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ABSTRACT
We have reviewed and assessed the reliability of a dead reckon-
ing and drift correction algorithm for the estimation of spatial gait
parameters using Inertial Measurement Units (IMUs). In particu-
lar, we are interested in obtaining accurate stride lengths measure-
ments in order to assess the effects of a wearable haptic cueing
device designed to assist people with neurological health condi-
tions during gait rehabilitation. To assess the accuracy of the stride
lengths estimates, we compared the output of the algorithm with
measurements obtained using a high-endmarker-basedmotion cap-
ture system, here adopted as a gold standard. In addition, we intro-
duce an alternative method for detecting initial impact events (i.e.
the instants atwhich one foot contacts the ground, here used for de-
limiting strides) using accelerometer data. Our method, based on
a kinematic feature we named ‘jerkage’, has proved more robust
than detecting peaks on raw accelerometer data. We argue that
the resulting measurements of stride lengths are accurate enough
to provide trend data needed to support worthwhile gait rehabil-
itation applications. This approach has potential to assist phys-
iotherapists and patients without access to fully-equipped move-
ment labs. More specifically, it has applications for collecting data
to guide and assess gait rehabilitation both outdoors and at home.
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1 INTRODUCTION
InertialMeasurement Units (IMU) are small, low cost, highly portable
devices that incorporate accelerometers and gyroscopes. Some IMUs
also include magnetometers, in which case the term Magnetic, An-
gular Rate and Gravity (MARG) sensor is also used. These sensor
arrays allow the tracking of acceleration, rotational velocity and
orientation relative to the earth’s magnetic field of whatever they
are attached to. They are used extensively in aviation, robotics, and
Human-Computer Interaction (HCI). Their increasing affordabil-
ity and small size have made them a common feature of mobile
and wearable devices and other consumer electronics. In addition,
IMUs have become increasingly employed in gait analysis [8, 12].

1.1 Background Scenario: Haptic Cueing for
Gait Rehabilitation

This study is part of a broader project to evaluate the effects of
haptic cueing on gait rehabilitation of people with chronic and de-
generative neurological health conditions, and develop a wearable
device that can deliver flexible, adaptive rhythmic haptic cues to
wearers [3, 4]. The purpose of the device is to assist survivors with
gait rehabilitation and the restoration of mobility outside of the
clinic. The devices currently being developed as part of this project
– called the Haptic Bracelets (see Fig. 1) – allow wireless capture of
motion data in real time using inbuilt IMUs and deliver adaptive
haptic cueing through a series of vibrations at a steady rhythm.
The frequency of the vibrations is based on the user’s uncued av-
erage gait cadence estimated using the IMU data. The vibrations
– generated by the vibrotactiles of the Haptic Bracelets – help the
patient obtaining a more stable and symmetric pace of walking.
The Haptic Bracelets are worn on both legs and synced wirelessly
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Figure 1: Current prototype of Haptic Bracelet: the smaller
module contains the IMU sensor board, while the bigger
module contains the board controlling the vibrotactiles.

in order to collect synchronised IMU data and control frequency,
intensity, and phase of the haptic cues.

1.2 IMUs and Gait Analysis
Tracking and analysing human body movement reliably is a key
issue for research and clinical assessment of pathologies affecting
motor skills.

Various technologies are currently employed for tracking hu-
man movement. Marker-based optical motion capture is consid-
ered one of the most reliable and precise solutions and it is re-
garded at present as a gold standard. However – even though more
affordable motion capture systems have recently become available
– high-end motion capture systems suitable for precise gait analy-
sis are expensive. Such systems require a dedicated space of ade-
quate size, are difficult to transport, and cannot be used outdoors.

IMUs, on the other hand, aremuchmore affordable and portable,
can be embedded in clothes and shoes, can be used outdoors and
at home, and – paired with a data logger – can also be left with the
patient for collecting data over a longer period of time. In addition
to portability and affordability, one less obvious advantage of using
IMUs for gait analysis relative to motion capture is the absence of
data loss due tomarker occlusion. This can be particularly useful in
rehabilitation since physiotherapists sometimes walk closely with
a hemiparesis survivor for safety reasons during therapy or data
collection. In the case of optical motion capture, this may occlude
the reflective markers, creating gaps in the tracking data. On the
other hand, a less obvious limitation of IMUs over optical motion
capture is that it is difficult to reliably estimate what is known as
the ‘walking base’. This distance, also known as the ‘stride width’
or ‘base of support’, is the side-to-side distance between the line
of the two feet [13]. This limitation is due to the lack of a com-
mon spatial reference point for the left and right IMUs. Nonethe-
less, albeit having considerable limitations compared with a full
optical motion capture suite, IMUs can be a very effective solution
for tracking and analysing specific parameters of human gait, and

constitute a useful option in situations where other technologies
cannot be readily employed.

The data returned by IMUs is morphologically different from
that obtained from marker-based optical motion capture systems.
Whereas raw motion capture data consists of three-dimensional
vectors describing the position of markers over time using an abso-
lute Cartesian coordinate system1, the data returned by an IMU/MARG
sensor is usually in the form of three three-dimensional vectors, re-
spectively indicating acceleration, rotational velocity, and orienta-
tion2. Orientation data is provided by themagnetometer (compass),
which tracks the orientation of the unit in relation to the earth’s
magnetic field. However, magnetometers are considerably affected
by magnetic distortions typically present in motion labs [2]. There-
fore, this comparative study will not employ magnetometer data
and will focus on the use of information returned by the inertial
sensors – namely acceleration and rotational velocity – to measure
specific gait parameters.

1.3 Gait Parameters
The data obtained from the IMUs placed on either leg of a per-
son walking is synced, timestamped, and can be used to compute
various spatio-temporal gait parameters, such as cadence, walking
speed, stride length, step length, and timing of the different stages
of the gait cycle. More complex configurations – including mul-
tiple IMUs per limb – can also be used for joint angle measure-
ments [11].

In the case of our project on haptic cueing for gait rehabilitation,
gait parameters have several uses. Initially, these parameters are
used, before applying any cueing, to calculate the mean cadence
(averaged across both legs). This is used as an initial haptic cue-
ing tempo, applied at an even tempo to each leg in turn. Subse-
quently, the gait parameters are used to assess both the immediate
and longer term effects of the haptic cueing on gait stability and
symmetry. A study evaluating the effects on the gait of stroke sur-
vivors is currently being carried out.

Estimating spatial gait parameters using only IMU data poses
some challenges, since, firstly, there is no absolute coordinate sys-
tem to refer to, unlike with optical motion capture, and secondly,
accelerometers are subject to drift. Positional data must be calcu-
lated from the acceleration and angular velocity data returned by
the IMU. Simple double integration of acceleration data would re-
sult in very large amounts of residual error, since drift would accu-
mulate quadratically. Algorithms designed for correcting the resid-
ual error by exploiting specific constraints of cyclic motion can be
used for estimating spatial gait parameters [14]. In this study, we
have adopted the algorithm3 developed byMadgwick et al. [6]. The
algorithm uses dead reckoning and drift correction each time the
foot hits the ground. Related algorithms found in the literature in-
clude those by Mahony et al. [7] and by Martin & Salaün [9].

1Most marker-based systems also allow to capture 6DoF data (six degrees of freedom,
consisting of three-dimensional position and Euler angles) by defining rigid bodies.
However, this is achieved by processing the positional data of single markers grouped
into a rigid body.
2IMU/MARG sensors are also known as MIMU (Magnetic and Inertial Measurement
Unit) or 9DoF (9 Degrees of Freedom) sensors.
3The original script is freely available at https://github.com/xioTechnologies/
Gait-Tracking-With-x-IMU
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In our case, the algorithm is used to estimate the stride lengths
of a personwalking straight for trials each of about 8metres. Stride
length and step length are different yet closely related gait param-
eters, distinguished as follows. Step length refers to the distance
by which one foot moves forward in front of the other, whereas
stride length is the distance between two successive placements
of the same foot. Consequently, one stride length is composed of
two step lengths, left and right respectively [13]. In order to assess
the accuracy of the algorithm, the stride lengths obtained using
the data from the IMUs worn on each shank were compared with
those measured using a high quality marker-based motion capture
system. Other approaches to spatial gait estimation using IMUs
include the method by Köse et al. [5], which used a single IMU at-
tached to the pelvis to estimate step lengths using a combination
of Kalman filtering and direct and reverse integration. Similarly,
Mariani et al. [8] used foot-worn IMUs and de-drifted integration
of inertial signals.

2 METHOD
This section describes how IMU and motion capture data were col-
lected and analysed to establish the accuracy of the dead reckoning
algorithm for estimating stride length.

2.1 Participants
The IMU data comprised 42 stride length measurements for the
healthy subject (age 33, male) and 49 for the stroke survivor (age
57, female, hemiparetic stroke affecting her right side), totalling
91 stride length estimations. This data was compared against the
step length measurements obtained using reference motion cap-
ture data.

2.2 Apparatus
The IMU/MARG sensors (gyroscope, accelerometer, and magne-
tometer) on x-OSC4 boards were placed in the middle of a rigid
plate (Qualisys Large Cluster) with four reflective markers (Fig. 2).
The plates were then strapped on the shanks of the subjects as
shown in Fig. 3. The same pair of IMUs was used for both subjects,
with the same left-right configuration. Sampling frequency for the
IMUs was set at 256 Hz; the gyroscope range was ±2000°/s; and the
accelerometer range was ±16д. Finally, an optical motion capture
system featuring eight Qualisys Oqus cameras was used to track
the position of the reflective markers at a sampling rate of 100 Hz.

2.3 Procedure
Two subjects, a hemiparetic stroke survivor and a healthy person,
were asked to walk straight in the motion capture lab for about 8
metres with the IMUs and marker plates strapped on both shanks.
The walking trial was repeated six times for each subject. During
each trial, the motion capture data was recorded on a Windows
PC running Qualisys Track Manager (QTM). A second computer,
a MacBook Pro, was used to record the IMU data and was syn-
chronised to theWindows PC via wireless network, receiving start
and stop commands, frame numbers, and other metadata via Open
Sound Control (OSC) from QTM.

4http://x-io.co.uk/x-osc/

Figure 2: Rigid plates with retroreflective markers and cus-
tom boxes (coloured) containing the IMU units.

Figure 3: Rigid plates with retroreflective markers and IMU
units worn in the motion capture lab.

2.4 Data Processing
The motion capture data was gap-filled in QTM and then imported
to MATLAB using MoCap Toolbox 1.55 [1]. For each plate, a single
secondary marker (also known as ‘joint’ marker) was defined by
averaging the locations of the four markers on plate. Hence, the
position of this secondary marker corresponded to the centre of
the plate, where the IMU was placed.

The corresponding IMU data was also imported to MATLAB for
analysis. Position relative to the starting point of the walk was cal-
culated through double integration of drift-corrected accelerom-
eter data [14]. In principle, accelerometer data can be integrated

5https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mocaptoolbox

http://x-io.co.uk/x-osc/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox
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Figure 4: Trajectories of the right leg of the healthy subject obtained using the IMU data (left) and motion capture data (right).
The star markers delimit the strides and are obtained using peak detection on the jerkage values as described in section 2.5.
By default, the origin of the axes (0,0,0) is placed at the starting point of the trajectory for the IMU data whereas for motion
capture it is defined during calibration.

twice to yield position. In practice though, accelerometers are sus-
ceptible to drift errors, which then grow quadratically during dou-
ble integration. To estimate and remove drift, the periodic nature
of walkingmotion can be exploited. This is done by first estimating
translational velocity by integrating acceleration. Crucially, during
the stance phase of a gait cycle (also called the ‘support’ or ‘contact’
phase [13]) the foot contacts the ground. Since velocity and accel-
eration are assumed to be zero at this point, drift correction can be
applied to the calculated velocity. To detect the stationary periods,
the algorithm we adopted uses a threshold on low pass filtered ac-
celerometer magnitude. Below that threshold, the leg is considered
to be in stance phase. Thus, drift correction is applied by zeroing
the velocity during stationary periods and removing any integral
drift that may have accumulated during non-stationary periods. In
this way, drift-corrected translational velocity can be integrated to
yield position.

Fig. 4 shows the trajectories of the right leg position of one of
the subjects during a single walk. The trajectory on the left is es-
timated using the IMU data while the trajectory on the right is
obtained from the motion capture data.

2.5 Initial Contact Detection and Step Length
Estimation

In gait analysis, the initial contact is the instant at which one foot
contacts the ground. This is one of the major events of the gait
cycle [13]. In order to calculate the stride lengths from the IMU
data, it is necessary to detect when these events occur, since – as
noted earlier – two consecutive initial contacts of the same foot
delimit a single stride. Raw accelerometer data is one option to use
for this purpose, since the impact of the foot with the floor causes
a quick change of velocity, hence an acceleration peak. Peak detec-
tion algorithms can then be used to detect these events. However,
the magnitude of the acceleration detected at initial contact can
vary considerably from person to person, especially when work-
ing with participants whose gait is affected by diverse pathologies.
Other factors that may affect the accelerometer initial contact data

include the subject’s weight and the softness of the floor — a hard
floor usually returns sharper acceleration peaks than surfaces such
as carpet. Thus, the detection of peaks in raw accelerometer data
is prone to both false positives and false negatives. We found that
initial contacts could be detected more reliably by using a different
kinematic feature.

In kinematic analysis, ‘jerk’ (or ‘jolt’) is the name given to the
third order derivative of movement position, namely the change
of acceleration over time. We found that the sum of the squares of
the jerk on all three axes gave a clean indication of initial contact.
Keeping this as a squared quantity helped to ensure a strong signal
to noise ratio. Since we need to refer to this quantity several times,
and as it does not currently appear to have an accepted name, we
will refer to this feature as ‘Jerkage’ or ‘Joltage’. Note that while
jerk is a vector, jerkage is scalar. It is calculated as follows:

Jerkaдe =

(
dax
dt

)2
+

(
day
dt

)2
+

(
daz
dt

)2
. (1)

In this way, we obtain exclusively positive values and the peaks
corresponding to the initial impacts are more clearly defined com-
pared to the raw accelerometer data, as shown in Fig. 5. Using
jerkage values instead of raw acceleration data for peak detection
resulted in a considerably better performance of the detection al-
gorithm, without the need of adjusting detection parameters for
different subjects and walking surfaces.

The indices of the jerkage peaks were used to segment the posi-
tional data. The star markers along the trajectories plotted in Fig. 4
show where initial contacts were detected. Stride length values
are obtained by computing the Euclidean distance between sub-
sequent initial contact points. All of those strides that were suc-
cessfully captured in full by both the motion capture system and
the inertial measurement units were then considered for analysis.
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Figure 5: Rawaccelerometer data of the three axes in units of
g of the left foot of the healthy subject (top) and correspond-
ing jerkage magnitude (bottom). The red stars indicate the
detected peaks.

3 RESULTS
Table 1 reports correlations between the stride length values as
measured by the IMU compared with values measured by the refer-
ence optical motion capture system. Mean discrepancies between
the two measurements are given both as distances, and as per-
centages. The table shows the results for the stroke survivor and
healthy participant separately and combined. Similarly, the results
are given for left hand steps and right hand steps separately and
then merged.

Using the visualisation proposed byMartin Bland [10] and adopted
by Mariani [8], Fig. 6 compares the stride length obtained from
the two measurement systems for the healthy subject, while Fig. 7
compares the corresponding values for the stroke survivor.

4 DISCUSSION AND FUTUREWORK
In all of the cases reported in Table 1, the mean relative measure-
ment discrepancies relative to the reference system were between
0.4 % and 5.7 %. While this is not ideal accuracy, it is workable for
our purposes of estimating baseline mean spatial gait performance,
and tracking trends in these parameters over time. Considering the
figures in Table 1 in more detail, it is clear that the IMU used on
the left hand side of the body seems to be more accurate, with
mean absolute differences consistently less than a half of those of
the IMU used on the right. In fact, it is important to emphasise
that high correlation coefficients should not be taken as indicators
of agreement [10]. Rather, they measure the strength of the linear
relation between two variables. The relationship between highly
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Figure 6: Comparison of stride length values estimated us-
ing the inertial measurement units and marker-based mo-
tion capture for the healthy subject.
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tion capture for the hemiparetic stroke survivor (paretic
side: right).
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Table 1: Correlations between stride length values estimated in two different ways: using inertial measurement units vs.
marker-based motion capture (reference). Mean discrepancies (ε) between the two measurements are given as millimetres,
and as percentages.

LEFT
N of strides R ε mean (mm) (%) ε std (mm) (%)

Healthy 18 0.946 6.6 0.4 21.0 1.3
Stroke 25 0.979 20.6 2.3 14.8 1.7
Overall 43 0.999 14.8 1.2 18.8 1.6

RIGHT
N of strides R ε mean (mm) (%) ε std (mm) (%)

Healthy 24 0.997 12.4 0.9 30.0 2.2
Stroke 24 0.970 50.5 5.7 17.6 2.0
Overall 48 0.997 31.5 2.8 31.0 2.7

LEFT & RIGHT
N of strides R ε mean (mm) (%) ε std (mm) (%)

Healthy 42 0.996 9.9 0.7 26.4 1.8
Stroke 49 0.942 35.3 4.0 22.0 2.5
Overall 91 0.998 23.6 2.0 27.2 2.3

correlated variables could, in principle, be complicated by a multi-
plicative factor (i.e. the slope of the line is not equal to 1) or a con-
stant offset (i.e. the vertical intercept is not equal to 0). In Figs. 6
and 7, the systems perfectly agree when the data points lie along
the line of equality. This graphical representation effectively gives
an overview of the degree of agreement between the two systems
for each leg of the participants. This shows that the right IMU has
a tendency – especially for the stroke survivor – of slightly un-
derestimating step lengths compared to the left one. Even though,
as previously noted, the existing performance of the right IMU is
workable for purposes of tracking overall improvements in gait, ac-
curacy could be improved by correcting this systematic bias. This
could be achieved by exploiting known constraints. For example,
we can assume that each walking trial ends with both legs approxi-
mately at the same distance from the starting point. Consequently,
a correction factor could be applied to the IMU trajectory for the
right leg to uniformly rescale it to yield the same overall trajectory
length as the IMU for the left leg. Corrections of this kind have
not been calculated for the present paper, but we will validate this
method in a future study. A simple, if more expensive, alternative
might be to use a ‘matched’ pair of high-end calibrated IMUs.

A different, but related, tendency suggested by the results is that
the measurement differences between the IMUs and the reference
system appear to be more pronounced in the case of the stroke
survivor, particularly in the right (paretic) side (see Fig. 7). This
could be due to differences in kinematic patterns between paretic
and non-paretic sides of the body. Such differences might require
different bilateral parameter settings for accurate stride length es-
timation. For example, paretic and non-paretic legs might ideally
require different thresholds for the detection of periods when the
foot is stationary.

More specifically, there are two crucial settings in our IMU algo-
rithm, one currently setmanually, and one currently set by assump-
tion. The manual setting is an acceleration magnitude threshold
for the detection of periods when the foot is stationary. At present,
a single value for this parameter is used for both legs. The other
crucial parameter, currently set by assumption, is the nominal sam-
pling rate of the IMUs. In fact, the achieved sampling rate may dif-
fer slightly from the set rate. Both of these parameters affect the
stride length estimates. In both cases, the data already available to
the system could be used to assess these values more accurately us-
ing an optimisation algorithm. This would also make the system
simpler to use.

Additional tests involving a higher number of subjects andmore
IMU devices will be carried out in order to verify if different kine-
matic patterns in the paretic side affect stride length estimation.
Moreover, the actual sampling rate of various IMU devices will be
measured in order to understand if a specific device or model is
more prone to sampling rate shifts that may affect stride length
estimation.

5 SUMMARY AND CONCLUSION
We have presented a simple adaption of a dead reckoning and drift
correction algorithm for IMUs and assessed its reliability for esti-
mating spatial gait parameters for use in gait rehabilitation. Our
target application is measuring trends in comparative left vs right
mean stride lengths (using one IMU per leg) for survivors of neu-
rological health conditions such as hemiparetic stroke. In order to
determine the extent to which this data could be measured reli-
ably using IMUs (for example, away from the lab – outdoors or in
the home) we compared data with measurements obtained using a
reference optical motion capture system. In order to gain insights
into possible differences in approach thatmight be needed, we took
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data for both a healthy subject and a hemiparetic stroke survivor.
We employed a method for detecting foot impacts based on the
kinematic feature ‘jerkage’. This proved substantially more robust
than considering peaks in acceleration. We identified a potential
correction, important for left vs right comparisons, that could be
applied to address drift in one foot relative to another. We noted
that in the case of hemiparetic users, important for our application,
different parameter settings may be required for the two sides of
the body in order to ensure accurate stride length estimation. This
issue will be studied further by means of additional tests involving
more participants wearing different IMUs.

While use of IMUs to measure gait parameters outdoor and in
the home for presents challenges, this study has given us a basis
for concluding that trends in comparative left vs right mean stride
lengths could be measured sufficiently accurately for useful appli-
cations in gait rehabilitation. We conclude that IMUs have the po-
tential to allow haptic cueing to be guided and assessed in a self
managed way outside the lab. This promises new approaches for
wearable systems for gait rehabilitation.
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