm: Using Vector Similarity

The similarity between two wordsw1 andw2 from the corpus can

be calculated on the basis of cosine distance between their vectors:

sim(w1,w2) = 1 − cosineDistance (v (w1),v (w2)) (2)

To rank cities against an interest itr (a word representing an in-

terest, e.g. music, history etc.), we need to find the ranking score for

itr and the cities. This can be done by calculating the average simi-

larity score for itr and the words closest to it in the city document.

If docc is the document representing the city c and contains words

w1,w2...wn , the similarity scores are calculated between itr and the
words of the document: sim(itr ,w1), sim(itr ,w2) ... sim(itr ,wn ).
Let s1,s2...sk be the top k scores from these similarity scores. Then,

the ranking score for the city-interest pair is calculated as the av-

erage of top-k similarities. This ranking score, initialScore (c,itr )
can be formulated as:

initialScore (c,itr ) =
1

k

k∑

i=1

si (3)

The calculation of such scores for an interest corresponding to

different cities, and then sorting the cities in a deacreasing order of

the scores, enable ranking the cities for the interest.

3.2 Improvement using Machine Learning

The algorithm described in the previous section utilizes the seman-

tic relationship between words, captured by their vector represen-

tations. Though this is expected to perform well in most cases,

utilization of vector similarities can lead to fundamental problems

in particular situations. Since the city’s name is semantically inter-

preted and it is usually mentioned several times in the document, it

has a significant influence on the ranking. As a result, a city called

Sale ranks first for the interest Shopping. Similarly, a small village

named Chicken appears in the top documents for the interest Food

and a city called Mobile ranks highly for the interest Technology.

To circumvent these defects and improve the performance, the

city rankings could be generated by training using regression algo-

rithms like Kernel ridge regression [9] and Logistic regression [9],

on the relevant assessments obtained from the users. A relevance

assessment can be represented as a tuple: (c (city), itr (interest), r

features. We finally create a training set by collecting users’ rele-
vance assessments (ratings) for city-interest pairs, and use machine 
learning (e.g. different regression algorithms) to rerank the results 
of the cities for return.

While CitySearcher could preserve semantic relationships in gen-
eral and improve retrieval performance, it is also expected to show 
capability of reducing the effect of undesired semantic relationships. 
With our proposed features, the semantics of the interest query 
words are interpreted with a set of closest topics (clusters of words), 
allowing us calculating the similarity between cities and interest 
queries with multiple enriched dimensions.

We use the English version of Wikivoyage dataset 1 for evalua-
tion of our system. With a very small sampled dataset for training, 
experimental results demonstrate the performance gain of our sys-
tem over various standard retrieval techniques.

2 PROBLEM STATEMENT

Let D be a corpus containing travel documents docc1 , docc2 . . .  
doccz having information about the cities c1,c2 . . . cz , respectively. 
There is one-to-one mapping between documents and cities, i.e. 
each document represents only one city and each city has only one 
document for it. For a word representing an interest itr , retrieve a 
ranking of cities in decreasing order of relevance.

The main challenges or targets for the retrieval task along with 
their proposed solutions are:



|words in docc |
(4)

For the relevance assessment (c,itr ,r ), the similarities of c to the
p closest topics to titr (t1,t2...tp ) can be considered as the p newly

generated features (f1, f2... fp ):

fi = topicSimilarity (c,ti ),i = 1,2, . . .p (5)

It should be noted that other features can also be included for

training along with the generated features. In our method we in-

clude two more features: (a) initial ranking score for city document

pair, initialScore (c,itr ), using the basic approach (Section 3.1) (b)

document length, as it is a strong indicator of importance for travel

destination documents. This makes a total of p + 2 features. These
features are used to form the training data, that in turn is used by

regression algorithms, that generates improved ranking models.

3.4 Remarks

We have used a rather sophisticated method to construct the train-

ing set. The method was dictated by the relatively small number

of ratings available. Potentially better results can be constructed

if we build a dataset for each interest. In such setting, the ratios

for each topic would have the same order throughout the dataset,

which makes learning a model out of them more straightforward.

4 EXPERIMENTAL SETUP

4.1 Dataset

We have used the English version of Wikivoyage dataset for our

experiments, which contains 6691 documents that predominantly

represent different travel destinations (cities). It has a corpus size of

1832499 words and a vocabulary of 106634 words. Also, we created

a list of 50 common travel interests, by taking inspiration from sev-

eral famous travel webpages. Moreover, for relevance assessment,

we collected 800 ratings for randomly selected city-interest pairs.

These ratings were received from 40 people (Europeans, both gen-

ders, age 18-60) using the crowdsourcing platform clickworker 2.

Furthermore to enable training and testing, the ratings were divided

into a training set (80%) and a test set (20%).

4.2 Evaluation Metric

We use the standard ranking accuracy metric: normalized dis-

counted cumulative gain (NDCG@1-5) [6], to evaluate the rankings

generated by our algorithms and the baselines.

4.3 CitySearcher Setup

Vector representations for the words in WikiVoyage dataset are

created using word2vec, for a window size of 10. Firstly, the rank-

ings of cities are generated for the interests by using the basic

CitySearcher algorithm described in Section 3.1. For calculating

the ranking scores, we used top 10 similarity scores between the

interest and the words in the document, i.e. k = 10.

Then, to implement the feature generation technique described in

Section 3.3 to enrich the training set, we clustered the word vectors

and created 100 topics for the Wikivoyage dataset (i.e. M = 100).

Thereafter, for each relevant assessment (c,itr ,r ), we generated

features corresponding to all the 100 closest topics to the interest

itr , i.e. value of p is also 100. It means that the similarities of c
are calculated to all the topics (ordered from closest to farthest

to the topic of interest itr ), and considered as features. Two more

features were included: the document length fordocc (the document

representing c) and the initial ranking score for city-interest pair

using Equation 3. Thus, for each relevance assessment we have a

total of 102 features. Admittedly, these values of k ,M and p have

been chosen intuitively.

The following two regression algorithms were applied on the

training set with generated features to create the ranking models:

• Kernel Ridge Regression: Kernel ridge regression (KRR)

[9] combines Ridge Regression (linear least squares with

l2-norm regularization) with the kernel trick. It thus learns a

linear function in the space induced by the respective kernel

and the data. We used RBF kernels. The optimal parameters

were found using 3-fold cross validation.

2https://clickworker.com

(rating) ) where r ∈ {1,−1}. The user gives a value 1 to r if she 
thinks that city c is relevant for the interest itr , and −1 if it is ir-
relevant. However, there is only one feature derived from vector 
representations that can be used in training i.e. the city-interest 
initial ranking score as calculated in Equation 3. The lack of fea-
tures would limit the effectiveness of the training. Hence, enriching 
our training dataset would improve training effectiveness. To this 
end, in the next section we describe a novel approach employed by 
us, to generate a set of new features per relevance assessment, by 
utilizing vector representations of the words in the vocabulary.

3.3 CitySearcher Feature Generation
Our novel technique generates features corresponding to each rele-
vance assessment (c,itr ,r ). We create a set of topics by clustering 
all of the vectors of words in the vocabulary. For the interest itr , 
we choose a subset of closest topics and calculate the similarity 
from the city c to these topics as new features. The intuition behind 
using this technique is that the relevance of a c to itr , should be 
related to the similarity of c to the topics closest to itr .

Firstly we use k-means [12] clustering algorithm to divide the 
entire vocabulary into M clusters. The clustering algorithm utilizes 
the precomputed vector representations of the words in the corpus 
and calculates the similarity between the words using Equation 
2. The centroid of word vectors in each cluster is considered as 
a topic (also a vector), resulting in creating M topics. Also, each 
topic is representative of the words in its cluster. Thereafter, for 
the relevance assessment (c,itr ,r ) we find titr  , the topic to whose 
cluster the interest word itr belongs. Then, we find the p  topics 
closest to titr  : t1,t2...tp , which are arranged in increasing order of 
their cosine-distance from titr  . It should be noted that the p closest 
topics to titr  also includes titr  itself, making t1 = titr  .

Since in our case, each city c is represented by only one document 
docc and also docc is representative only for c , the calculation of 
city to topic similarity becomes quite straightforward. It can be 
calculated as topicSimilarity (c,t ), which is the ratio of the number 
of words in docc that belong to the cluster for topic t :

|(words in docc ) ∩ (words in cluster o f t ) |
topicSimilarity (c,t ) =



Table 1: Performance comparison for NDCG@1-5

NDCG @1 @2 @3 @4 @5

TF-IDF 0.8000 0.7500 0.8055 0.8017 0.8234

Okapi-BM25 0.8000 0.8500 0.8380 0.8479 0.8542

LSI 0.8000 0.7500 0.8055 0.8017 0.8234

LDA 0.8000 0.7500 0.7620 0.7521 0.7821

LGD 0.9000 0.8000 0.8480 0.8403 0.8475

CS-Basic 0.8000 0.7500 0.7740 0.7861 0.8154

CS-KRR 0.9000 0.9000 0.8161 0.8465 0.8620

CS-LR 0.8000 0.8500 0.8576 0.8614 0.8638

• Logistic Regression: Logistic regression [5] is a classifica-

tion algorithm, that nevertheless computes estimates of the

class probabilities, that can be used for ranking.

For these regression algorithms, we have used the implemen-

tation provided by the Python package scikit-learn 3. The models

generated by these models are evaluated on the test set.

4.4 Baselines

To compare the rankings produced by our algorithms, we use the

five widely used retrieval techniques as baselines:

• TF-IDF: Term frequency- Inverse Document Frequency [10]

is a very famous ranking model and employs bag-of-words

representation. Theweight of a term increases proportionally

to the number of its occurrences in the document, but also

decreases in proportion to its frequency in the corpus.

• Okapi-BM25: Okapi BM25 [11], a well known ranking scheme,

is based on probabilistic retrieval framework.

• LSI: Latent Semantic Indexing [4] uses singular value decom-

position to identify patterns in the relationships between the

terms to generate a semantic feature space.

• LDA: Latent Dirichlet Allocation [1] models each document

using the underlying set of word topics.

• LGD: LGD [2, 3] weighting model is a high performing ver-

sion of the log-logistic model.

5 RESULTS

The results are shown in Table 1 for the metric NDCG@1-5. The re-

sults are presented for the baselines: TF-IDF, Okapi BM25, LSI, LDA

and LGD. Also, the basic CitySearcher algorithm from Section 3.1

is denoted as CS-Basic. Moreover, the evaluations for the learning-

to-rank models trained on generated features (Section 3.3) using

Kernel Ridge Regression and Logistic Regression are presented as

CS-KRR and CS-LR respectively.

We can see that the results for CS-Basic are better than the

baseline LDA for all metrics, however they are worse than TF-IDF,

Okapi-BM25, LSA and LGD in most cases. Also, LGD is the best

performing method among the baselines. We observe the benefits of

using machine learning on generated features, as the performances

of both such methods, CS-KRR and CS-LR, are better than that

of CS-Basic. CS-LR gives the best results for NDCG@3-5, while

CS-KRR gives the best performance for NDCG@1-2. However, LGD

ties with CS-KRR on NDCG@1. Overall, we can conclude that CS-

LR is the best performing method because apart from giving best

3http://scikit-learn.org/

performances for NDCG@3-5, its performance is better than most

baselines even for NDCG@1-2. CS-KRR on the other hand hand

falls behind LGD as well as Okapi-BM25 for NDCG@3-5.

6 CONCLUSION

We introduced CitySearcher, a search engine that ranks cities for

interests. It uses vector representations of words to estimate their

semantics. The basic algorithm computes ranking scores for each

city-interest pair using similarities between the vectors, but suffers

because of mismatched semantic similarities. To solve this issue,

we propose a set of new features to rerank cities for the interest. A

set of topics is created by clustering all vectors of words in the vo-

cabulary. Then, we choose a subset of closest topics to the interest

and calculate the similarity from the city to the topics as new fea-

tures. Even for a small training set, the results show the benefits of

reranking using regression algorithms on generated features over

the basic algorithm as well as the standard retrieval techniques.

In future work, we want to create an algorithm that can incorpo-

rate more than one interest in the query. Additionally, we would like

to return a ranking of tours (group of cities), in response to multiple

interests. Since we have a small training set in our experiments, we

would like to experiment with larger training data. Moreover, the

parameters in our experiments can be further explored and tuned

to achieve further improvements.
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