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ABSTRACT
Estimation of the operational topology of the power grid
is necessary for optimal market settlement and reliable dy-
namic operation of the grid. This paper presents a novel
framework for topology estimation for general power grids
(loopy or radial) using time-series measurements of nodal
voltage phase angles that arise from the swing dynamics.
Our learning framework utilizes multivariate Wiener filter-
ing to unravel the interaction between fluctuations in volt-
age angles at different nodes and identifies operational edges
by considering the phase response of the elements of the
multivariate Wiener filter. The performance of our learning
framework is demonstrated through simulations on standard
IEEE test cases.
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1. INTRODUCTION
The power grid comprises a network of transmission lines

that enable the flow of electricity between generators and
load buses. The grid structure is represented as a graph
with nodes denoting buses and edges representing connect-
ing lines. The dynamics of the grid is influenced by the pres-
ence of rotating masses that include generator turbines and
industrial loads. Moreover, loads that are voltage/frequency
dependent with restricted operating regimes affect grid op-
eration. Monitoring the dynamic operation and assessing
the small-signal stability of the grid includes efficient es-
timation of its state variables and topology (set of opera-
tional lines). In particular, topology estimation can enable
the detection of line failures. However, real-time topology
estimation is hindered by the limited presence of real-time
line-based measurements including breaker status and flows.
The absence of such measurements is more severe in the low
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and medium voltage lines in the distribution grid [15], where,
a majority of the household solar panels are located. Fur-
thermore, the system operator may not also have access to
topology of grid areas that are outside its jurisdiction and
need to estimate the grid topology indirectly. On the other
hand, new devices like phasor measurement units (PMUs)
[25], micro-PMUs [30], FNETs [33] that record high-fidelity
real-time measurements of nodal states are increasingly be-
ing deployed in grid buses. Similarly, smart devices such as
air conditioners and electric vehicles often have the ability
to monitor nodal voltages for control goals. In this article,
we study the problem of estimating the topology of the grid
using such voltage measurements collected from grid nodes.
Note that due to their high fidelity with sub-second sam-
pling frequency, the measurement samples collected are not
independent but represent time-series of nodal voltage dy-
namics. Our learning approach is thus based on the swing
equations [19], which govern the dynamics of nodal voltage
angles in the grid. Furthermore, our learning framework
does not require the values of generator/load parameters,
line impedance (susceptance) of permissible lines.

1.1 Prior Work
Topology Learning in power grids is a growing area of re-

search. A majority of the prior work have focused on using
statistics from static power flow models to learn the topology
of radial grids. Approaches include using the signs of inverse
covariance matrix of voltages [3], graphical models [5], signa-
ture comparison based tests [1], maximum likelihood based
tests for line measurements [26] as well as greedy algorithm
using voltage second moments [9, 7, 8, 6]. Extending such
models for loopy grids is not straightforward as mentioned
in [3, 10]. Approximate schemes with good performance are
discussed in [21]. However the above mentioned work rely
on independent measurements samples that need sufficient
time separation to prevent the grid dynamics from introduc-
ing correlations.

Here, we relax both the radial assumption on grid topol-
ogy and the i.i.d. assumption on sample collected. We con-
sider the nodal measurements to arise from the swing dy-
namics [19] in a loopy power grid. Network topology recon-
struction for linear dynamical systems often include active
intervention approaches that actively modify inputs (see [32,
23, 27]). However, these approaches are not suitable, as in
power grids it is impractical to actively manipulate nodal
quantities solely for estimation purposes. In contrast, our
approach relies only on passively recorded data. It is shown
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Figure 1: Power Grid example:the graph represents

lines between the grid nodes/buses. Nodes j and m have

generators.

in [22, 29] that for linear dynamical systems like linearized
swing equations, multivariate Wiener filtering based network
reconstruction recovers the moral graph [20] of the underly-
ing topology. Here, the reconstructed topology includes spu-
rious edges along with the true edges of the original graph.
Other approaches for topology identification using passive
observations include using the inverse power spectral den-
sity matrix [4] and causally conditioned mutual information
[12]. However these are limited to ‘directed’ linear dynami-
cal systems while power grid dynamics are essentially bidi-
rectional.

1.2 Contribution
Our novel learning framework builds the topology of the

grid using time-series measurements of nodal voltage angles
in two stages. We consider the linearized swing equations
as a model that describes the grid dynamics [19] and learn
a multivariate Wiener filter [17] for the available nodal
phase angle data in the first stage. The sparsity of the mul-
tivariate Wiener filter results in a graph that includes the
true operational lines/edges of the grid topology as well as
additional ‘spurious edges’ between two-hop neighbors in the
grid graph. In the next stage, we develop a Pruning Step
that separates the true edges from the spurious ones. The
pruning step is based on a new result that shows that the
Wiener filters associated with spurious edges have constant
phase at all frequencies unlike those for true edges. Thus, an
exact recovery can be made for all grid graphs, both loopy
and radial. To the best of our knowledge, this represents the
first work to provide guaranteed topology learning in loopy
power grids using data from grid dynamics.

In the next section we present a mathematical model of
the grid and the associated swing dynamics under ambi-
ent noise. In Section 3, we develop the construction of the
Wiener filter based on the swing equations. Following that,
in Section 4 we prove the key result of this paper and present
our pruning algorithm that recovers the exact topology of
the grid. We demonstrate the effectiveness of our algorithm
through simulations on standard IEEE test systems in Sec-
tion 5. Finally conclusions are presented in Section 6.

2. MATHEMATICAL FORMULATION
In this section, we provide a mathematical model for struc-

ture and dynamics of the power grid.

2.1 Swing Equations based model of the Grid
We represent the power grid as a connected undirected

graph G = {V, E}, where V = {1, 2, · · · , N} is the set of
N buses/nodes and E = {(i, j)} is the set of undirected
lines/edges, where (i, j) is to be considered as an unordered

tuple. Let bij > 0 denote the susceptance of line (i, j) in
the grid. The complex voltage at each node j, Vj has mag-
nitude and phase angle denoted by |Vj | and θj respectively.

The frequency at node j is denoted by ωj , where ωj =
dθj
dt

.
The frequency at all nodes is regulated at a constant value
ω0 = 60 Hz (in U.S.A.). For small ambient disturbances in
the grid, the temporal dynamics at each node of the grid is
represented by the following linearized Swing Equation [18],

Mj θ̈j +Dj θ̇j = p
(m)
j −

∑

i:(i,j)∈E
bij(θj − θi) + pj , j ∈ V, (1)

where, Mj denotes the inertia of the rotating mass, Dj de-

notes the damping, p
(m)
j represents the real power injection

and pj is the external disturbance at the node j. Here,
pji = bij(θj − θi) gives the real line flow from node j to i.
Under equilibrium conditions ωj = ω0, ω̇j = 0 and power

balance is satisfied at each node (p
(m)
j −∑

i:(i,j)∈E pji). As
all terms involving frequency and phase angle are linear, we
take the equilibrium point as reference and express dynamics
in terms of deviations from the reference. Abusing notation,
we use ωj , θj , pji to denote the deviation from their nominal
values respectively instead of their true values.

As mentioned earlier, the time-series measurements col-
lected from smart meters comprise of discrete-time samples
of phase angles at the grid nodes. Writing Eq. (1) in discrete-
time (indexed by n) using first order difference for time-
derivative of variables we have

Mj
θ̇j(n+ 1)− θ̇j(n)

ts
+Dj

θj(n+ 1)− θj(n)

ts

=
∑

i:(i,j)∈E
bijθi(n)−Bjθj(n) + pj(n) (2)

where Bj =
∑
i:(i,j)∈E bij . Subsequently we use its z domain

representation, relating the output phase angle at each node
in terms of the phase angle of its neighbors and exogenous
input Ej(z) as follows:

Θj(z) =
∑

i:(i,j)∈E
Hji(z)Θi(z) + Ej(z), ∀j ∈ V, (3)

where, the transfer function Hji(z) from Θi(z) to Θj(z)
and the input Ej(z) are given by,

Hji(z) =
bji
Sj(z)

, Ej(z) =
1

Sj(z)
Pj(z), (4)

and, Sj(z) =
Mj

t2s
(z − 1)2 +

Dj
ts

(z − 1) +Bj . (5)

The frequency response of Hji(z) is given by Hji(e
ĵω), the

magnitude and phase angle of which is denoted as |Hji(eĵω)|
and ∠(Hji(e

ĵω)) respectively. Next, we discuss the charac-
teristics of the disturbance pj at each node.

2.2 Stochastic Ambient Disturbance
A scalar random process x(n) is wide sense stationary

(WSS) if its mean µ(n) := E[x(n)] is constant and cor-
relation Rx(s, t) = E[x(s)x(t)] is a function of s − t. A
vector random processes x(n) = [x1(n) x2(n)...xN (n)]T is
said to be wide sense stationary (WSS) if ∀i, j, xi(n), xj(n)
are WSS and the cross correlation function Rxi,xj (s, t) =
E[xi(s)yj(t)] is a function of s− t. For xi(n) and xj(n), the
Cross Power Spectral Density is given as Φxi,xj (z) =



∑∞
n=−∞Rxi,xj (n)z−n. The power spectral density for vec-

tor x(n) is given by the matrix Φx(z), where [Φx(z)](i, j) =
Φxixj (z). IfRxi,xj (s, t) (subsequently Φxi,xj (z)) is uniformly
zero almost everywhere ∀i, j, then x(n) is said to be uncorre-
lated. Note that the correlation and power spectral density
matrices for uncorrelated vector random processes are di-
agonal. Further the diagonal of the power spectral density
matrix is real, even and positive at all frequencies [24].

Disturbance Model: We model the vector of ambient
disturbances p at grid nodes by uncorrelated WSS process
with zero mean, that is, disturbance at the same node is
time-correlated, while at two distinct nodes are uncorre-
lated. The use of uncorrelated zero mean WSS processes
to model ambient disturbances is prevalent in power grids
[13, 31]. In the next section, we establish methods to esti-
mate the topology of the grid interconnections.

3. WIENER FILTERING BASED RECON-
STRUCTION

Consider the swing equations for a grid G = {V, E} dis-
cussed in Eqs. (3),(4). The output at node j, θj(n) is de-
pendent on the state θi(n) of node i through the transfer
function Hji(z) and the exogenous input ej with z trans-
form Ej(z). We first introduce a structural equation model
representation for swing equation dynamics, which will be
referred as Linear Dynamic Graph(LDG) for Swing Equa-
tions.

Definition 1. (LDG of Swing Equations) The Linear Dy-

namic Graph(LDG) of swing equations is defined as Ĝ =
(H(z), E(z)), where, H(z) is the N × N matrix of transfer
functions such that [H(z)](j, i) = Hji(z), i 6= j, [H(z)](j, j) =

0 and E(z) = (E1(z), E2(z), · · · , EN (z))T . Ĝ corresponds to

a directed graph with vertex set V and edge set Ê, where,
Ê := {(i→ j) : [H(z)](j, i) 6= 0}.

Thus the resulting LDG Ĝ = (H(z), E(z)) has two di-
rected edges for each undirected edge in the grid graph.
An illustrative example for the LDG of swing equations
Ĝ for a given grid graph G is shown in Fig. 2. We define
Nj := {i ∈ V : (i, j) ∈ E} and Nj,2 := {i ∈ V : (j, k), (i, k) ∈
E , for some k ∈ V} as the set of neighbors and two-hop
neighbors of j in G respectively (a node i can be a neighbor
as well as a two-hop neighbor of some node j).

Power grid

j

k

i
LDG for

j

k

i
swing equations

reconstructed graph
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k

i
Wiener filter

(a) (b) (c)

Figure 2: (a) undirected Power Grid graph G (b) bi-

directed LDG Ĝ for swing equations on G (c) recon-

structed graph Gw obtained using non zero multivariate

non causal Wiener filtering.

The ‘Wiener filter’ or minimum variance estimate of the
time series θj(n) by an element θ̂j(n) ∈ Xj̄ is given by ,

Θ̂j(z) = (Wj1(z) · · ·Wj(j−1)(z)Wj(j+1)(z) · · ·WjN (z))Θj̄(z)

= ΦΘjΘj̄
(z)ΦΘj̄

(z)−1Θj̄(z), (6)

where, Θj̄(z) = (Θ1(z) · · · Θj−1(z) Θj+1(z) · · · ΘN (z))T .
The steps involved in computation of an approximate Wiener
filter given measurements of nodal dynamics is listed in Ap-
pendix A. Moreover, it is shown in [22, 28] that Wji(z) 6= 0
implies that i ∈ Nj ∪ Nj,2 (see Theorem B.1 for details).
Thus if an undirected graph Gw = (V, Ew) with edge set
Ew is constructed from all non-zero entries of the multivari-
ate non causal Wiener filters Wji(z), then the set of edges
will include all edges in the original grid graph G as well
as edges between all two-hop neighbors in G. An exam-
ple is illustrated in Fig. 2 (c). This leads us to the first
step in our topology learning algorithm where we generate
a graph from multivariate non causal Wiener filtering based
on the swing dynamics. To determine the grid topology, we
need to distinguish between ‘true’ edges (with neighbors)
and ‘spurious’ edges (with strict two-hop neighbors that are
not neighbors). For radial networks, it is possible to distin-
guish between true and spurious edges due to a local topo-
logical separability rule in both static models (see [5]) and
[28]). However for loopy networks such topological separa-
bility results do not hold in general. In the next section we
present a novel pruning algorithm to eliminate the spurious
edges obtained by multivariate Wiener filtering.

4. PRUNING STEP
The next theorem presents a crucial new result using the

phase response of the non causal Wiener filter for spurious
edges corresponding to strict two-hop neighbors, which en-
ables us to distinguish them from true edges.

Theorem 4.1. In the grid G = (V, E), consider a well
posed and topologically detectable LDG of swing equations,
Ĝ = (H(z), E(z)). If i and j are strict two-hop neighbors
in G such that Ni ∩ Nj 6= φ and i /∈ Nj, j /∈ Ni, then

∠(Wji(e
ĵω)) = −π for all ω ∈ [−π, π].

Proof steps: Since, i and j are two-hop neighbors, there
exist k ∈ Ni ∩ Nj such that bkj > 0 and bki > 0, imply-
ing, j → k ← i in the underlying LDG. The proof follows
by showing that observing the state at node k induces neg-
ative correlation between i and j. Aside for pathological
parameter cases, the converse of Theorem 4.1 holds making
the statement necessary and sufficient for detection of strict
two-hop neighbors.

4.1 Learning Algorithm
We now present Algorithm 1 that estimates the topology

of any general grid G based on time-series of nodal volt-
age measurements pertaining to the swing equations. As
explained in the preceding sections, it is a two-part algo-
rithm. The first part (Steps 1 - 9) determines the multivari-
ate Wiener filter Wji(z) to estimate the true topology with
spurious links between two hop neighbors. In the next part
(Steps 10 - 15), we consider a finite set of frequency points
Ω in the interval [−π, π) and evaluate the phase angle of the
Wiener filters for edges in Ew. If the phase angle is within
a pre-defined threshold τ of −π, the algorithm designates
them as spurious edges (see Theorem 4.1) and prunes them
from Ew to produce edge set Ē of the estimated true topol-
ogy.

5. RESULTS



Algorithm 1 Topology Learning using Wiener Filtering

Input: voltage phase samples θi for nodes i ∈ {1, 2, ...N}
in grid G, thresholds ρ, τ , frequency points Ω
Output: Estimate of Operational Edges Ē

1: for all j ∈ {1, 2, ...N} do
2: Compute Wiener filter Wj(z) = [Wj1(z) · · ·WjN (z)]

3: end for
4: Edge set Ew ← {}
5: for all i, j ∈ {1, 2, ...N}, i 6= j do
6: if ‖W ji(z)‖ > ρ then

7: Ew ← Ew ∪ {(i, j)}
8: end if
9: end for

10: Edge set Ē ← Ew
11: for all i, j ∈ {1, 2, ...N}, i 6= j do

12: if π − τ ≤ |∠(Wji(e
ĵω))| ≤ π + τ, ∀ω ∈ Ω then

13: Ē ← Ē − {(i, j)}
14: end if
15: end for

In this section, we demonstrate the effectiveness of Al-
gorithm 1 presented in the previous section on the IEEE
39 bus test system [2, 11] shown in Fig. 3 (a) with linear
dynamics as described by Eq. (3). For our simulations,
we model the nodal ambient wide-sense stationary distur-
bance by white Gaussian noise with spectral density given
by Φpj (z) = 10 dB and use a small inertia and damping
of 0.01 for nodes without inertia and damping to generate
time series data for evaluation of the proposed algorithm.
The output at each node is sampled at 0.01s. To compute
the multivariate Wiener filter we use the FIR (Finite Im-
pulse Response) approximation of order F = 20 and obtain
the filter coefficients by solving linear equations as detailed
in Appendix A. For a specific example, consider the the
nodes at distance one-hop (colored green) and at distance
two-hop (colored red) of node 25 in the IEEE 39 bus system
as shown in Fig. 3 (b). The absolute values of the phase
response of the multivariate Wiener filters for node 25 and
the nodes in its two-hop neighborhood are shown in Fig. 4.
It is seen that the phase response of the Wiener filters cor-
responding to the nodes two hops away are close to π rad,
while that of the neighbor nodes start from 0 rad. Thus our
pruning steps are capable of distinguishing between the two
edge types.

For an overall study of the effect of sample size on perfor-
mance of Algorithm 1, we plot the relative errors in topology
estimation for either grid cases in Fig. 5. The threshold ρ
was chosen as 10−3 and τ = 0.2π for the IEEE 39 bus sys-
tem. It is seen that the relative error, which is defined as
the ratio of the sum of false positive and false negative edges
to the total number of true edges, decays as the number of
samples is increased.

6. CONCLUSIONS
In this article, a multivariate Wiener filtering based topol-

ogy learning approach for the power grid is presented that
uses nodal phase angle measurements pertaining to the swing
dynamics as input. The Wiener reconstruction of the topol-
ogy returns spurious links (false positives) between two-hop
neighbors in the grid topology along with the true edges.
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Figure 3: (a) IEEE 39 bus system with generators at

10 buses [2], (b) The neighbors (green nodes) and strict

two-hop neighbors (red nodes) of node 25 in the IEEE 39

bus system.
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Wiener filters between node 25 and its two-hop neigh-

borhood in the IEEE 39 bus system. The phase response

begins from 0 rad for all three neighbors and from π for

all strict 2 hop neighbors of node 25. The length of the

time series used is 6.5× 106 samples for each node.

The main contribution of our work is in designing a prun-
ing step based on phase response of the Wiener filters to
eliminate all spurious links arising out of two-hop neigh-
bor relationship amongst nodes to provably recover the ac-
tual topology exactly. Simulation results on IEEE test cases
demonstrate the performance of the proposed framework in
learning loopy grid topologies.
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APPENDIX
A. WIENER FILTER COMPUTATION

As described in Section 3, the Wiener filter determines
the optimal projection of a signal xj(n) in the space Xj̄ =
span{θi(n+p) : p ∈ Z}i6=j . Here we compute the Wiener fil-
ter by approximating it with a finite impulse response (FIR)
filter, also known as FIR Wiener filter. Let the order of the
FIR Wiener filter be F . Here the optimal estimate θ̂j(n) is
written as,

θ̂j(n) =
∑

k∈V,k 6=j

F∑

p=−F
hk,lθk(n+ l) (7)

The Wiener filtering orthogonality condition is stated be-
low and is used to determine the constants hk,l in θ̂j(n).

E[θ̂j(n)θi(n+ l)] = E[θj(n)θi(n+ l)], (8)

for all i ∈ V, i 6= j, l ∈ {−F,−F + 1, · · · , F − 1, F}. (9)

Thus, using (7) in (8),

[Rθ1θi(−F − l) · · ·Rθ1θi(F − l) · · ·RθNθi(−F − l) · · ·
RθNθi(F − l)]h
= Rθjθi(−l), i ∈ V, i 6= j, l ∈ {−F, · · · , F}, (10)

h := [hT1 hT2 · · ·hTj−1 h
T
j+1 · · ·hTN ]T , and

hTi := [hi,−F · · ·hi,−1 hi,0 hi,1 · · · hi,F ].

The set of equations in (10) describe (2F + 1)(N − 1) linear
equations in (2F+1)(N−1) unknowns in the vector h. Thus,
in combined form the equations in (10) can be written as,

Rh = S,

Thus, h = R−1S is used to compute the coefficients of the
Wiener filters. Note that the matrix R and the vector S
can be computed using empirical correlations from the mea-
sured time series data. More details on numerical aspects of
Wiener filtering can be found in [14, 16].

B. WIENER FILTERING AND TOPOLOGY
LEARNING

Theorem B.1. [22, 28] Consider a LDG of swing equa-

tions, Ĝ = (H(z), E(z)). Let the output of the LDG at the
nth time instant be given by θ(n) = (θ1(n) ... θN (n))T . De-
fine the space Xj̄ = span{θi(p) : p ∈ Z}i 6=j and in z-domain
Xj̄(z) = span{zpΘi(z) : p ∈ Z}i 6=j. The ‘Wiener filter’ of

the time series θj(n) by an element θ̂j(n) ∈ Xj̄ is given by

Θ̂j(z) = ΦΘjΘj̄
(z)ΦΘj̄

(z)−1Θj̄(z), (11)

where, Θj̄(z) = (Θ1(z) · · · Θj−1(z) Θj+1(z) · · · ΘN (z))T .
Also, Wji(z) 6= 0 implies that i ∈ Nj ∪Nj,2.


