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ABSTRACT
Regular path queries (RPQs) are a fundamental part of recent graph 
query languages like SPARQL and PGQL. They allow the de�ni-

tion of recursive path structures through regular expressions in 
a declarative pattern matching environment. We study the use of 
the K2

-tree graph compression technique to materialize RPQ re-

sults with low memory consumption for indexing. Compact index 
representations enable the e�cient storage of multiple indexes for 
varying RPQs.

KEYWORDS
Regular Path Queries; Index Compression; Graph Processing

1 INTRODUCTION
Graph data management has become a major topic in the database 
community, in research as well as in industry. ICIJ’s Panama Papers 
investigation

1
, which used graph database technology, is a recent 

illustration of this trend [7]. Graph database systems are particularly 
suitable for querying multi-hop connections between entities, e.g., 
multi-hop stakeholder relationships between o�shore pro�ts and 
potential tax evaders. Commonly such queries are referred to as 
regular path queries (RPQs). RPQs are an important query class for 
graph database systems [20] and a major component of most graph 
query languages, such as SPARQL [19] and PGQL [18].

RPQs allow declarative querying of multi-hop connections, i.e., 
paths in a graph speci�ed by a regular expression. More precisely, 
an RPQ �nds all distinct pairs of vertices in a graph that are con-

nected by at least one path conforming to the regular expression. 
Regular expressions of RPQs are formulated based on the set of 
edge labels (e.g., is-stakeholder-of) in the graph. A path conforms 
to a regular expression, if the concatenation of all edge labels along

1
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©2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
This is the author’s version of the work. It is posted here for your personal use. Not for 
redistribution. The definitive Version of Record was published in GRADES’17, Chicago, 
IL, USA.
DOI: http://dx.doi.org/10.1145/3078447.3078458

the path from start to end is in the language accepted by the regular

expression. Regular expressions can be evaluated by traversing the

data graph. An automaton representing the regular expression [4]

restricts the edges that the traversal can use during execution.

With the extension of relational database systems with built-in

graph data management support [15] an e�cient evaluation of

RPQs on graphs stored in relational structures becomes essential.

Most graph engines based on a relational storage structure use a

single table to store the edges of a graph. A graph traversal, which is

necessary for evaluating the RPQ, results in a number of consecutive

self-joins on the edge table. The number of required join operations

depends on the graph diameter and the RPQ speci�cation. Addi-

tionally, these joins typically produce large intermediate results

even if the RPQ is selective, e�ectively making RPQ evaluation on a

relational storage an expensive operation. Various techniques have

been proposed to increase the e�ciency of RPQ evaluation, e.g.,

dedicated query planning [22], adaptive traversals [14], exploiting

selective labels [12], and adjacency indexing [11].

One particularly lightweight approach for speeding up RPQ eval-

uation is simply storing all distinct pairs of vertices of an RPQ in

a materialized reachability index (MR-index). Such an MR-index

allows answering the indexed RPQ solely by performing index

lookups and reduces the number of necessary joins of every RPQ

containing the indexed RPQ. An MR-index could be created like a

regular secondary index by the database administrator or utilized

online by a query optimizer for caching reachability results [22].

While this approach is appealing because it is simple and easy to

implement, it comes with quadratic space complexity as potentially

there could be paths between any pair of vertices in the graph.

Hence, the feasibility of this approach depends on how e�cient

the reachability information is stored and which queries are actu-

ally indexed. Recent advances in graph compression suggest that

reachability information can be stored with just 1 to 3 bit(s) per

vertex pair [6], which can even make indexing of unselective RPQs

feasible in terms of space consumption.

In this paper, we investigate the feasibility of graph–compression-

based MR-indexes for RPQ evaluation in main-memory column

stores. Therefore, we evaluate numerous RPQs on the LDBC dataset.

We compare an in-memory column store baseline with uncom-

pressed MR-indexing and compressed MR-indexing. Based on the

measurements of query processing times, query selectivity, and

storage consumption, we derive guidelines for the bene�cial use of
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Figure 1: Relational, in-memory graph storage.
MR-indexes for RPQ processing in main-memory column stores.

The contributions of this paper are:

• We conduct the �rst study of graph compression in the

context of RPQ processing.

• We reveal the pros and cons of indexing RPQs with the

help of graph compression.

• We outline where graph compression can provide a bene�t

for RPQ processing and were not.

In Section 2, we discuss the basics of RPQ processing. In Section 3,

we detail the MR-index approaches that we consider in this study.

We report on the experimental study and results in Section 4. Finally,

Section 5 outlines related work and Section 6 concludes the paper.

2 RPQ PROCESSING IN COLUMN STORES
RPQs can operate on a range on di�erent graph data models, such as

the RDF and the Property Graph data model. For our investigation

of MR-indexes, we focus on directed, labeled multigraphs. Formally,

a directed, labeled multigraph is a graph G = (N ,E, Σ) where N
refers to the set of vertices, Σ is the set of labels, and E is the set of

edges with E ⊆ N × Σ × N .

Primary graph storage: We assume a relational, in-memory

column-store representation of the graph as described in [11]. The

graph is represented by an edge table with three columns source,
target, and label. For faster adjacency lookups, the edge table is

indexed as adjacency lists in forward and in reverse direction of

the edges. Figure 1 illustrates the setup without the reverse index.

RPQs: An RPQ is given by a regular expression. Let R be a regu-

lar expression over the alphabet Σ and L(R) the language described

by the regular expression. Let p = 〈v1, e1, ..., en−1,vn〉 be a path

where vi ∈ N , ej ∈ E and ej = (vj , lj ,vj+1) for i ∈ [1,n], j ∈ [1,n).
The label sequence l1 . . . ln−1—the concatenation of all edge labels

on the path—is called the label of path p, denoted as λ(p) ∈ Σ∗. A

query QR (G) searches for all distinct vertex pairs (u,v) such that

there is at least one path p from a vertexu to a vertexv in the graph

G which satis�es the regular expression R, i.e., λ(p) ∈ L(R).
RPQ processing: For baseline RPQ processing, we assume

automaton-based query plans as described in [13] without product

automaton construction [12]. Essentially, the regular path expres-

sion of a given RPQ is converted into a deterministic �nite automa-

ton (dfa). Figure 2 depicts the dfa for the regular expression (ab)+.

To process the RPQ the system performs a breadth-�rst search

(BFS). During the BFS the dfa is used to track the current state of

the regular expression for each exploration path. The exploration

is restricted by the available transitions in the automaton such that

the BFS traverses only edges that have labels matching a label of a

valid state transition in the dfa for the current exploration path.

Every exploration that reaches a �nal state in the dfa yields one

result of the RPQ. The exploration does not necessarily end with

s q1 f
a b

a
start state �nal state

Figure 2: DFA for regular expression (a b)+.

reaching a �nal state. Depending on the regular expression the �nal

state of the dfa may have outgoing transitions. If an exploration

path reaches the same vertex in the same dfa state a second time,

it can be safely terminated as it will not produce additional results.

The BFS terminates if no further exploration paths are left.

The described query processing is equivalent to a left-deep tree

of edge table self joins. However, our baseline query processing

performs the BFS based on the adjacency list instead of using joins,

which allow for faster traversals [11]. The edge table itself is only

accessed for label lookups.

Remark: Our baseline RPQ evaluation strategy omits many

well-known optimizations proposed for RPQ evaluation and is not

meant to compete with these approaches. The focus of our study is

on MR-indexes and in particular the feasibility of graph compres-

sion techniques to implement MR-indexes.

3 MR-INDEXES
An MR-index is the simplest form of reachability indexation. Given

an RPQ R, the MR-index based on R contains all vertex pairs (u,v) ∈
QR (G) that are in the result set of R. The result set of each RPQ

forms a reachability graph GR (V ,QR (G))—a simple directed graph.

The size of the reachability graph depends on the selectivity of

the RPQ. In the worst case RPQs have quadratic result complexity,

which gives MR-indexes a quadratic space complexity. In prac-

tice, the space consumption of an MR-index also depends on the

data structure used to implement the index. Therefore, we con-

sider an uncompressed and a compressed MR-index. Both vari-

ants include a dictionary, which �lters out all vertices without an

edge in the reachability graph and maps the remaining vertices

{v | ∃e ∈ QR (G). e = (v, ·) ∨ e = (·,v)} to a dense domain.

Uncompressed MR-index: The uncompressed MR-index uses

an adjacency list to store the reachability graph. Adjacency lists are

widely used as graph representation in many systems for primary

graph storage. However, adjacency lists are not space-e�cient as

they require multiple bytes per edge—in our setup at least 64 bits

per edge. For RPQ with large result sets an uncompressed MR-index

can quickly become too large to �t into the memory the user is

willing to reserve for indexing.

Compressed MR-index: The compressed MR-index utilizes

a lossless graph compression technique K
2
-trees [5] to store the

reachability graph. Various graph compression techniques have

been proposed in recent years, e.g., [2, 5, 8, 9] and allow storing large

graphs with less than one byte per edge. In practice K
2
-trees [5]

have shown to o�er the best compression ratio.

K2-trees in detail: The graph compression technique K
2
-tree

provides a succinct encoding of the adjacency matrix of a graph. The

adjacency matrix is recursively decomposed following a Quadtree-

like strategy into k2 square-shaped sub-matrices per decomposition

step. Each sub-matrix is encoded in a k2-ary tree. The root of the

tree represents the complete adjacency matrix. Each internal node

of the tree represents a sub-matrix and is assigned with a value.
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2 0 0 0 0 1 0 0 0

3 0 0 0 0 0 1 0 0

4 0 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 0

6 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

(a) Adjacency matrix of a graph.
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1
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(b) Conceptual K2-tree with k = 2.

T1 = 1110

T2 = 1100 0010 1011

L = 0100 1001 1001 0010 0100 1000

Lc = 01 11 11 00 01 10

(c) Bit representation of K2-tree.

Figure 3: Example of adjacency matrix and the corresponding K2-tree with its bit representation.
The node value is 0 i� all values in corresponding sub-matrix are 0,

otherwise the node value is 1. Nodes with value 1 havek2 successors

in the tree, i.e., they are further decomposed. Nodes with value 0

have no successors—this is where the compression takes place. The

children of each node are ordered from left to right and from top to

bottom (z-order). Figure 3b shows the tree for the adjacency matrix

shown in Figure 3a.

Internally the tree is stored in a variant of the LOUDS (level-

ordered unary degree sequence) tree representation. Essentially,

each level (except the root) is stored in left-to-right order as a bit

list; bit listTi stores level i and bit list L stores the leaves as shown in

Figure 3c. Some additional information (5 % of extra space) is stored

to allow e�cient tree traversal on the Ti bit list. Additionally, leaf

nodes in bit list L can be compressed using dictionary compression,

illustrated as Lc in Figure 3c.

The compression ratio of an K
2
-tree achieved for a given graph

depends on the choice of parameter k and the order of the graph

vertices in the adjacency matrix. We use a K
2
-tree variant that

allows individual k values per level with the settings used in [6]

(k = 4 for inner nodes and k = 8 for leaves). For the vertex order, we

use a BFS order over the reachability graph, which is a heuristic that

demonstrated to achieve good compression rates [6]. The dictionary

of the MR-index is used to implement the order independent of the

vertex order in the data graph.

RPQs processing with anMR-index: Evaluating an RPQ ma-

terialized in an MR-index is straight-forward. The uncompressed

MR-index simply scans the adjacency list. The compressed MR-

index enumerates all vertices from the dense domain provided by

the dictionary and poses a successor query to the K
2
-tree for each

vertex. Both variants map each reachability result back to the data

graph vertex domain before emitting it.

4 EXPERIMENTAL STUDY
Compressed MR-indexes based on K

2
-trees seem to be an appealing

choice for MR-indexing, since they require signi�cantly less space

than their uncompressed counterparts. Our goal is to provide a

better understanding when compressed MR-indexes are bene�cial

for RPQ processing and when they are not.

Data: We ran the experiments on the LDBC
2

dataset at SF1 (∼3
million vertices and ∼17 million edges) after loading the dataset

completely into the in-memory column store. However, all RPQs

2
http://ldbcouncil.org/

Table 1: Number of generated RPQs

n non-closure closure total

1 15 4 19

2 124 17 141

3 609 77 686

total 748 98 849

e�ectively operate only on the directed, edge-labeled multigraph,

i.e., on the source, target, and label columns of the edge table.

Queries: We exhaustively generated RPQs from the LDBC data

schema. Precisely, we generated all RPQs of the non-closure form

(l1, . . . , ln ) and the closure form (l1, . . . , ln )+, where li is an edge

label or an edge label in reverse direction andn ∈ [1, 3]. We included

only RPQs that have a non-empty result set on the schema graph,

i.e., RPQs that have a chance to produce a non-empty result on the

data graph. The closure RPQs (l1, . . . , ln )+ additionally required

that the non-closure RPQ (l1, . . . , ln l1, . . . , ln ) has a non-empty

result set on the schema graph, i.e. that the closure RPQs have a

chance to produce a larger result set on the data graph than their

corresponding non-closure RPQs (l1, . . . , ln ).
Table 1 lists the number of generated queries for each category.

Figure 4 shows the number of queries and the average number of

query results over buckets of selectivity. We de�ne query selectivity

as the fraction of vertex pairs that are connected by a path of a given

query w.r.t. the number of all possible vertex pairs, i.e., |V ×V |. Each

bucket represents a half order of magnitude in query selectivity. As

can be seen, the majority of queries produces quite large result sets.

The reachability graph produced, ranges from about two orders of

magnitude smaller than the original data graph to about one order

of magnitude larger. Hence, MR-indexes typically have to deal with

result sets of this size range. Only a few queries produce result sets

smaller or larger than that.

Measurements: For each of the generated RPQs we measured

the space consumption of the uncompressed MR-index (ADJ) and

the compressed K
2
-tree-based MR-index without leaf compression

(K2) and with leaf compression (K2C). We also measured the run-

time of the query with the baseline RPQ processing (cf. Section 2),

the uncompressed MR-index, and the compressed MR-index. Based

on the individual measurements, we consider also the e�ect of the
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Figure 4: Selectivity distribution of queries.

di�erent MR-indexes on workloads consisting of multiple queries.

We discuss the �ndings in the following.

Environment: We conducted all measurements on a Haswell

machine (Intel(R) Xeon(R) CPU E5-2660 v3) running at 2.6 GHz.

The machine has 128 GB of RAM.

4.1 Space Consumption
Figure 5 shows the average space consumption of the three MR-

index variants. For the uncompressed MR-index, the space con-

sumption shows the lower bound of 64 bits per edge. The space

advantage of the compressed MR-index becomes clearly visible.

While for very selective RPQs that produce a small reachability

graph, the space savings achieved by the compressed MR-index

variants is small, it quickly grows with the size of the result set of

the RPQ that is indexed. Figure 6 supports this observation. It shows

the average space savings, i.e., the space savings due to compression

relative to the size of the uncompressed MR-index, as well as the

average compression rate for both compressed MR-index variants

over buckets of selectivity. As can be seen the space savings e�ect

of the compression increases up to over 90 % with and over 80 %

without leaf compression. The achieved compression rate is on

average around 10 bits per edge with and around 20 bits per edge

without leaf compression for the majority of queries. For RPQs with

very large results, the average compression even drops to around 10

bits per edge with and around 5 bits per edge without leaf compres-

sion. Note that the �rst two selectivity buckets (10
−11

and 10
−10.5

)

are not very representative as they comprise only 3 and 1 queries,

respectively. We also found (not depicted in the �gures) that the

achieved compression rate can vary signi�cantly, easily between

from 1 to 3 bits per edge up to 30 bits per edge within one selectivity

bucket. For no RPQ we found a compression rate worse than the

lower bound of the uncompressed MR-index.

Summary: The compressed MR-index achieves signi�cant space

savings on large RPQ results sets. To that end, K
2
-trees are a promis-

ing technique to make MR-indexing a�ordable also for less selective

queries. However, the compression e�ect varies signi�cantly, so

the technique works not equally well for all queries.
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Figure 5: Space consumption of queries.

4.2 Single Query Performance
We summarize the query runtimes of individual RPQs in Figure 7,

which depicts the average query runtime over buckets of selectivi-

ties. The compressed MR-index is shown in two variants, with and

without leaf compression. As can be seen, all MR-index variants

outperform the baseline except for queries of very low selectiv-

ity. For very low selectivities (∼ 10
−4

) the compressed MR-index

variants perform equally well or worse than the baseline. Another

general observation is that across the board the uncompressed MR-

index outperforms the compressed variants. The whiskers in the

plot show the maximum query runtime per bucket. The runtime of

the compressed MR-index heavily depends on the achieved com-

pression, which varies from query to query. Reachability graphs

resulting from RPQs may expose di�erent topologies, such that the

BFS-based vertex ordering can lead to varying compression ratios.

Summary: In the single-query experiment, the uncompressed

MR-index signi�cantly outperforms the compressed MR-index vari-

ants. The space savings achieved by compression are paid at query

runtime. Nevertheless, the compressed MR-index provides query

speedups over the unindexed baseline except for queries with very

low selectivities, i.e., for large result sets.

4.3 Multiple Query Performance
To simulate the execution of multiple queries in a batch we sam-

pled randomly queries from the generated RPQs. We chose three

di�erent batch sizes: 50, 100, and 300. The sampling was repeated a

hundred times for each scenario to include di�erent sets of queries.

Additionally, we set a memory budget of 100MB, 1GB, and 10GB,

respectively, which can be spent on index structures for the queries

included in the batch. We used a greedy algorithm to determine

the index con�guration for each workload. For the scenarios de-

noted as ADJ, K2 and K2C the algorithm decides for each query

in the batch if the respective MR-index should be used or if the

evaluation falls back to the baseline. For the scenario denoted as

best the algorithm can freely choose among all MR-indexes. In all

cases the greedy algorithm picks from all queries the index with

the best ratio of query runtime bene�t to space consumption that

�ts into the remaining memory budget. This process is repeated

until no more indexes can be added to the index con�guration.
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Figure 6: Space savings and bit per edge.

Figure 8 shows the results for each sampling scenario. The ex-

ecution time of a batch is the sum of the execution times of all

queries in the batch. As can be seen across all workload samples,

the compression allows storing more MR-indexes in the memory

budget and indexing more queries of the given workload, such that

a better total workload runtime can be achieved.

The leaf compression for K
2
-trees (K2C) achieves the lowest

index size. Therefore, considerably more MR-indexes can be stored

in the memory budget and used to improve the evaluation time.

Nonetheless, the leaf compression comes with a considerable over-

head for querying the index which results in a worse execution

time compared to the K
2
-tree without leaf compression (K2).

As seen in Section 4.2, the uncompressed MR-index has a very

good lookup performance. When it comes to processing multiple

queries the size of the index is a limiting factor: the index can only

be stored for a few queries with large result sets, where the index

lookup would give the most bene�t. For queries with a small result

set it is still bene�cial to use the index but the gain in reduced total

execution time of the batch is smaller.

Choosing among all index variants leads to the best overall exe-

cution time. Figure 9 shows which index variants are chosen by the

algorithm. Most of the indexes used are K
2
-trees with leaf compres-

sion as they have the best compression ratio and therefore make

the best use of the limited space available for indexes. Other queries

are better served by the uncompressed MR-index, e.g., queries with

very small result sizes which also require a very fast lookup. The

overhead introduced by the leaf compression leads to higher execu-

tion times, which is not proportional to the small reduction in size.

Therefore, the compressed MR-index without leaf compression is

used for queries where the result size cannot be compressed good

enough with leaf compression to compensate the increased lookup

performance.

Summary: It is not bene�cial for every query to compress the

MR-index as much as possible. The reduced space consumption is

paid with an increased lookup time in the index during query time.

A greedy algorithm, which can choose from all MR-index variants

and pick the best representation for each query, results in the best

overall execution time across all batch sizes and memory budgets.
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Figure 7: Single query execution time.

5 RELATEDWORK
Various techniques have been proposed for speeding up RPQ eval-

uation. One elegant way is by exploiting selective labels in the

middle of the path [12]. Here, the query processor looks for labels

in the regular expression outside a Kleene star that are selective

over all edges. If such labels exist, the query processing can use

them to �nd vertex bindings within the path and use bidirectional

BFS between these bindings. Obviously, the approach requires the

presence of selective labels in the data and more importantly in the

regular expression. Regular expressions have to be rather complex

for this approach to have an impact.

Yakovets et al. point out that existing approaches for RPQ pro-

cessing consider only very limited possible query plans. They pro-

pose a query evaluation strategy that allows for a large range of

di�erent query plans, so-called waveplans [21, 22]. Waveplans can

express conventional RPQ query plans, such as the left-deep join

trees of our baseline or plans based on a dedicated transitive clo-

sure operator. Some of these waveplans cache common sub-paths

to share intermediate results between di�erent parts of an RPQ.

Common sub-paths can also be shared between di�erent RPQs [1]

Such a common sub-path cache essentially creates an MR-index.

Our study can help to make informed decisions about which data

structure to use when implementing such a cache.

Gubichev et al. [10] discuss reachability indexing in the context

of RDF-3X. Instead of indexing query results, the reachability is

materialized for label-induced subgraphs only. They make use of

a compact reachability index called FERRARI [16]. The FERRARI

index is not well suited as an MR-index. First, like most reachability

indexes, it only works on acyclic graphs (DAG). A cyclic graph

has to be converted to a DAG �rst by graph condensation and the

condensed graph has to be stored next to the index as FERRARI

requires access to the condensed graph during lookup. Secondly,

only simple queries about the reachability between a vertex pair

are supported by the index, e.g., is vertex v reachable from vertex

u? The e�cient extraction of multiple reachable vertex pairs as

required for an MR-index is not supported.

Another recent approach worth mentioning is the use of land-

mark indexing for label constrained reachability queries, which is a

subset of RPQs [17]. The data graph is indexed in a single structure

for a query instead of materializing individual query results.
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Figure 8: Execution time of the batched queries for three di�erent batch sizes.
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Figure 9: Number of indexes used in the best scenario.

6 CONCLUSION
RPQ is an important query type for graph data. A simple yet e�ec-

tive approach for speeding up RPQ evaluation is the materialization

of the result of an RPQ into an MR-index. Such an MR-index can

be used if the same query has to be answered again or for answer-

ing RPQs whose regular path expression contains the index path.

Since RPQs can have results larger than the original graph, we

investigated graph compression techniques for a space-e�cient

implementation of MR-indexes. In particular, we investigated the

use of K
2
-trees, which have shown to o�er the best compression

ratios [5]. Our key �ndings are:

• K
2
-tree-based MR-indexes provide a signi�cantly lower

memory footprint over uncompressed MR-indexes based

on adjacency lists.

• The query runtime on compressed MR-indexes is always

worse than on uncompressed MR-indexes. When pure

query performance matters most and su�cient memory is

available, compressed MR-indexes are not advisable.

• For multiple queries and a limited memory budget, com-

pressed MR-indexes o�er a better trade-o� between query

runtime and memory footprint.

• Not all queries can be compressed well by K
2
-tree based

MR-indexes. In particular selective queries with a small

result set bene�t less from compressed MR-indexes. Hence,

it is advisable to consider mixed settings of uncompressed

and compressed MR-indexes for a given workload.

For the future, we plan to extend our study to di�erent kinds of

reachability indexes, more datasets, and the use of synthetic bench-

marks, such as gMark [3].
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