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ABSTRACT
We address the problem of generating query suggestions to support
users in completing their underlying tasks (which motivated them
to search in the �rst place). Given an initial query, these query
suggestions should provide a coverage of possible subtasks the user
might be looking for. We propose a probabilistic modeling frame-
work that obtains keyphrases from multiple sources and generates
query suggestions from these keyphrases. Using the test suites of
the TREC Tasks track, we evaluate and analyze each component of
our model.
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1 INTRODUCTION
Search is o�en performed in the context of some larger underlying
task [11]. �ere is a growing stream of research aimed at making
search engines more task-aware (i.e., recognizing what task the
user is trying to accomplish) and customizing the search experi-
ence accordingly (see §2). In this paper, we focus our a�ention on
one particular tool for supporting task-based search: query sug-
gestions. �ery suggestions are an integral part of modern search
engines [16]. We envisage an user interface where these sugges-
tions are presented once the user has issued an initial query; see
Figure 1. Note that this is di�erent from query autocompletion,
which tries to recommend various possible completions while the
user is still typing the query. �e task-aware query suggestions we
propose are intended for exploring various aspects (subtasks) of
the given task a�er inspecting the initial search results. Selecting
them would allow the user to narrow down the scope of the search.

�e Tasks track at the Text REtrieval Conference (TREC) has
introduced an evaluation platform for this very problem, referred
to as task understanding [20]. Speci�cally, given an initial query,
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Figure 1: �ery suggestions to support task-based search.

the system should return a ranked list of keyphrases “that represent
the set of all tasks a user who submi�ed the query may be looking
for” [20]. �e goal is to provide a complete coverage of subtasks
for an initial query, while avoiding redundancy. We use these
keyphrases as query suggestions.

Our aim is to generate such suggestions in a se�ing where past
usage data and query logs are not available or cannot be utilized.
�is would be typical for systems that have a smaller user base
(e.g., in the enterprise domain) or when a search engine has been
newly deployed [4]. One possibility is to use query suggestion
APIs, which are o�ered by all major web search engines. �ese are
indeed one main source type we consider. Additionally, we use the
initial query to search for relevant documents, using web search
engines, and extract keyphrases from search snippets and from full
text documents. Finally, given the task-based focus of our work, we
lend special treatment to the WikiHow site,1 which is an extensive
database of how-to guides.

�e main contribution of this paper is twofold. First, we propose
a transparent architecture, using generative probabilistic modeling,
for extracting keyphrases from a variety of sources and generating
query suggestions from them. Second, we provide a detailed analy-
sis of the components of our framework using di�erent estimation
methods. Many systems that participated in the TREC Tasks track
have relied on strategic combinations of di�erent sources to produce
query suggestions, see, e.g., [7–9]. However, no systematic compar-
ison of the di�erent source types has been performed yet—we �ll
this gap. Additional components include estimating a document’s
importance within a given source, extracting keyphrases from doc-
uments, and forming query suggestions from these keyphrases.
Finally, we check whether our �ndings are consistent across the
2015 and 2016 editions of the TREC Tasks track.

2 RELATEDWORK
�ere is a large body of work on understanding and supporting
users in carrying out complex search tasks. Log-based studies
have been one main area of focus, including the identi�cation of
tasks and segmentation of search queries into tasks [2, 14] and
mining task-based search sessions in order to understand query
1h�p://www.wikihow.com/
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Figure 2: High-level overview of our approach.

reformulations [10] or search trails [19]. Another theme is support-
ing exploratory search, where users pursue an information goal
to learn or discover more about a given topic. Recent research in
this area has brought the importance of support interfaces into
focus [1, 3, 17]. Our main interest is in query suggestions, as a
distinguished support mechanism. Most of the related work utilizes
large-scale query logs. For example, Craswell and Szummer [6] per-
form a random walk on a query-click graph. Boldi et al. [5] model
the query �ow in user search sessions via chains of queries. Sce-
narios in the absence of query logs have been addressed in [4, 13],
where query suggestions are extracted from the document corpus.
However, their focus is on query autocompletion, representing the
completed and partial terms in a query. Kelly et al. [12] have shown
that users prefer query suggestions, rather than term suggestions.
We undertake the task of suggesting queries to users, related to the
task they are performing, as we shall explain in the next section.

3 PROBLEM STATEMENT
We adhere to the problem de�nition of the task understanding task
of the TREC Tasks track. Given an initial query q0, the goal is to
return a ranked list of query suggestions 〈q1, . . .qn〉 that cover all
the possible subtasks related to the task the user is trying to achieve.
In addition to the initial query string, the entities mentioned in it
are also made available (identi�ed by their Freebase IDs).

For example, for the query “low wedding budget,” subtasks in-
clude (but are not limited to) “buy a used wedding gown,” “cheap
wedding cake,” and “make your own invitations.” �ese subtasks
have been manually identi�ed by the track organizers based on
information extracted from the logs of a commercial search engine.
�e suggested keyphrases are judged with respect to each subtask
on a three point scale (non-relevant, relevant, and highly relevant).
Note that subtasks are only used in the evaluation, these are not
available when generating the keyphrases.

4 APPROACH
We now present our approach for generating query suggestions. As
Figure 2 illustrates, we obtain keyphrases from a variety of sources,
and then construct a ranked list of query suggestions from these.

4.1 Generative Modeling Framework
We introduce a generative probabilistic model for scoring the can-
didate query suggestions according to P(q |q0), i.e., the probability
that a query suggestion q was generated by the initial query q0.

Formally:

P(q |q0) =
∑
s

P(q |q0, s)P(s |q0)

=
∑
s

(∑
d

P(q |q0, s,d)P(d |q0, s)
)
P(s |q0)

=
∑
s

(∑
d

(∑
k

P(q |q0, s,k)P(k |s,d)
)
P(d |q0, s)

)
P(s |q0) .

�is model has four components: (i) P(s |q0) expresses the impor-
tance of a particular information source s for the initial query q0;
(ii) P(d |q0, s) represents the importance of a document d originat-
ing from source s , with respect to the initial query; (iii) P(k |d, s) is
the relevance of a keyphrase k extracted from a document d from
source s ; and (iv) P(q |q0, s,k) is the probability of generating query
suggestion q, given keyphrase k , source s , and the initial query q0.
Below, we detail the estimation of each of these components.

4.2 Source Importance
We collect relevant information from four kinds of sources: query
suggestions (QS), web search snippets (WS), web search documents
(WD), and WikiHow (WH). For the �rst three source types, we
use three di�erent web search engines (Google, Bing, and Duck-
DuckGo), thereby having a total of 10 individual sources. In this
work, we assume conditional independence between a source s and
the initial query q0, i.e., set P(s |q0) = P(s).

4.3 Document Importance
From each source s , we obtain the top-K (K = 10) documents for
the query q0. We propose two ways of modeling the importance
of a document d originating from s: (i) uniform and (ii) inversely
proportional to the rank of d among the top-K documents, that is:

P(d |q0, s) =
K − r + 1∑K
i=1 K − i + 1

=
K − r + 1
K(K + 1)/2 ,

where r is the rank position of d (r ∈ [1..K]).

4.4 Keyphrase Relevance
We obtain keyphrases from each document, using an automatic
keyphrase extraction algorithm. Speci�cally, we use the RAKE
keyword extraction system [15]. For each keyphrase k , extracted
from document d , the associated con�dence score is denoted by
c(k,d). Upon a manual inspection of the extraction output, we
introduce some data cleansing steps. We only retain keyphrases
that: (i) have an extraction con�dence above an empirically set
threshold of 2; (ii) are at most 5 terms long; (iii) each of the terms
has a length between 4 and 15 characters, and is either a meaningful
number (i.e., max. 4 digits) or a term (excluding noisy substrings
and reserved keywords from mark-up languages). Finally, we set
the relevance of k as P(k |d, s) = c(k,d)/∑k ′ c(k ′,d).

In case s is of type QS, each returned document actually corre-
sponds to a query suggestion. �us, we treat each of these docu-
ments d as a single keyphrase k , for which we set P(k |d, s) = 1.



Table 1: Comparison of query suggestion generators across
the di�erent types of sources. Statistical signi�cance is
tested against the corresponding line in the top block.

P(q |q0, s,k) S 2015 2016
ERR-IA α-NDCG ERR-IA α-NDCG

Using raw QS 0.0755 0.1186 0.4114 0.5289
keyphrases WS 0.2011 0.2426 0.3492 0.4038

WD 0.1716 0.2154 0.2339 0.2886
WH 0.0744 0.1044 0.1377 0.1723

Using QS 0.0751 0.1182 0.4046 0.5233
expanded WS 0.1901 0.2274 0.2927† 0.3467†
keyphrases WD 0.1551 0.2097 0.1045‡ 0.1667‡

WH 0.0849 0.1090 0.0789† 0.0932‡

4.5 �ery Suggestions
As a �nal step, we need to generate query suggestions from the
extracted keyphrases. As a baseline option, we take each raw
keyphrase k as-is, i.e., with q = k we set P(q |q0, s,k) = 1.

Alternatively, we can form query suggestions by expanding
keyphrases. Here, k is combined with the initial query q0 using
a set of expansion rules proposed in [7]: (i) adding k as a suf-
�x to q0; (ii) adding k as a su�x to an entity mentioned in q0;
and (iii) using k as-is. Rules (i) and (ii) further involve a custom
string concatenation operator; we refer to [7] for details. Each
query suggestion q, that is generated from keyword k , has an as-
sociated con�dence score c(q,q0, s,k). We then set P(q |q0, s,k) =
c(q,q0, s,k)/

∑
q′ c(q′,q0, s,k). By conditioning the suggestion prob-

ability on s , it is possible to apply a di�erent approach for each
source. Like in the previous subsection, we treat sources of type
QS distinctly, by simply taking q = k and se�ing P(q |q0, s,k) = 1.

We note that it is possible that multiple query suggestions have
the same �nal probability P(q |q0). We resolve ties using a determin-
istic algorithm, which orders query suggestions by length (favoring
short queries) and then sorts them alphabetically.

5 RESULTS
In this section we present our experimental setup and results.

5.1 Experimental Setup
We use the test suites of the TREC 2015 and 2016 Tasks track [18,
20]. �ese contain 34 and 50 queries with relevance judgments,
respectively. We report on the o�cial evaluation metrics used at
the TREC Tasks track, which are ERR-IA@20 and α-NDCG@20.
In accordance with the track’s se�ings, we use ERR-IA@20 as our
primary metric. (For simplicity, we omit mentioning the cut-o�
rank of 20 in all the table headers.) We noticed that in the ground
truth the initial query itself has been judged as a highly relevant
suggestion in numerous cases. We removed these cases, as they
make li�le sense for the envisioned scenario; we note that this
leads to a drop in absolute terms of performance. We report on
statistical signi�cance using a two-tailed paired t-test at p < 0.05
and p < 0.001, denoted by † and ‡, respectively.

In a series of experiments, we evaluate each component of our
approach, in a bo�om-up fashion. For each query set, we pick the

Table 2: Comparison of document importance estimators
across the di�erent types of sources. Statistical signi�cance
is tested against the corresponding line in the top block.

P(d |q0, s) S 2015 2016
ERR-IA α-NDCG ERR-IA α-NDCG

Uniform QS 0.0755 0.1186 0.4114 0.5289
WS 0.2011 0.2426 0.3492 0.4038
WD 0.1716 0.2154 0.2339 0.2886
WH 0.0849 0.1090 0.1377 0.1723

Rank-based QS 0.0891† 0.1307† 0.4288 0.5455
decay WS 0.1906 0.2315 0.3386 0.4011

WD 0.1688 0.2119 0.1964 0.2608
WH 0.0935 0.1225 0.1195 0.1495

con�guration that performed best on that query set, which is an ide-
alized scenario. Note that our focus is not on absolute performance
�gures, but on answering the following research questions:

RQ1 What are the most useful information sources?
RQ2 What are e�ective ways of (i) estimating the importance

of documents and (ii) generating query suggestions from
keyphrases?

RQ3 Are our �ndings consistent across the two query sets?

5.2 �ery Suggestion Generation
We start our experiments by focusing on the generation of query
suggestions and compare the two methods described in §4.5. �e
document importance is set to be uniform. We report performance
separately for each of the four source types S (that is, we set P(s)
uniformly among sources s ∈ S and set P(s) = 0 for s < S). Table 1
presents the results. It is clear that, with a single exception (2015
WH), it is be�er to use the raw keyphrases, without any expan-
sion. �e di�erences are signi�cant on the 2016 query set for all
source types but QS. Regarding the comparison of di�erent source
types, we �nd that QS >WS >WD >WH on the 2016 query set,
meanwhile for 2015, the order is WS >WD > QS, WH.

5.3 Document Importance
Next, we compare the two document importance estimator methods,
uniform and rank-based decay (cf. §4.3), for each source type.
Table 2 reports the results. We �nd that rank-based document
importance is bene�cial for the query suggestion (QS) source types,
for both years, and for WikiHow (WH) on the 2015 topics. However,
the di�erences are only signi�cant for QS 2015. For all other source
types, the uniform se�ing performs be�er.

We also compare performance across the 10 individual sources.
Figure 3 shows the results, in terms of ERR-IA@20, using the uni-
form estimator. We observe a very similar pa�ern using the rank-
based estimator (which is not included due to space constraints).
On the 2016 query set, the individual sources follow the exact same
pa�erns as their respective types (i.e., QS >WS >WD >WH), with
one exception. �e Bing API returned an empty set of search sugges-
tions for many queries, hence the low performance of QSBinд . We
can observe a similar pa�ern on the 2015 topics, with the exception
of sources of type QS, which are the least e�ective here.
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Figure 3: Performance of individual sources, sorted by per-
formance on the 2016 query set.

5.4 Source Importance
Finally, we combine query suggestions across di�erent sources; for
that, we need to set the importance of each source. We consider
three di�erent strategies for se�ing P(s): (i) uniformly; (ii) propor-
tional to the importance of the corresponding source type (QS, WS,
WD, and WH) from the previous step (cf. Table 2); (iii) proportional
to the importance of the individual source (cf. Figure 3). �e results
are presented in Table 3. Firstly, we observe that the combination
of sources performs be�er than any individual source type on its
own. As for se�ing source importance, on the 2015 query set we
�nd that (iii) delivers the best results, which is in line with our
expectations. On the 2016 query set, only minor di�erences are
observed between the three methods, none of which are signi�cant.

5.5 Summary of Findings
(RQ1) �ery suggestions provided by major web search engines
are unequivocally the most useful information source on the 2016
queries. We presume that these search engine suggestions are
already diversi�ed, which we can directly bene�t from for our task.
�ese are followed, in order, by keyphrases extracted from (i) web
search snippets, (ii) web search results, i.e., full documents, and (iii)
WikiHow articles. On the 2015 query set, query suggestions proved
much less e�ective; see RQ3 below. (RQ2) With a single exception,
using the raw keyphrases, as-is, performs be�er than expanding
them by taking the original query into account. For web query
suggestions it is bene�cial to consider the rank order of suggestions,
while for web search snippets and documents the uniform se�ing
performs be�er. For WikiHow, it varies across query sets. (RQ3) Our
main observations are consistent across the 2015 and 2016 query
sets, regarding documents importance estimation and suggestions
generation methods. It is worth noting that some of our methods
were o�cially submi�ed to TREC 2016 [7] and were included in the
assessment pools. �is is not the case for 2015, where many of our
query suggestions are missing relevance assessments (and, thus,
are considered irrelevant). �is might explain the low performance
of QS sources on the 2015 queries.

6 CONCLUSIONS
In this paper, we have addressed the task of generating query sug-
gestions that can assist users in completing their tasks. We have pro-
posed a probabilistic generative framework with four components:

Table 3: Combination of all sources using di�erent source
importance estimators. Signi�cance is tested against the
uniform setting (line 1).

P(s) 2015 2016
ERR-IA α-NDCG ERR-IA α-NDCG

Uniform 0.2219 0.2835 0.4561 0.5793
Source-type 0.2381 0.2905 0.4570 0.5832
Individual 0.2518† 0.3064† 0.4562 0.5832

source importance, document importance, keyphrase relevance,
and query suggestions. We have proposed and experimentally
compared various alternatives for these components.

One important element, missing from our current model, is the
representation of speci�c subtasks. As a next step, we plan to cluster
query suggestions together that belong to the same subtask. �is
would naturally enable us to provide diversi�ed query suggestions.
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[8] Ma�hias Hagen, Steve Göring, Magdalena Keil, Olaoluwa Anifowose, Amir
Othman, and Benno Stein. 2015. Webis at TREC 2015: Tasks and Total Recall
Tracks. In Proc. of TREC.

[9] Ma�hias Hagen, Johannes Kiesel, Payam Adineh, Masoud Alahyari, Ehsan Fate-
hifar, Arafeh Bahrami, Pia Fichtl, and Benno Stein. 2016. Webis at TREC 2016:
Tasks, Total Recall, and Open Search Tracks. In Proc. of TREC.

[10] Jiepu Jiang, Daqing He, Shuguang Han, Zhen Yue, and Chaoqun Ni. 2012. Contex-
tual Evaluation of �ery Reformulations in a Search Session by User Simulation.
In Proc. of CIKM. 2635–2638.

[11] Diane Kelly, Jaime Arguello, and Robert Capra. 2013. NSF Workshop on Task-
based Information Search Systems. SIGIR Forum 47, 2 (2013), 116–127.

[12] Diane Kelly, Karl Gyllstrom, and Earl W. Bailey. 2009. A Comparison of �ery and
Term Suggestion Features for Interactive Searching. In Proc. of SIGIR. 371–378.

[13] Udo Kruschwitz, Deirdre Lungley, M-Dyaa Albakour, and Dawei Song. 2013.
Deriving query suggestions for site search. JASIST 64, 10 (2013), 1975–1994.

[14] Claudio Lucchese, Salvatore Orlando, Ra�aele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. 2013. Discovering Tasks from Search Engine �ery Logs.
ACM Trans. Inf. Syst. 31, 3, Article 14 (2013), 43 pages.

[15] Alyona Medelyan. 2015. Modi�ed RAKE algorithm. h�ps://github.com/zelandiya/
RAKE-tutorial. (2015). Accessed: 2017-01-23.

[16] Umut Ozertem, Olivier Chapelle, Pinar Donmez, and Emre Velipasaoglu. 2012.
Learning to Suggest: A Machine Learning Framework for Ranking �ery Sug-
gestions. In Proc. of SIGIR. 25–34.

[17] Tuan A. Tran, Sven Schwarz, Claudia Niederée, Heiko Maus, and Na�iya Kan-
habua. 2016. �e Forgo�en Needle in My Collections: Task-Aware Ranking of
Documents in Semantic Information Space. In Proc. of CHIIR. 13–22.

[18] Manisha Verma, Evangelos Kanoulas, Emine Yilmaz, Rishabh Mehrotra, Ben
Cartere�e, Nick Craswell, and Peter Bailey. 2016. Overview of the TREC Tasks
Track 2016. In Proc. of TREC.

[19] Ryen W. White and Je� Huang. 2010. Assessing the Scenic Route: Measuring
the Value of Search Trails in Web Logs. In Proc. of SIGIR. 587–594.

[20] Emine Yilmaz, Manisha Verma, Rishabh Mehrotra, Evangelos Kanoulas, Ben
Cartere�e, and Nick Craswell. 2015. Overview of the TREC 2015 Tasks Track. In
Proc. of TREC.

https://github.com/zelandiya/RAKE-tutorial
https://github.com/zelandiya/RAKE-tutorial

	Abstract
	1 Introduction
	2 Related Work
	3 Problem statement
	4 Approach
	4.1 Generative Modeling Framework
	4.2 Source Importance
	4.3 Document Importance
	4.4 Keyphrase Relevance
	4.5 Query Suggestions

	5 Results
	5.1 Experimental Setup
	5.2 Query Suggestion Generation
	5.3 Document Importance
	5.4 Source Importance
	5.5 Summary of Findings

	6 Conclusions
	References

