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ABSTRACT

Providing fault-tolerance is of major importance for data analyt-
ics frameworks such as Hadoop and Spark, which are typically
deployed in large clusters that are known to experience high fail-
ures rates. Unexpected events such as compute node failures are
in particular an important challenge for in-memory data analytics
frameworks, as the widely adopted approach to deal with them is
to recompute work already done. Recomputing lost work, however,
requires allocation of extra resource to re-execute tasks, thus in-
creasing the job runtimes. To address this problem, we design a
checkpointing system called PANDA that is tailored to the intrinsic
characteristics of data analytics frameworks. In particular, PANDA
employs fine-grained checkpointing at the level of task outputs and
dynamically identifies tasks that are worthwhile to be checkpointed
rather than be recomputed. As has been abundantly shown, tasks
of data analytics jobs may have very variable runtimes and out-
put sizes. These properties form the basis of three checkpointing
policies which we incorporate into PANDA.

We first empirically evaluate PANDA on a multicluster system
with single data analytics applications under space-correlated fail-
ures, and find that PANDA is close to the performance of a fail-free
execution in unmodified Spark for a large range of concurrent fail-
ures. Then we perform simulations of complete workloads, mimick-
ing the size and operation of a Google cluster, and show that pANDA
provides significant improvements in the average job runtime for
wide ranges of the failure rate and system load.

1 INTRODUCTION

The performance of large-scale data analytics frameworks such
as Hadoop and Spark has received major interest [15, 22] from
both academia and industry over the past decade. Surprisingly, this
research assumes an ideal execution environment, which is in sharp
contrast with the resilience-oriented design goals of these systems.
In turn, these goals are motivated by the high rates of failures
experienced by large-scale systems operating in clusters [12, 17]
and datacenters [16, 20]. A key feature influencing the adoption of
data analytics frameworks is their fault-tolerant execution model,
in which a master node keeps track of the tasks that were running
on machines that failed and restarts them from scratch on other
machines. However, we face a fundamental limitation when the
amount of work lost due to failure and re-execution is excessive
because we need to allocate extra resources for recomputing work
which was previously done. Frameworks such as Spark provide
an API for checkpointing, but leave the decision of which data to
checkpoint to the user. In this work, we design PANDA, a cluster
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Figure 1: The average number of job and machine failures
per hour (a) and the median cpu waste per job size range (b)
in the Google trace. The vertical axes are in log-scale.

scheduler that performs automatic checkpointing and so improves
the resilience of in-memory data analytics frameworks.

Failures in large-scale clusters are inevitable. The likelihood of
having hardware crashes during the first year of a typical 10,000-
machine cluster is very high according to several reports from the
Google infrastructure team [5]. In particular, the system administra-
tors expect about 1,000 individual machine failures and thousands
of disk failures. In order to put into perspective the impact of fail-
ures on production workloads, we analyze failure reports from a
Google cluster of 12,000 machines running half billion jobs over
a month [16]. In Figure 1a we show the rate of machine and job
failures in this Google cluster. Despite the relatively small number
of machine failures (13 machines every hour), we observe a huge
number of jobs (400 jobs every hour) that either fail, get killed by
the system, or are simply abandoned by users. We expect this large
number of failures to result into large amounts of wasted work.
In Figure 1b we show the median job waste, that is the amount of
work completed but lost due to failures for the complete range of
job sizes (number of tasks). Indeed, the amount of wasted work
increases linearly with the job size. The Google infrastructure is
only one of a long series of multicluster systems experiencing prob-
lems in their infancy and in the long term. For example, the grid
computing community has uncovered high failure rates [8], and
in particular the flagship project CERN LcG had high failure rates
years after going into production, with more than 25% unsuccessful
jobs across all sites [3].

As today’s clusters have large amounts of free memory [13],
frameworks such as Spark advocate in-memory data processing,
as opposed to previous on-disk approaches such as Hadoop. Un-
fortunately, as has been abundantly reported by the community,
manipulating large datasets with Spark is challenging, and we have
identified three causes of frequent failures in Spark that necessi-
tate jobs to be restarted from scratch. First, the job runtime is very
sensitive to the way the framework allocates the available memory
during its execution. As a result, it may have variable performance



across different applications depending on how much memory they
are allowed to use for storage and for job execution [22]. A second
cause is that several built-in operators (e.g., groupBy, join) require
that all values for one key fit in the memory. This constraint is
in sharp contrast with the design of the framework which only
supports coarse-grained memory allocation (per worker). Finally,
memory-hungry tasks that produce a large number of persistent
objects that stay in memory during the task runtime result in ex-
pensive garbage collection [13].

Using checkpointing to improve fault tolerance has a long his-
tory in computer systems [25]. In particular, the most commonly
used method for checkpointing high-performance computing ap-
plications is coordinated checkpointing, where an application peri-
odically stops execution and writes its current state to an external
stable storage system. As setting the optimal checkpointing inter-
val has been acknowledged as a challenging problem [9], existing
solutions require the failure rates and the checkpointing cost to be
known upfront, and to be constant over time. These assumptions
are unrealistic for data analytics frameworks, which typically run
computations in multiple inter-dependent stages each of which
generates an intermediate dataset that is used as input by other
stages. According to several reports from production clusters [4],
the sizes of the intermediate datasets may vary significantly across
stages of a single job, and as a result they cannot be anticipated.

Checkpointing a task has resource implications which are im-
portant to consider. While a task may be quickly recovered from a
checkpoint, occupying an extra slot to perform the checkpoint may
increase the job runtime due to the high cost of reliably saving the
task’s output. To remedy this, we propose PANDA, a checkpointing
system that carefully balances the opportunity cost of persisting a
task’s output to an external storage system and the time required
to recompute when the task is lost. This opportunity cost is driven
by the evidence of unpredictable intermediate data sizes and outlier
tasks of jobs in production traces from Google and Facebook [4, 16],
which form the basis of our checkpointing policies. Firstly, we pro-
pose the greedy policy that greedily selects tasks for checkpointing
until a predefined budget is exceeded. Secondly, our size-based pol-
icy considers the longest tasks of a job because those tasks are
more likely to delay the job completion if they are lost. Finally, we
design the resource-aware policy that checkpoints tasks only if their
recomputation cost is likely to exceed the cost of checkpointing it.

In this paper we make the following contributions:

(1) We design PANDA, a fine-grained checkpointing system
that checkpoints tasks at stage boundaries by persisting
their output data to stable storage (Section 3). We reduce
the checkpointing problem to a task selection problem and
we incorporate into PANDA three policies designed from
first principle analysis of traces from production clusters.
These policies take into account the size of task output
data, the distribution of task runtimes, or both (Section 4).
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With a set of experiments in a multicluster system, we
analyze and compare the performance of our policies with
single, failing applications under space-correlated failures
(Section 5). With a set of large-scale simulations, mimicking
the size and the operation of a Google cluster, we analyze
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Figure 2: An example of a lineage graph with data depen-
dencies between RDD partitions. The recomputation tree of a
missing partition in unmodified Spark (a) and in Spark with
checkpointing (b). All lost partitions are located on a single
machine and the input dataset is replicated in stable storage.

the effectiveness of PANDA in reducing the average job
runtime of a complete workload (Section 6).

2 SYSTEM MODEL

In this section we present the main abstractions used by Spark to
perform both efficient and fault-tolerant in-memory data process-
ing (Section 2.1). Furthermore, we describe the scheduling mecha-
nism employed by Spark to execute parallel jobs on a cluster with
many machines (Section 2.2).

2.1 Lineage Graphs

We explain the RDD data abstraction used by Spark to persist large
datasets in the memory of multiple cluster machines and we dis-
cuss the notion of lineage graph, a fault-tolerant data structure
that guards the framework against data loss when machine fail-
ures are expected.

Data analytics frameworks such as Spark [26] leverage the dis-
tributed memory of the cluster machines with a new abstraction
called resilient distributed datasets (RpDs), which provides efficient
data processing across a broad range of applications (SQL queries,
graph processing, machine learning, and streaming). An RDD is
a collection of data partitions distributed across a set of cluster
machines. Users have access to a rich set of transformations (e.g.,
map, filter, join) to create RDDs from either data in stable storage
(e.g., HDFS, S3) or other RDDs. Typically, such transformations are
coarse-grained because they apply the same operation in parallel
to each partition of the RDD.

RDDs may not be materialized in-memory at all times. Instead,
Spark maintains the sequence of transformations needed to com-
pute each RDD in a data structure called the lineage graph. In other
words, the lineage graph is a directed acyclic graph (pDAG) where a
vertex represents an RDD partition and an incoming edge represents
the transformation used to compute the RDD. Furthermore, Spark
distinguishes two main types of data dependencies between RDDs:
(1) the narrow dependency, in which each partition of the parent
RDD is used by at most one partition of the child RpD (e.g., map, fil-
ter), and (2) the wide dependency, in which multiple child partitions
may depend on the same parent partition (e.g., join, groupBy).
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As RrDDs are typically persisted in volatile memory without repli-
cas, a machine failure causes the loss of all partitions that are lo-
cated on it. Spark automatically recovers a missing partition by
identifying in the lineage graph its recomputation tree, which is the
minimum set of missing ancestor partitions and the dependencies
among them needed to recover the partition. Thus, the critical re-
computation path of a given partition is the sequence of partitions in
its recomputation tree that determine the minimum time needed to
recover the partition. In the worst case, the critical recomputation
path may go back as far as the origin of the input data. Then, Spark
applies for each missing partition the sequence of transformations
in its recomputation tree according to the precedence constraints
among them. As different partitions of the same RDD may have dif-
ferent recomputation trees, the recovery of a complete RDD typically
results in recomputing a sub-DAG of the initial lineage graph.

To avoid long critical recomputation paths, Spark allows its
users to cut-off the lineage graph through a checkpointing opera-
tion that reliably saves a complete RDD to stable storage. Check-
pointing an RDD in Spark is similar to how Hadoop spills shuffle
data to disk, thus trading off execution latency with fast recovery
from failures. Figure 2 shows an example of a lineage graph for a
simple Spark computation, with both narrow and wide dependen-
cies between RDDs. The figure depicts the recovery of a missing
partition by recomputing all its ancestors (a) and by reading an
existing checkpoint (b).

Spark exposes a basic interface for checkpointing complete RDDs,
but it is the user’s decision to select which RDDs to checkpoint. As
the intermediate RDD sizes are not known upfront, selecting RpDDs
statically, prior to the execution of an application, is difficult. Spark
checkpoints a given RDD by creating a parallel job with tasks that
save the RDD partitions from memory to stable storage. However,
when the memory is fully utilized, Spark evicts RDD partitions using
a least-recently-used (LRU) policy. This way of checkpointing RDDs
is inefficient because it may trigger recomputations if some RDD
partitions are evicted from memory.

2.2 DAG Scheduler

We present an overview of the scheduling architecture used by
Spark to (re-)allocate compute slots to jobs that consist of multiple
sets of tasks with precedence constraints among them.

To compute an RDD, Spark’s scheduler creates a job by translating
the RDD dependencies in the lineage graph into a DAG of processing
stages. Each stage consists of a set of parallel tasks that apply the
same operation (transformation) to compute independently each
RDD partition. In this DAG, tasks pipeline as many transformations
with narrow dependencies as possible, and so we identify stage
boundaries by transformations with wide dependencies. Such trans-
formations typically require a shuffle operation, as illustrated in
Figure 2. A shuffle operation splits the output partitions of each
task in the parent stage into multiple shuffle files, one for each task
in the child stage. Tasks in the child stage may only run once they
have obtained all their shuffle files from the parent stage.

In order to compute an RDD, the scheduler executes tasks in
successive stages on worker machines based on their precedence
constraints (data dependencies), data locality preferences (run tasks
closer to input data), or fairness considerations (per job quotas).
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Similarly to Dryad and MapReduce, Spark jobs are elastic (or mal-
leable) and can run simultaneously, taking any resources (compute
slots) they can get when it is their turn. The pAG scheduler in Spark
schedules the tasks of a stage only after all its parent stages have
generated their output RDDs. Scheduling tasks based on a strict
queueing order such as first-in-first-out (FIFo) compromises local-
ity, because the next task to schedule may not have its input data
on the machines that are currently free. Spark achieves task local-
ity through delay scheduling, in which a task waits for a limited
amount of time for a free slot on a machine that has data for it.
Next, we present the main mechanisms that Spark uses to detect
and to recover from worker failures. Similarly to other fault-tolerant
cluster frameworks, Spark relies on timeouts and connection errors
to infer worker failures. The scheduler expects heartbeats from its
healthy workers every 10 seconds, and marks as lost a worker that
has not sent any heartbeat for at least 1 minute. A dead worker
not only leads to the failure of its running tasks, but also makes
all previously computed work on that worker unavailable. As a
consequence, tasks that fail to transfer data from a lost worker
trigger fetch errors that may also serve as an early indication of
a failure. Spark re-executes failed tasks as long as their stage’s
parents are still available. Otherwise, the scheduler resubmits tasks
recursively in parent stages to compute the missing partitions.

3 DESIGN CONSIDERATIONS

In this section we identify three techniques for checkpointing
in-memory data analytics jobs (Section 3.1). Moreover, we investi-
gate the main properties of workloads from Facebook and Google
that we use as first principles in the design of our checkpoint-
ing policies (Section 3.2). Finally, we propose a scheduling and
checkpointing structure for automatic checkpointing of data an-
alytics jobs (Section 3.3).

3.1 Checkpointing Tasks

The basic fault-tolerance mechanism used by data analytics frame-
works to mitigate the impact of machine failures is to recompute
lost data by repeating tasks based on their precedence constraints in
the lineage graph. Obviously, this approach may be time-consuming
for applications with large lineage graphs. Checkpointing the run-
ning tasks of a job to stable storage allows the job to only par-
tially recompute data generated since the last checkpoint. However,
checkpointing introduces an overhead proportional to the size of
the data persisted to stable storage.

We identify different ways of checkpointing data analytics jobs.
One way of doing so is to employ traditional checkpointing mecha-
nisms available in operating systems that suspend the execution
of running tasks and store their states for later resumption. In this
method, checkpointing jobs is performed at any point, as opposed
to the later two approaches. However, this process may degrade
performance considerably and may trigger frequent machine re-
boots [11]. Tasks of in-memory data analytics jobs are allocated
large heap sizes of multiple GBs, and so checkpointing their states
is relatively slow. In addition, recovery from a checkpoint stored
on another machine triggers additional network traffic, which may
hurt the performance of other jobs in the cluster.

Another approach is to checkpoint tasks at safe points from where
the remaining work can be executed without requiring any context



Table 1: The workload traces from two large production clus-
ters at Facebook [4] and Google [16].

[ Trace [ Facebook [ Google ]
Dates October 2010 | May 2011
Duration (days) 45 29
Framework Hadoop Borg
Cluster size (machines) 600 12,000
Number of jobs 25,000 668,048
Task runtimes No Yes
Data sizes Yes No
Failed machines per hour Unknown 7 to 25
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Figure 3: The variability of the intermediate data sizes (a, ver-
tical axis in log scale) and the prevalence of outliers (b) in the
BTWORLD application.

from the current execution. At a higher level, tasks in data analytics
jobs pipeline a sequence of narrow transformations between suc-
cessive RDD partitions. Tasks split each RDD partition they process
into a sequence of non-overlapping subsets each of which may have
multiple records that share the same key. Thus, a natural way to
checkpoint tasks for many transformations (e.g., map, reduce, join)
is at key boundaries, when all the processing for a key is complete.
This approach has been previously proposed in Amoeba [1], a sys-
tem that aims at achieving true elasticity by trimming the durations
of long task through checkpointing. However, because tracking
such safe points in data analytics frameworks is notoriously difficult,
as they typically require a global view of intermediate data, Amoeba
originally supported only a small number of transformations in
MapReduce frameworks and has not evolved since.

Finally, we can checkpoint tasks at stage boundaries by persisting
their output data to stable storage. A stage boundary for a task is the
point from where the output data is split into multiple shuffle files
each of which aggregates input data for a single reducer. Shuffle
files are written to the buffer cache, thus allowing the operating
system to flush them to disk when the buffer capacity is exceeded.
Because checkpointing shuffle files requires complex synchroniza-
tion between multiple tasks that write sequentially to the same
shuffle file, we perform checkpointing on the output data before
splitting it into shuffle files. We choose this way of checkpoint-
ing because it integrates well with the lineage-based mechanism
adopted by current frameworks. We need to recompute a task when
either the machine on which it runs fails, or when (part of) the
output it produced was located on a machine that fails and is still
needed. Checkpointing tasks at stage boundaries helps only in the
latter case. After checkpointing the output of a task completely,
we no longer need to know how to compute or recover its input,
and so we can cut-off its lineage graph.

Bogdan Ghit and Dick Epema

3.2 Task Properties

Although there is a rich body of work that studies the characteris-
tics of datacenter workloads [4, 16], not many public traces exist.
The largest traces available are from the Hadoop production cluster
at Facebook [4] and from Google’s Borg resource manager [16].
Table 1 shows the relevant details of these traces. An investiga-
tion of these traces reveals that datacenter workloads are largely
dominated by the presence of outlier tasks, and that the sizes of
the intermediate data of jobs may be very variable. Although both
traces are relatively old, it is unlikely that these task properties
have changed since their collection. In this section we check their
validity by analyzing the BTWORLD application [10], which we use
to process monitoring data from the BitTorrent global network; this
application is later described in Section 5.

Unlike a job’s input size, which is known upfront, intermediate
data sizes cannot be anticipated. Complex applications such as
BTWORLD consist of many processing stages, out of which only a few
require the complete input, while the others run on intermediate
data. Figure 3a shows that there is no strong correlation between
the input and output data sizes, and that the output sizes range
from a few KB to hundreds of GB. We compute the stage selectivity,
defined as the ratio of the output size and the input size, for each
job in the Facebook trace. We find that the stage selectivities may
span several orders of magnitude: a small fraction of the stages
perform data transformations (selectivity of 1), while the large
majority are either data compressions (selectivity less than 1) or
data expansions (selectivity higher than 1).

In data analytics workloads, tasks may have inflated runtimes
due to poor placement decisions (resource contention) or imbalance
in the task workload (input data skew). Indeed, Figure 3b shows that
70% of the task outliers in the BTWORLD application have a uniform
probability of being delayed between 1.5x and 3x the median task
runtime. The distribution is heavy-tailed, with top 5% of the outliers
running 10x longer than the median. Similarly, the tasks in the
Google cluster are also very variable and fit well a heavy-tailed
distribution (Pareto with shape parameter 1.3).

We use the large variability of the intermediate data sizes in the
design of a greedy checkpointing policy, which employs a specified
budget to avoid excessive checkpointing. Similarly, the prevalence
of outliers forms the basis of a size-based checkpointing policy,
which seeks to checkpoint the long running tasks in a job. Finally,
we use both properties in a resource-aware checkpointing policy,
which checkpoints tasks only when the cumulative cost of recom-
puting them is larger than the cost of checkpointing. In Section 4
we present the design of our policies starting from first principles,
with all the features needed to perform well in a datacenter.

3.3 Checkpointing Architecture

We present the main design elements and the operation of PANDA,
an adaptive checkpointing system for in-memory data analytics
jobs which integrates well with the architecture of current frame-
work schedulers.

Figure 4 shows the architecture of a typical data analytics frame-
work, with a cluster-wide job scheduler and a fault-tolerant dis-
tributed filesystem which coordinate the execution of tasks on a set
of cluster machines with co-located processors and storage volumes
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Figure 4: The system architecture for the ranDA checkpoint-
ing mechanism in data analytics frameworks.

(illustrated for simplicity as separate entities). The job scheduler
handles the allocation of compute slots to numerous parallel tasks of
a data analytics job with user-defined constraints (step 1) and waits
for periodic heartbeats to keep track of the state of the running
tasks (step 2). The distributed filesystem (e.g., HDFs in our deploy-
ment) employs a three-way replication policy for fault-tolerance
and allows our system to reliably persist a data analytics job by
saving its input, intermediate, or output datasets.

PANDA’s architecture consists of a checkpoint master and a set
of clients located at each cluster machine. The PANDA master is
periodically updated by the job scheduler with progress reports of
the running tasks (step 3). A progress report incorporates for each
task the following properties: the amount of input/output data size
read/written so far and the current task runtimes. The master’s
main role is to decide when to checkpoint running tasks and which
among the running tasks of a job to checkpoint (step 4). To do so,
PANDA employs one of the policies presented in Section 4.

The checkpoint master receives updates from clients with the
location of each checkpoint in the reliable storage system and main-
tains a global mapping between every checkpointed partition and
the dataset it belongs to (step 5). The PANDA clients access the dis-
tributed filesystem for saving and/or fetching partitions on behalf
of the job (steps 6 and 7). Thus, before a task starts running, it first
uses the PANDA client to retrieve from the checkpoint master the
location of its checkpoint. The PANDA client fetches the checkpoint
from the distributed filesystem so that the task gracefully resumes
its execution from that point onwards. If the task was not previously
checkpointed, it executes its work completely.

4 CHECKPOINTING POLICIES

We will now address the question of which subsets of tasks to
checkpoint in order to improve the job performance under failures
while keeping the overhead of checkpointing low. The policies
we propose for this purpose may use the size of the task output
data (GREEDY), the distribution of the task runtimes (s1zE), or both
(AWARE). Furthermore, we use an adaptation of the widely known
periodic checkpointing approach (PERIODIC) to data analytics frame-
works that periodically checkpoints all completing tasks. In Table 2
we state the main differences between our policies.

Greedy checkpointing. Our GREEDY policy seeks to limit the
checkpointing cost in every stage of a job in terms of the amount of
data persisted to disk to a specified budget. Intuitively, we want to
reduce the number of recomputations after a failure in a best-effort
way by selecting in each stage as many tasks for checkpointing
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Table 2: paNDA’s policy framework for checkpointing in-
memory data analytics jobs in datacenters.

[ Policy [ Data size [ Task runtime [ Description ]
GREEDY yes no fraction of the input data
SIZE no yes longest tasks in the job
AWARE yes yes checkpoint vs. recompute
PERIODIC yes no every T seconds

as the budget allows. The GREEDY policy sets the checkpointing
budget of a stage to some fraction of the size of the total input data
transferred to it from the tasks of its parent stages. This fraction
may depend on the selectivities of the tasks of the stage—if the latter
are low, the fraction can be small. For example, for the BTWORLD
workflow with a median task selectivity of 0.1, it can be set to 10%.

The GREEDY policy is invoked for every stage of a job once all its
parent stages have generated their output rRDDs. It will then start
checkpointing any completing task as long as it does not exceed the
stage’s budget. Tasks that are in the process of checkpointing when
the budget is exceeded are allowed to complete their checkpoints.

Size-based checkpointing. Our sizE policy aims to reduce the
amount of work lost after a failure by checkpointing straggler tasks
that run (much) slower than other tasks of the job. The main intu-
ition behind the s1ZE policy is to avoid recomputing time-consuming
tasks that prevent pending tasks of the job from starting.

Straggler tasks in data analytics frameworks may be due to large
variations in the code executed and the size of the data processed by
tasks. Across all stages of the BTwoRLD workflow, the coefficient
of variation in task runtimes is 3.4. Although the code is the same
for all tasks in each stage, it differs significantly across stages (e.g.,
map and reduce). Furthermore, the amount of data processed by
tasks in the same stage may vary significantly due to limitations
in partitioning the data evenly.

The s1zE policy now works in the following way. In order to
differentiate straggler tasks, size builds up from scratch for every
running job a history with the durations of its finished tasks. Thus,
at any point in time during the execution of a job, s1zE has an esti-
mation of its median task runtime, which becomes more accurate
as the job completes a larger fraction of its tasks. s1ze checkpoints
only those tasks it considers stragglers, that is, tasks whose dura-
tions are at least some number of times (called the task multiplier)
as high as the current estimation of the median task runtime.

Resource-aware checkpointing. The AWARE policy aims to
checkpoint a task only if the estimated benefit of doing so outweighs
the cost of checkpointing it. We explain below how the AWARE
policy estimates both the recomputation and the checkpointing
cost of a task, which is done after it has completed.

Prior to the execution of a job, AWARE sets the probability of
failure by dividing the number of machines that experienced failures
during a predefined time interval (e.g., a day) by the cluster size.
AWARE derives these data from the operation logs of the cluster
that contain all machine failing events.

A machine failure may cause data loss, which may require re-
computing a task if there are pending stages that need its output in
order to run their tasks. However, the recomputation of a task may
cascade into its parent stages if its inputs are no longer available
and need to be recomputed in turn. We define the pDAG level of a task
as the length of the longest path in the lineage graph that needs
to be recomputed to recover the task from a failure.



AWARE estimates the recomputation cost of a task as the product
of the probability that the machine on which it ran fails and its
recovery time, which is the actual cost of recomputing it, including
the recursive recomputations if its recomputation cascades into its
parent stages. When the input files of a lost task are still available,
either in the memory of other machines or as checkpoints in stable
storage, the recovery time is equal to the task runtime. If multiple
input files of a task to be recomputed are lost, we assume that
they can be recomputed in parallel, and we add the maximum
recomputation cost among the lost tasks in its parent stages to its
recovery time. We do this recursively as also input files of tasks
in parent stages may be lost in turn.

The checkpointing cost of a task is a function of the amount
of data that needs to be persisted, the write throughput achieved
by the local disks the task is replicated on, and the contention on
the stable storage caused by other tasks that are checkpointed at
the same time. While the former two may be anticipated, the latter
is highly variable and difficult to model accurately. In particular,
checkpointing a task along with other tasks that require replicating
large amounts of data to stable storage may inflate the checkpoint-
ing cost. In order to solve this problem, we propose the following
method to approximate the checkpointing cost of a task in a given
stage. When a stage starts, we artificially set the cost of checkpoint-
ing its tasks 0, thus making AWARE checkpoint the first few waves of
tasks in order to build up a partial distribution of task checkpointing
times. Then we let AWARE set the checkpointing cost of a task to the
95th percentile of this distribution, which is all the time adapted
with the checkpointing times of the checkpointed tasks in the stage.

The AWARE policy now works in the following way. It is invoked
whenever a stage becomes eligible for scheduling its tasks, and then,
using the job’s lineage graph, it estimates the recomputation costs
of its tasks. We amortize the checkpointing cost of a task by its paG
level, so that tasks with long recomputation paths are more likely
to be checkpointed. AWARE checkpoints only those tasks whose
potential resource savings are strictly positive, that is, tasks whose
recomputation costs exceed the amortized checkpointing cost.

5 EXPERIMENTAL SETUP

We evaluate the checkpointing policies described in Section 4
through experiments on the pas multicluster system. In this sec-
tion we present the cluster configuration and the data analytics
benchmarks that we use to assess the performance of PANDA.

5.1 Cluster Setup

We have implemented PANDA in Spark and we evaluate our check-
pointing policies on the fifth generation of the Dutch wide-area
computer system DAs [7]. In our experiments we use DAs machines
that have dual 8-core compute nodes, 64 GB memory, and two
4 TB disks, connected within the cluster through 64 Gbit/s FDR
InfiniBand network. We perform experiments with two cluster
configurations for long and short jobs with allocations of 20 and
5 machines, respectively.

We co-locate PANDA with an HDFs instance that we use to store
the input datasets and the checkpoints performed by our policies.
We setup the HDFs instance with a standard three-way replication
scheme and a fixed data block size of 128 MB. We assume the HDFs
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Table 3: The cluster configurations for our applications.

Dataset

’ Application Input ‘ Runtime ‘

Benchmark ‘ Nodes

[GB] [s]

BTWORLD real-world 20 | BitTorrent 600 1587
PPPQ standard 20 TPC-H 600 1461
NMSQ standard 20 TPC-H 600 656
PageRank real-world 5 Random 1 128
KMeans real-world 5 Random 10 103

instance runs without failures so that both the input datasets and
the checkpoints are always available for PANDA.

We want to analyze the performance of typical data analytics
applications under different patterns of compute node failures. There-
fore, we consider Spark worker failures, which may cause loss of
work already done that is stored in the local memory of the workers.
We assume that new worker machines may be provisioned imme-
diately to replace the lost workers, so that the size of our cluster
remains constant during the execution of the application.

We clear the operating system buffer cache on all machines
before each experiment, so that the input data is loaded from disk.
To emulate a production environment with long-running processes,
we warm up the jvMm in all our experiments by running a full trial of
the complete benchmark. For the experiments we show in Section 6,
we report the mean over three executions.

5.2 Applications
In our evaluation we use a diverse set of applications ranging
from real-world workflows to standard benchmarks that are rep-
resentative for data analytics frameworks. Table 3 presents the
configuration we use in our experiments for each job. We analyze
the performance of PANDA with both long-running jobs that have
durations in the order of tens of minutes (e.g., BTWORLD, PPPQ,
and NMsQ) and short interactive jobs that take minutes to complete
(e.g., PageRank and KMeans). We describe these jobs in turn.
BTWorld. The BTwWoRLD [21] application has observed since
2009 the evolution of the global-scale peer-to-peer system BitTor-
rent, where files are broken into hashed pieces and individually
shared by users, whether they have completely downloaded the
file or not. To help users connect to each other, BitTorrent uses
trackers, which are centralized servers that give upon request lists
of peers sharing a particular file. BTWORLD sends queries to public
trackers of the BitTorrent system and so it collects statistics about
the aggregated status of users. These statistics include for each
swarm in the tracker (users who share the same torrent file) the
number of leechers (users who own some but not all pieces of the
file), the number of seeders (users who own all pieces of the file),
and the total number of downloads since the creation of the torrent.
We have designed a MapReduce-based workflow [10] to answer
several questions of interest to peer-to-peer analysts in order to
understand the evolution over time of the BitTorrent system. The
complete BTWORLD workflow seeks to understand the evolution of
each individual tracker we monitor, to determine the most popular
trackers (over fixed time intervals and over the entire monitoring
period), and to identify the number of new swarms created over
time. In our experiments with PANDA, BTWORLD takes an input
dataset of 600 GB. As we show in Figure 5a, the lineage graph of
BTWORLD consists of a long chain of stages and a single join.
TPC-H. The Tpc-u benchmark [2] consists of a suite of business
oriented ad-hoc queries and concurrent data modifications. The
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Figure 5: The data flow of BTwWORLD (a), PPPQ (b), NMsQ (c),
PageRank (d), and KMeans (e) as a DAG of stages: the nodes
and the edges represent the stages and the wide dependen-
cies among them.
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queries and the dataset have been chosen to have broad industry-
wide relevance while maintaining a sufficient degree of ease of
implementation. This benchmark illustrates decision support sys-
tems that analyze large volumes of data, execute queries with high
degrees of complexity, and give answers to critical business ques-
tions. The benchmark randomly generates eight relational tables
with a schema that represents a typical data warehouse dealing
with sales, customers, and suppliers. For a detailed description of
the benchmark we refer to its standard specification [2].

We use two queries from this benchmark: the Potential Part
Promotion Query (pppQ) and the National Market Share Query
(nMsQ). pPPQ seeks candidates for a promotional offer by selecting
suppliers in a particular nation that have an excess of a given
product — more than 50% of the products shipped in a given year
for a given nation. NMsQ determines how the market share of a
given nation within a given region has changed over two years
for a given product. In our experiments we execute both queries
with an input dataset of 600 GB. Figures 5b and 5¢ show the lineage
graphs of both Tpc-H queries that combine in almost every stage
results from two or three parent stages.

PageRank. PageRank is the original graph-processing applica-
tion used by the Google search engine to rank documents. PageR-
ank runs multiple iterations over the same dataset and updates
the rank of a document by adding the contributions of documents
that link to it. On each iteration, a document sends its contribu-
tion of r;/n; to its neighbors, where r; and n; denote its rank and
number of neighbors, respectively. Let c;; denote the contribution
received by a document i from its neighbor j. After receiving the
contributions from its neighbors, a document i updates its rank
tor; = (a/N) + (1 — @) X, cij, where N is the total number of
documents and « a tuning parameter.

We use the optimized PageRank implementation from the graphx
library of Spark with a 1 GB input dataset. We generate a random
input graph with 50,000 vertices that has a log-normal out-degree
distribution with parameters y and o set to 4 and 1.3, respectively.
In Figure 5d we show the lineage graph for a single iteration of
PageRank. An interesting property of this application is that its
lineage becomes longer with the number of iterations.

KMeans. Clustering aims at grouping subsets of entities with
one another based on some notion of similarity. KMeans is one
of the most commonly used clustering algorithms that clusters
multidimensional data points into a predefined number of clusters.
KMeans uses an iterative algorithm that alternates between two
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Table 4: An overview of the experiments performed to eval-
uate PANDA.

’ Experiment ‘ Jobs ‘ Policies | Baselines Failure Sec. ‘
pattern
Parameters BT:S;"D all none none 6.1
Overhead all all Spark none 6.2
Machine BTWORLD space-

1l Spark 6.3
failures ;;PS% 2 par correlated
Lineage PageRank o single
length KMeans AWARE Spark failure o4

BTWORLD space-
Simulations PPPQ AWARE Spark P 6.5
PageRank correlated

main steps. Given an initial set of means, each data point is assigned
to the cluster whose mean yields the least within-cluster sum of
squares (wcss). In the update step, the new means that become the
centroids of the data points in the new clusters are computed.

We use the optimized implementation from the m11ib library
of Spark with a 10 GB dataset that consists of 10 millions data
points sampled from a 50-dimensional Gaussian distribution. Fig-
ure 5e shows that KMeans with four iterations has a relatively
simple lineage graph, with a single shuffle operation that combines
results from multiple stages that have narrow dependencies to
the input dataset.

6 EXPERIMENTAL EVALUATION

In this section we present the results of five sets of experiments that
each address a separate aspect of the performance of PANDA. Ta-
ble 4 presents an overview of these experiments. We investigate the
setting of the parameters in GREEDY, SIZE, and AWARE (Section 6.1).
We measure the checkpointing overhead to determine how far we
are from the default Spark implementation without checkpoint-
ing (Section 6.2). Thereafter, we evaluate the performance of our
policies under various patterns of space-correlated failures (Sec-
tion 6.3). Moreover, we assess the impact of the length of the lineage
graph on the performance of PANDA when failures are expected
(Section 6.4). Finally, we perform simulations to evaluate the benefit
of checkpointing at larger scale (Section 6.5).

6.1 Setting the Parameters

All our policies have parameters needed in order to operate in a real
environment. In particular, GREEDY and sI1zE use the checkpointing
budget and the task multiplier, respectively. In contrast with these
policies that both set workload-specific parameters, AWARE sets the
probability of failure that quantifies the reliability of the machines,
and so it is independent of the workload properties. In this section
we seek to find good values of these parameters.

One way of setting the parameters for GREEDY and SIZE is to
evaluate the performance of each policy for a range of parame-
ter values with various failure patterns. However, this method is
time-consuming, and may in practice have to be repeated often.
To remove the burden of performing sensitivity analysis for each
policy, we propose two simple rules of thumb based on the history
of job executions in production clusters and in our pas multiclus-
ter system. We show in Sections 6.2 through 6.5 that our policies
perform well with these rules.

The GREEDY policy sets the checkpointing budget to the median se-
lectivity of the tasks across all jobs that we use in our experiments. The
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checkpointing budget limits the amount of data that is replicated
to HDFs in each stage. We expect GREEDY to have a large overhead
when setting the checkpointing budget to a large value. In Sec-
tion 3.2 we have shown that in the Facebook production cluster, a
large majority of tasks have relatively low selectivities. Figure 6a
shows the distributions of the task selectivity in BTWoRLD and PPPQ.
Because the median task selectivity is below 0.1 for both jobs, we set
the checkpointing budget in our experiments with GREEDY to 10%.

The s1ze policy sets the task multiplier to the ratio of the 90"
percentile and the median of the runtimes of the tasks across all jobs
that we use in our experiments. The task multiplier aims at identi-
fying the longest tasks in a job, and so setting a small value may
result in checkpointing a large fraction of tasks. As we have shown
in Section 3.2, this is unlikely to happen for data analytics jobs
because they typically run tasks that have heavy-tailed durations.
Figure 6¢ shows that only 10% of tasks in BTWORLD and PPPQ ac-
count for roughly 50% of the total processing time of the job. As
Figure 6b shows, the ratio of the 90’ h percentile and the median of
the distribution of task runtimes for both BTworLD and pppQ is 1.5.
Thus, we set the task multiplier in our experiments with s1zE to 1.5.

Unlike the previous two policies, which both require an analysis
of task properties, the AWARE policy only needs as parameter the
likelihood of being hit by a failure. We want AWARE to checkpoint
more tasks as it operates on less reliable machines and vice versa. In
order to highlight the checkpointing overhead and the performance
of AWARE in unfavorable conditions, we assume that all machines
allocated to execute our jobs experienced failures. Thus, we set the
probability of failure in our experiments with AWARE to 1.

Finally, in order to show the improvements provided by our poli-
cies relative to the traditional way of checkpointing, in our experi-
ments with the PERIODIC policy we set the optimal checkpointing
interval based on Young’s approximation for each application. To
do so, our version of the PERIODIC policy requires an estimation
of the checkpointing cost and the mean time to failure. Thus, we
assume that we know prior to the execution of each job both its
checkpointing cost and the failure time.

6.2 The Impact of the Checkpointing Overhead

Spark has been widely adopted because it leverages memory-locality,
and so it achieves significant speedup relative to Hadoop. Because

oth percentile of the task runtimes (b).
checkpointing typically trades-off performance for reliability, we
want to evaluate how far the performance of PANDA is from the per-
formance of unmodified Spark when it runs on reliable machines.
In this section we evaluate the overhead due to checkpointing tasks
in PANDA relative to the performance of unmodified Spark without
failures and without checkpointing.

Unlike previous approaches to checkpointing that typically save
periodically the intermediate state of an application, PANDA reduces
the checkpointing problem to a task selection problem. Therefore,
we first want to assess how selective our policies are in picking their
checkpointing tasks. To this end, in Figure 7a we show the number
of tasks that are checkpointed by each policy for all applications.
We find that GREEDY is rather aggressive in checkpointing tasks,
while s1ZE is the most conservative policy. In particular, we observe
that with the GREEDY policy, PANDA checkpoints between 26-51%
of the running tasks in our applications. Further, because the s1ze
policy targets only the outliers, it checkpoints at most 10% of the
running tasks for all applications. Similarly to s1zE, our adaptation
of the PERIODIC policy checkpoints relatively small fractions of
tasks for all applications.

Because AWARE balances the recomputation and the checkpoint-
ing costs for each task, the number of checkpointing tasks is variable
across different jobs. We observe that for jobs that have relatively
small intermediate datasets such as NMsQ and PageRank, AWARE
checkpoints roughly 40% of the tasks. However, for BTWORLD and
pPPQ, which both generate large amounts of intermediate data,
AWARE is more conservative in checkpointing and so it selects
roughly 20% of the tasks.

PANDA assumes the presence of an HDFs instance to persist its
checkpoints that is permanently available. Running many large
applications in a cluster may lead to significant amount of storage
space used by PANDA. In Figure 7b we show the amount of data
persisted by our policies in each application. We find that GREEDY
checkpoints significantly more data than both si1ze and AwARE for
all applications. In particular, GREEDY replicates 30 times as much
data as s1zE and AWARE with BTwoRLD. To perform the checkpoints
of all four applications, GREEDY requires a storage space of 1.8 TB
(including replicas), whereas s1zE and AWARE require 212 GB and
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with its default lineage-based recomputation.

190 GB, respectively. We also find that despite being rather con-
servative in selecting its checkpointing tasks, the PERIODIC policy
requires a storage space of 1 TB.

Finally, we assess the checkpointing overhead of our policies as a
percentage increase in the job runtime relatively to a vanilla version
of Apache Spark (see Table 4). Figure 7c shows the checkpointing
overhead for all four applications. GREEDY suffers significant per-
formance degradation and its checkpointing overhead may be as
high as 20%. However, both s1ze and AWARE incur less than 10%
overhead, and so they are very close to the performance of Spark
without checkpointing. This result can be explained by what is
the main difference between our policies. Whereas GREEDY check-
points tasks in a best-effort way, both s1zE and AWARE employ more
conservative ways of selecting checkpointing tasks based on out-
liers or cost-benefit analysis. Further, because PERIODIC performs
its checkpoints at fixed intervals during the application runtime,
the contention on the HDFs is relatively low at all times. As a con-
sequence, although PERIODIC checkpoints significantly more data
than both s1ze and AWARE, they all have similar overheads.

We conclude that both s1zE and AWARE deliver very good per-
formance and they are close to the performance of Spark with-
out checkpointing. These policies are very selective when picking
checkpointing tasks, they use relatively small storage space to
persist the output data of tasks, and they incur a checkpointing
overhead that is usually below 10%.

6.3 The Impact of the Machine Failures

Space-correlated failures, defined as groups of machine failures that
occur at the same time across the datacenter, have been frequently
reported in large-scale systems such as grids and clusters [17], and
more recently in datacenters [16]. Therefore, in this section, we
evaluate the performance of PANDA under space-correlated failures.
To this end, we report in Figure 8 the job runtime with and without
our checkpointing policies for a range of concurrent failures that
occur in the last processing stage of our BTWORLD, PPPQ, and NMsQ
applications. As a hint of reading this figure, the values at 0 machine
failures represent the job runtimes with our policies and with Spark
when the job completes without experiencing failures.

Without checkpointing, the recomputation time due to failures
causes a significant performance degradation for the entire range of
concurrent failures. We observe that the job runtime in unmodified
Spark increases linearly with the number of concurrent failures
for all applications. For example, when only 25% of the cluster
size is lost due to failures, the job runtime increases by 48% for
BTWORLD, and by 40% for the two TPc-H queries. For the stress test
we consider with 15 out of 20 machines that fail, Spark delivers
very poor performance with all applications completing between
2.5 and 3 times as slow as when no failures occur.

Figure 8 also shows that all our checkpointing policies deliver
very good performance for the complete range of failures. Both
GREEDY and AWARE provide constant runtimes irrespective of the
number of failures for all applications. The reason for this result is
that they cut-off the lineage graph at key stages, thus avoiding re-
computing previously completed work. We also observe that AWARE
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performs slightly better than GREEDY because it introduces a lower
checkpointing overhead, as we have shown in Figure 7. s1zE also
reduces the impact of failures, but the job runtime still increases
linearly with the number of failures. However, size performs at its
best and gets very close to the performance of GREEDY and AWARE
for jobs such as pppQ that have outlier tasks with very long dura-
tions. In particular, we have shown in Figure 6c that in PPPQ only
10% of the tasks account for more than 60% of the total process-
ing time. Further, we find that pERIODIC has poor performance for
BTWORLD, but its performance is very close to the performance
of size for the two TPC-H queries.

We conclude that our policies outperform unmodified Spark for
any number of space-correlated failures. While both GREEDY and
AWARE provide constant job runtimes for the complete range of
machine failures, AWARE is our best policy because it introduces
a much lower overhead than GREEDY.

6.4 The Impact of the Lineage Length

Although Spark may use the job lineage graph to recover lost RDD
partitions after a failure, such recovery may be time-consuming for
jobs such as PageRank that have relatively long lineage chains with
many wide dependencies (see its DAG in Figure 5d). Conversely,
applications such as KMeans, in which narrow dependencies prevail,
may be recovered relatively fast from data in stable storage (see its
DAG in Figure 5e). In this section we seek to highlight the impact of
the lineage graph structure on the job runtime with and without
checkpointing in the presence of a single machine failure that occurs
at different moments during the job execution.

Figures 9a and 9b show the differences in performance of PANDA
with the AWARE policy on the job runtime when a single machine
fails before the job completes for different numbers of iterations
of PageRank and KMeans. We observe that PageRank completes
relatively fast for Spark without failures for the complete range
of iterations from 8 to 14. However, the performance of PageRank
degrades significantly even when a single failure perturbs the last
iteration of the job. In particular, the job runtime is 11 times as large
as the fail free execution in Spark for PageRank with 14 iterations.
Because PageRank requires many shuffle operations, a machine
failure may result in the loss of some fraction of data from each
parent RDD, thus requiring a long chain of recomputations. Figure 9a

also shows that PANDA with the AWARE policy performs very well
and bounds the recomputation time for any number of iterations.
Not only does PANDA complete the job four times as fast as the
recomputation-based approach in Spark, its performance is also
very close to the performance of Spark without failures.

Unlike PageRank, which suffers significantly from failures, we
show in Figure 9b that KMeans is rather insensitive to faulty ma-
chines and that Spark is less than 5% off the fail-free execution for
any number of iterations. The reason for this result can be explained
by what is the main difference between the lineage graphs of PageR-
ank and KMeans. As we have shown in Section 5.2, the length of the
PageRank lineage graph is proportional to the number of iterations
of the job, and so the amount of recomputations triggered by a
single failure grows significantly for jobs with many iterations. In
contrast with PageRank, KMeans has a much simpler lineage graph,
with many narrow dependencies followed by a shuffle, and so its
length remains constant irrespective of the number of iterations. As
a consequence, checkpointing KMeans is not worthwhile, because
these narrow dependencies may be quickly recovered from stable
storage. However, because our AWARE policy avoids checkpointing
stages that are one hop away from the input dataset, we observe
that its operation falls back to default Spark in the case of KMeans.

Finally, Figure 9c shows the results of experiments in which a
single machine fails at different moments during the job execu-
tion for PageRank with 14 iterations. In general, we observe that
Spark performs well when the failure occurs in the early stages
of the job. However, it delivers poor performance when the time
of failure is closer to the job completion time. We find that PANDA
is effective in reducing the recovery time and outperforms Spark
irrespective of the time of failure.

We conclude that applications such as PageRank that have many
wide dependencies are good candidates for checkpointing, while ma-
chine learning applications such as KMeans may be recovered with
relatively small recomputation cost. Furthermore, we have shown
that PANDA performs very well for lineage graphs in which the
recomputation cost is excessive irrespective of the time of failure.

6.5 The Impact of the Failure Pattern
So far, we have evaluated different aspects of the operation of
PANDA with single applications that experience space-correlated
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Table 5: The distribution of job types in our simulated
workload.

Lo Total | Failed . Jobs
Application nodes | nodes Scale Runtime [s] %]
20 5 1.0 1587 16

BTWORLD 20 5 5.0 7935 5
20 5 10.0 15870 5

20 5 1.0 1461 16

PPPQ 20 5 5.0 7305 5

20 5 10.0 14610 5

PageRank 5 1 1.0 185 16
14t . 5 1 5.0 925 16
(14 terations) 5 1 10.0 1850 | 16

failures at a certain time during their execution. We have shown
that our policies deliver very good performance with relatively
small checkpointing overhead. However, it is not clear whether
the improvements hold for a long-running system when multiple
jobs receive service in the cluster only a fraction of which experi-
ence failures. Thus, we want to evaluate the improvement in the
average job runtime achieved by AWARE for a complete workload
relative to unmodified Spark.

We have built our own simulator in order to evaluate the im-
pact of the frequency of failures on the overall improvement of
PANDA with the AWARE policy. We simulate the execution of a 3-day
workload on a 10,000-machine cluster (similar to the size of the
Google cluster discussed in Section 1). We perform simulations at a
higher-level than the earlier single-application experiments, and
so we use the overall job durations (with or without failures) from
experiments rather than simulating the execution of separate tasks.

In our event-based simulator, jobs are submitted according to
a Poisson process and they are serviced by a F1ro scheduler. The
scheduler allocates to each job a fixed number of machines which
are released only after the job completes. Although the Google
trace consists of mostly short jobs in the order of minutes, the
longest jobs may take hours or even days to complete. To generate
a similar realistic workload, we scale up the durations of our jobs
by different scaling factors as shown in Table 5. Table 5 also shows
the distribution of the job types in our workload. In particular, 80%
of the jobs complete within 30 minutes (short jobs), whereas the
durations of the remaining jobs exceed 2 h (long jobs).

In order to reuse the results from the experiments, we create the
following failure pattern. We assume that failures occur according
to a Poisson process that may hit every job at most once. Each
failure in our simulation is a space-correlated failure event that
triggers the failure of 5 machines. Table 5 shows for every job in
our workload the number of failed machines when it is hit by a
failure event. In particular, a failure event may hit a single BTWORLD
query, a single PPPQ query, or 5 different PageRank jobs. To simulate
the execution of a job that is hit by a failure we replace the job
runtime given in Table 5 by the job runtime shown in Figure 8 or 9
multiplied by the job’s scaling factor. Our assumption here is that
both the checkpointing overheads and the improvements in the job
runtime achieved by AWARE hold irrespective of the scaling factor
of the job. Similarly to the experiments we performed on the Das,
we report averages over three simulations.

Figure 10a shows the results of the simulations for different
values of the failure rate under a system load of 50%, which is the
average utilization of the Google cluster. PANDA provides significant
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gains when machines are more likely to fail but may not be worth-
while when failures occur rarely. Intuitively, jobs are more likely
to be hit by failures when the failure rate is high. In particular, the
fraction of failed jobs increases from 0.7% to 24% when the failure
rate increases from 1 to 30 failure events per hour. We find that
PANDA with AWARE reduces the average job runtime with 34% rela-
tive to the execution in unmodified Spark when the failure rate is
30 per hour. However, PANDA stops being beneficial when the clus-
ter experiences less than one failure event per hour. Furthermore,
Figure 10a shows that the improvement for short jobs is signifi-
cantly higher than the overall improvement for our workload. For
example, for a failure rate of 5, which is equivalent to the maximum
failure rate in the Google cluster (see Table 1), short jobs improve
by 19% on average, whereas the overall improvement is only 7%.

Finally, in Figure 10b we show the results of the simulations for
different values of the system load when 5 failure events are ex-
pected every hour. We find that PANDA provides significant improve-
ments over the complete range of system loads, but becomes less
beneficial under high loads. The intuition of this result is that failed
jobs account for larger fractions of the total number of jobs when the
system load is low. In particular, the fraction of failed jobs decreases
from 18% to 2.5% when the system load increases from 10% to 90%.

7 RELATED WORK

Checkpointing has traditionally been very important in high-per-
formance computing (HPC) systems, but has lately also received
quite some attention for data analytics frameworks.

BlobCR [14] seeks to efficiently capture and roll-back the state
of scientific Hpc applications in public clouds. Recent work [9] ana-
lyzed practical methods for optimizing the checkpointing interval
using real-world failure logs. Multi-level checkpointing [6] aims at
reducing the overhead of checkpointing in large-scale platforms
by setting different levels of checkpoints each of which has its
own overhead and recovery capability. An adaptive checkpointing
scheme with work migration [24] has been developed to minimize
the cost of running applications on resources from spot markets.
Similar techniques that aim to reduce the checkpointing overhead
of the naive periodic checkpointing policy exploit the temporal
locality in failures [19].

Closest to our work, TR-Spark [23] and Flint [18] propose check-
pointing policies for data analytics applications that run on tran-
sient resources which are typically instable, but not necessarily



due to faults. In particular, TR-Spark employs cycle-scavenging to
leverage such transient resources which are kept idle as a resource
buffer by cloud providers and may be revoked due to load spikes.
TR-Spark takes a statistical approach to prioritize tasks that have a
high probability of being completed before the resources where they
run are revoked and to checkpoint data blocks that are likely to be
lost before they are processed by the next processing stages. To do
so, TR-Spark requires both the distribution of the task runtimes and
the distribution of the inter-arrival failure time for each resource
allocated to the framework. Similarly, Flint provisions instances
available on the spot market which have relatively low prices and
may be revoked due to price spikes. Flint supports rRpD-level check-
pointing using an adaptation of the periodic checkpointing policy
to data analytics applications. In contrast, PANDA targets a data-
center environment where applications may suffer from outright
node failures and proposes a more comprehensive set of task-level
checkpointing policies that take into account not only the lineage
structure of the applications, but also workload properties such as
the task runtimes and the intermediate data sizes.

8 CONCLUSIONS

The wide adoption of in-memory data analytics frameworks is mo-
tivated by their ability to process large datasets efficiently while
sharing data across computations at memory speed. However, fail-
ures in datacenters may cause long recomputations that degrade
the performance of jobs executed by such frameworks. In this paper
we have presented PANDA, a checkpointing system for improving
the resilience of in-memory data analytics frameworks that reduces
the checkpointing problem to a task selection problem. We have
designed three checkpointing policies starting from first principles,
using the size of the task output data (GREEDY), the distribution
of the task runtimes (sizg), or both (AWARE). The GREEDY policy
employs a best-effort strategy by selecting as many tasks for check-
pointing as a predefined budget allows. The s1zE policy checkpoints
only straggler tasks that run much slower than other tasks of the job.
The AWARE policy checkpoints a task only if the cost of recomputing
it exceeds the time needed to persist its output to stable storage.
With a set of experiments on a multicluster system, we have
analyzed and compared these policies when applied to single failing
applications. We have found that our policies outperform both un-
modified Spark and the standard periodic checkpointing approach.
We have also analyzed the performance of PANDA with the AWARE
policy by means of simulations using a complete workload and the
failure rates from a production cluster at Google. We have found
that pPANDA is beneficial for a long-running system and can signifi-
cantly reduce the average job runtime relative to unmodified Spark.
In particular, the s1zE policy delivers good performance when the
failure rate (fraction of failed machines per day) is relatively low
(less than 6%). Although both GREEDY and AWARE turn out to pro-
vide significant improvements for a large range of failure rates
(more than 6%), AWARE is our best policy because it introduces a
much lower overhead than GREEDY. However, when the datacen-
ter is prone to failures of complete racks, the rather aggressive
checkpointing strategy of the GREEDY policy may be worthwhile.

Bogdan Ghit and Dick Epema
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