1610.05121v2 [cs.DC] 13 Dec 2016

arxXiv

Parallel Stream Processing Against Workload
Skewness and Variance

Junhua Fang! Rong Zhang' Tom Z.J.Fut

Zhenjie Zhang?

Aoying Zhou' Junhua Zhu®

fInstitute for Data Science and Engineering, Software Engineering Institute,
East China Normal University, Shanghai, China
{jh.fang,rzhang,ayzhou} @sei.ecnu.edu.cn
fAdvanced Digital Sciences Center, Illinois at Singapore Pte. Ltd.
{tom.fu,zhenjie} @adsc.com.sg
°Huawei Technologies Co. Ltd. {junhua.zhu}@outlook.com

Abstract—Key-based workload partitioning is a common
strategy used in parallel stream processing engines, enabling
effective key-value tuple distribution over worker threads in
a logical operator. While randomized hashing on the keys is
capable of balancing the workload for key-based partitioning
when the keys generally follow a static distribution, it is likely to
generate poor balancing performance when workload variance
occurs on the incoming data stream. This paper presents a
new key-based workload partitioning framework, with practical
algorithms to support dynamic workload assignment for stateful
operators. The framework combines hash-based and explicit
key-based routing strategies for workload distribution, which
specifies the destination worker threads for a handful of keys and
assigns the other keys with the hashing function. When short-
term distribution fluctuations occur to the incoming data stream,
the system adaptively updates the routing table containing the
chosen Kkeys, in order to rebalance the workload with minimal
migration overhead within the stateful operator. We formulate the
rebalance operation as an optimization problem, with multiple
objectives on minimizing state migration costs, controlling the
size of the routing table and breaking workload imbalance among
worker threads. Despite of the NP-hardness nature behind the
optimization formulation, we carefully investigate and justify the
heuristics behind key (re)routing and state migration, to facilitate
fast response to workload variance with ignorable cost to the
normal processing in the distributed system. Empirical studies
on synthetic data and real-world stream applications validate the
usefulness of our proposals and prove the huge advantage of our
approaches over state-of-the-art solutions in the literature.

I. INTRODUCTION

Workload skewness and variance are common phenom-
ena in distributed stream processing engines. When massive
stream data flood into a distributed system for processing and
analyzing, even slight distribution change on the incoming
data stream may significantly affect the system performance.
Existing optimization techniques for stream processing engines
are designed to exploit the distributed processor, memory
and bandwidth resources based on the computation workload,
but potentially generate suboptimal performance when the
evolving workload deviates from expectation. Unfortunately,
workload evolution is constantly happening in real application
scenarios (e.g., surveillance video analysis [[6] and online
advertising monitoring [18]]). It raises new challenges to dis-
tributed system on solutions to handle the dynamics of data

stream while maintaining high resource utilization rate at any
time.

In distributed stream processing system, abstract operators
are connected in form of a directed graph to support com-
plex processing logics over the data stream. Traditional load
balancing approaches in distributed stream processing engines
attempt to balance the workload of the system, by evenly
assigning a variety of heterogenous tasks to distributed nodes
[3], [4], [16], [31], [32]. Such strategies may not perform as
expected in distributed stream processing systems, because of
the lack of balance on the homogeneous tasks within the same
abstract operator. In Fig. |1} we present an example to illustrate
the potential problem with such strategies. In the example,
there are three logic operators in the pipeline, denoted by
rectangles. There are three concrete task instances running in
operator 2, denoted by circles. The number of incoming tuples
to the first task instance is two times of that to the second
and third task instances, due to the distribution skewness on
the tuples. Even if the system allocates the tasks in a perfect
way to balance the workload when allocating task instances
to computation nodes, the processing efficiency may not be
optimal. Because of the higher processing latency in the first
task instance of operator 2, operator 1 is forced to slow down
its processing speed under backpushing effect, and operator 3
may be suspended to wait for the complete intermediate results
from operator 2. This example shows that load balancing
between task instances within individual logical operators
is more crucial to distributed stream processing engines, to
improve the system stability and guarantee the processing
performance.

>annn()
Operator 1 Operator 3
a0
Operator 2
Fig. 1. The potential problem of workload imbalance within operators in

real distributed stream processing engine.

There are two types of workload variance in distributed
stream processing engines, namely long-term workload shift
and short-term workload fluctuation. Long-term workload
shifts usually involve distribution changes on incoming tuples
driven by the change in physical world (e.g., regular burst
of tweets after lunch time), while workload fluctuations are
usually short-term and random in nature. Long-term workload
shifts can only be solved by applying heavyweight resource
scheduling, e.g., [[10], which reallocates the computation re-
source based on the necessity. Computation infrastructure of
the distributed system may request more (less resp.) resource,
by adding (returning resp.) virtual machines, or completely
reshuffling the resource between logical operators according to
the demands of operators. Such operations on the infrastructure
level are inappropriate for short-term workload fluctuations,
usually too expensive and render suboptimal performance
when the fluctuation is over. It is thus more desirable to adopt
lightweight protocols within system, to smoothly redistribute
the workload between task instances, minimize the impact
on the normal processing, and achieve the objective of load
balancing within every logical operator. This paper focuses
on such a dynamic workload assignment mechanism for indi-
vidual logical operators in a complex data stream processing
logic, especially against short-term workload fluctuations. Note
that existing solutions to long-term workload shifts are mostly
orthogonal to the mechanisms for short-term workload fluctu-
ations, both of which can be invoked by the system optionally
based on the workload characteristics.

The methods which focus on designing load balance al-
gorithms for stream system can be divided into two cate-
gories: split-key-based and non-split-key-based. Split-key-
based method splits data of the same key and distributes
them to the parallel processing instances. The representative
algorithm is implemented in PKG [21]]. However, this approach
distories the semantics of key-based operations, resulting in ad-
ditional processing on some operators. In PKG, for example, it
splits data of the same key into multiple subsets and distributes
them selectively to different instances to avoid load imbalance.
However, this approach leads to some negative impact on
system performance. As shown in Fig.[2(a)] aggregations must
contain some partial result operators and an additional merge
operator if implemented on a split-key-based architecture. In
Fig. 2(b)] it shows the join operation on this architecture. The
data of key k; from R stream are split into two parts and
assigned to instances d; and ds. To ensure the correctness of
join operation, as the routing in work [20], data of k; from
stream S should be broadcasted to both instances d; and ds.

Non-split-key-based methods can guarantee the semantics
of Key-based operation, but it weakens system balance capa-
bility severely. The representative algorithm is implemented in
Readj [11]. It treats the data of a key as a complete granularity
and does not split it during load adjustment. However, when
the number of keys is huge, Readj is of high time complexity
for it considers all possible swaps by pairing tasks and keys
to find the best key movement to alleviate the workload
imbalance. Furthermore, Readj just considers to adjust the
big load keys to make workload balance, which will incur
expensive migration cost for stateful operator, such as join.

Then it is a urgent to design a new method which can
not only guarantee the key-based semantics, but also balance

system workload quick and efficient.

W @ \it o

kl R'k1 .j S'k1
Merge Operator
Partial Results Operator Join Operator
(a) Aggregation Operation (b) Join Operation
Fig. 2. Sketch for operations that using split-key-based to make workload
balance.

Our proposal in this paper is based on a mixed strategy of
key-based workload partitioning, which explicitly specifies the
destination worker threads for a handful of keys and assigns
all other keys with the randomized hashing function. This
scheme achieves high flexibility by easily redirecting the keys
to new worker threads with simple editing on the routing
table. It is also highly efficient when the system sets the
maximal size of the routing table, thus controlling the memory
overhead and calculation cost with the routing table. Workload
redistribution with the scheme is scalable and effective, by
allowing the system to respond promptly to the short-term
workload fluctuation even when there are a large number of
keys present in the incoming data stream. To fully unleash the
power of the scheme, it is important to design a monitoring
and controlling mechanism on top of system, making optimal
decisions on routing table update to achieve intra-operator
workload balancing. Recent research work in [11]], although
employing similar workload distribution strategy, only con-
siders migration of hot keys with high frequencies, limiting
the optimizations within much smaller configuration space.
We break the limit in this paper with a new solution for
distributed systems to explore possible optimizations with all
candidate keys for the routing table, thus maximizing the
resource utilization with ignorable additional cost. Specifically,
the technical contributions of this paper include:

- We design a general strategy to generate the partition
function for data redistribution under different stream
dynamic changes at runtime, which achieves scalabil-
ity, effectiveness and efficiency by a single shot.

- We propose a lightweight computation model to sup-
port rapid migration plan generation, which incurs
minimal data transmission overhead and processing
latency.

- We present a detailed theoretical analysis for proposed
migration algorithms, and prove its usability and cor-
rectness.

- We implement our algorithms on Storm and give
extensive experimental evaluations to our proposed
techniques by comparing with existing work using
abundant datasets. We explain the results in detail.

The remainder of this paper is organized as follows. Section
introduces the overview and preliminaries of our problem.

Section presents our balancing algorithms to support our
mixed workload distribution scheme. Section [[V| proposes the
optimization techniques used in the implementation of our
proposal. Section [V] presents empirical evaluations of our
proposal. Section|[VIreviews a wide spectrum of related studies
on stream processing, workload balancing and distributed
systems. Section finally concludes the paper and addresses
future research directions.

II. PRELIMINARIES

A distributed stream processing engine (DSPE) deploys
abstract stream processing logics over interconnected compu-
tation nodes for continuous stream processing. The abstract
stream processing logic is usually described by a directed
graphical model (e.g., Storm [26], Heron [17] and Spark
Streaming [34]), with a vertex in the graph denoting a com-
putation operator and an edge denoting a stream from one
operator to another. Each data stream consists of key-value
pairs, known as fuples, transmitted by network connection
between computation nodes. The computation logic with an
operator is a mapping function with an input tuple from
upstream operator to a group of output tuples for downstream
operators.

To maximize the throughput of stream processing and
improve the utilization rate of the computation resource, the
workload of a logical operator is commonly partitioned and
concurrently processed by a number of threads, known as
tasks. The upstream operator is aware of the concrete tasks
and sends the output tuples to the tasks based on a global
partitioning strategy. All concrete tasks within an operator
process the incoming tuples independently. Key-based work-
load partitioning is now commonly adopted in distributed
stream processing engines, such that tuples with the same key
are guaranteed to be received by the same concrete task for
processing. An operator is called stateful operator, if there
is a memory space used to keep intermediate results, called
states, of the keys based on the latest tuples. Basically, a state
is associated with an active key in the corresponding task
in a stateful operator, which is used to maintain necessary
information for computation. The state, for example, can be
used to record the counts of the words or recent tuples in the
sliding window. Because of the tight binding between key and
state, when a key is reassigned to another task instance, its state
must be migrated as well, in order to ensure the correctness
of computation outcomes.

The workload partitioning among concrete tasks is the
model as a mapping from key domain to running tasks in
the successor operator. A straightforward solution to workload
partitioning is the employment of hashing function (e.g., by
consistent hashing), which chooses a task for a specific key in a
random manner. The computational cost of task selection for a
tuple is thus constant. As discussed in previous section, despite
of the huge advantages of hashing on memory consumption
and computation cost, such scheme may not handle well
with workload variance and key skewness. Another option of
workload distribution is to explicitly assign the tuples based
on a carefully optimized routing table, which specifies the
destination of the tuples by a map structure on the keys.
Although such an approach is more flexible on dynamic

Explicit Routing | Implicit Routing
b Cd: D
“ ae Hiosh Funcion |

.

Downstream Operator

Upstream Operator

Fig. 3.
function.

The scheme of mixed routing with a small routing table and a hash

workload repartitioning, the operational cost on both memory
and computation is too high to afford in practice.

In this paper, we develop a new workload partitioning
framework based on a mixed routing strategy, expecting to
balance the hash-based randomized strategy and key-based
routing strategy. In Fig. [3] we present an example of the
strategy with one data stream between two operators. A routing
table is maintained in the system, but contains routing rules
for a handful of keys only. When a new output tuple is
generated for the downstream operator, the upstream operator
first checks if the key exists in the routing table. If a valid
entry is found in the table, the tuple is transmitted to the
target concrete task instance specified by the entry, otherwise
a hashing function is applied on the key to deterministically
generate the target task id for the tuple. By appropriately
controlling the routing table with a maximal size constraint,
both the memory and computation cost of the scheme are
acceptable, while the flexibility and effectiveness are achieved
by updating the routing table in response to the evolving
distribution of the keys.

As illustrated in the previous section, workload balancing
between tasks from the same operator is crucial and it is
the major problem we aim to tackle with. With the mixed
routing strategy, we can solve the problem by focusing on
the construction and update of the routing table with the
constrained size, without considering the global structure of
processing topology and workload. Therefore, our discussion
in the following sections is focuses on one single operator
and its routing table. Note that our approach is obviously
applicable to complex stream processing logics, as evaluated
in the experimental section.

A. Data and Workload Models

In our model, the time domain is discretized into intervals
with integer timestamps, i.e., (T7,73,...,T;,...). At the i-th
interval, given a pair of upstream operator U and downstream
operator D, we use U and D to denote the set of task instances
within upstream operator U and downstream operator D,
respectively. We also use Ny = || and Np = |D| to denote
the numbers of task instances in U and D, respectively. A
tuple is tuple 7 = (k,v), in which k is the key of the tuple
from key domain K and v is the value carried by the tuple.
We assume Ny and Np are predefined without immediate
change. The discussion on dynamic resource rescheduling, i.e.,
changing Ny and Np, is out of the scope of this paper, since it
involves orthogonal optimization techniques on global resource
scheduling (e.g., [10]).

A key-based workload partitioning mechanism works as
a mapping F : K — D, such that a tuple (k,v) is sent to
task instance F'(k) by evaluating the key k with the function
F. Without loss of generality, we assume a universal hashing
function A : K — D is available to the system for general
key assignment. A typical implementation of hash function is
consistent hashing, which is believed to be a suitable option for
balancing keys among instances. However, it does not consider
so much about key granularities which is the number of data of
the same key. Hence, the balanced state of parallel processing
has to be obtained by moving keys among instances even
with the consistent hash and we use routing table to record
the mappings from keys to processing destinations which are
not the basic hash destinations. A routing table A of size
N4 contains a group of pairs from K x D, specifying the
destination task instances for keys existing in A. The mixed
routing strategy shown in Fig. [3| is thus modelled by the
following equation:

d, if 3 (k,d) € A,
F =
(k) {h(k), otherwise.

Therefore, workload redistribution is enabled by editing
the routing table A with an assignment function F'(-). In the
following, we provide formal analysis on the general properties
of the assignment function F(+).

)

Computation Cost: We use g;(k) to denote the frequency of
tuples with key & in time interval 75, and define the computa-
tion cost ¢; (k) by the amount of CPU resource necessary for all
these tuples with key & in time interval 7;. Generally speaking,
¢i(k) increases with the growth of g;(k). Unless specified, we
do not make any assumption on the correlation between g; (k)
and ¢; (k), both of which are measured in the distributed system
and recorded as statistics, in order to support decision making
on the update of F(-). The total workload with a task instance d
in downstream operator D within time interval 7; is calculated

by Li(d, F) = > (317 (k)=d,kercy Ci(K)-

Load Balance: Load balance among task instances of the
downstream operator D is the essential target of our proposal
in this paper. Specifically, we define the balance indicator

0;(d, F) for task instance d under assignment function F
- ‘Li(dxF)*Ei
-

during time interval T; as 0;(d, F') , where
Li = 5 Y4epLi(d, F) is the average load of all task
instances in D. As it is unlikely to achieve absolute load
balancing with 6;(d, F') = 0 for every task instance d, an upper
bound 6,,.x is usually specified by the system administrator,

such that the workload of task instance d is approximately
balanced if 0;(d, F) < Omax-

Memory Cost: For stateful operators, the system is supposed
to maintain historical information, e.g., statistics with the keys,
for processing and analysing on newly arriving tuples. We
assume that each operator maintains states independently on
individual time interval 7; and only the last w time intervals are
needed by any task instance. It means that the task instance
erases the state from time interval 7;_,, after finishing the
computation on all tuples in time interval 7;. This model
is general enough to cover almost all continuous stream

TABLE L TABLE OF NOTATIONS

Notations Description
T; The <-th time interval
U Upstream operator
D Downstream operator
Nu,Np Numbers of task instances in U and D
D Instances set of downstream operator
(k,v) Key-value pair on the data stream

k Key of the tuple

v Kalue of the tuple

d Task instance in downstream operator
A The routing table available to U

Number of entries in A

Ny
ci(k) Computation cost of all tuples with key k in
T;
gi(k) Frequency of key k in time interval T;
L;i(d, F) Total workload of task instance d under assign-

ment function F'
L; Average load of all instances in U in time
interval T;

0;(d, F) Load balance factor of task instance d
Omax Upper bound of imbalance tolerance
Si(k,w) Memory cost of key k& with w time intervals
at T;
A(F,F) Keys with different destination under F' and F’
M;(w, F, F") | Total migration cost by replacing F with F" at

time interval T;

processing and analytical jobs (e.g., stream data mining over

sliding window). The memory consumption for tuples with

key k in T; is thus measured as s;(k), and the total memory

consumption for key k is the summation over last w intervals
. . 1

on the time domain, as S;(k,w) =3 _; . s;(k).

Migration Cost: Upon the revision on assignment function F,
certain key k£ may be moved from one task instance to another.
The states associated with key & must be moved accordingly
to ensure the correctness of processing on following tuples
with key k. The migration cost is thus modelled as the total
size of states under migration. By replacing function F' with
another function F” at time interval T;, we use A(F,F’) =
{k | F(k) # F'(k),k € K}. The key state migration includes
all the historical states within the given window w. Thus, the
total migration cost, denoted by M; (w, F, F"), can be defined
as:

M;(w,F,F'y= Y Si(k,w). 2)

KEA(F,F’)

All notations used in the rest of the paper are summarized
in Tab. [Il

B. Problem Formulation

Based on the model of data and workload, we now define
our dynamic workload distribution problem, with the objec-
tives on (i) load balance among all the downstream instances;
(ii) controllable size on the routing table; and (iii) minimization
on state migration cost. These goals are achieved by controlling
the routing table in the assignment function, under appropriate
constraints for performance guarantee. Specifically, to con-
struct a new assignment function F” as a replacement for F' in

time interval T;, we formulate it as an optimization problem,
as below:
min M, (w, F, F’)
Fr(v)
st. 0(d,F') < Opmax,Vd € D, 3)
NA S Amama

in which F' is the old assignment function and F’ is the
variable for optimization. The target of the program above is
to minimize migration cost, while meeting the constraints on
load balance factor and routing table size with user-specified
balance bounds 0,,,x and A,.x which is the maximum con-
strained size of A.

It is worthwhile to emphasize that the new assignment
function is constructed at the beginning of a new time interval
T;. The optimization is thus purely based on the statistical
information from previous time interval 7;_;. The metrics
defined in previous subsection are estimated with frequencies
{gi—1(k)} over the keys, the computation costs {c;_1(k)} and
the memory consumption S;_; (k, w).

The problem of initializing the keys in XC, with the task
instance set D and load balance constraint 6,,,,,, iS @ com-
binatorial NP-hard problem, as it can be reduced to Bin-
packing problem [15]. Even Worse, our optimization problem
also puts constraints on the maximal table size and migration
cost. Specifically, even if the parallel instances achieve the
balance state,but the routing table size exceeds the predefined
space limits as shown in Equ. [3] this balanced state should
not conform to the requirement. Therefore, in the following
section, we discuss a number of heuristics with careful analysis
on their usefulness.

III. ALGORITHMS

In this section, we introduce algorithms to solve the
optimization problem raised in previous section, targeting
to construct a new assignment function F’ by updating the
routing table A. We simply assume that all necessary statis-
tics are available in the system for algorithms to use. The
implementation details, including measurement collection, are
discussed in the following section.

Since the optimization problem is clearly NP-hard, there
is no polynomial algorithm to find global optimum, unless
P=NP. In the rest of the section, we firstly describe a general
workflow for a variety of heuristics, such that all algorithms
based on these heuristics follow the same operation pattern.
We then discuss a number of heuristics with objectives on
routing table minimization and migration minimization. A
mixed algorithm is introduced to combine the two heuristics
in order to accomplish the constraints in the optimization
formulation with a single shot.

Generally speaking, the system follows the steps below
when constructing a new assignment function F’.

Phase I (Cleaning): It attempts to clean the routing table A
by removing certain entries in the table. This is equivalent
to moving the keys in the entries back to the original task
instance assignment, decided by the hash function. Different
algorithms may adopt different cleaning strategies to shrink the
existing routing table in F'. Note that such a temporary removal

does not physically migrate the corresponding keys, but just
generates an intermediate result table for further processing.

Phase II (Preparing): It identifies candidate keys for migra-
tion from overloaded task instances, i.e., {d|L(d) > Lmax},
where Lyax = (1 4 Omax) L. Different selection criteria, such
as keys with highest computation cost first, and largest com-
putation cost per unit memory consumption first (concerning
about migration cost), and etc, can be applied by the algorithm
to select keys and disassociate their assignments from the
corresponding task instances. These disassociated keys will be
temporarily put into a candidate key set (denoted by C) for
processing in the third step of the workflow.

Phase III (Assigning): It reshuffles the keys in the candidate
set by manipulating the routing table, in order to balance the
workloads. In particular, all algorithms proposed in this paper
invoke the Least-Load Fit Decreasing (LLFD) subroutine,
which will be described shortly, in this phase.

algorithm 1 Least-Load Fit Decreasing Algorithm

input: key candidate C, task instances in D, imbalance toler-
ance factor 6., key selection criteria
output: A’
1: foreach d in D do .
2: Initialize estimation L(d) = L;_1(d)
3: foreach k& in C in descending order of ¢;_; (k) do
4 foreach d in D in ascending order of L;_1(d) do
5 if Adjust(k,d,C,0max) = TRUE then
6: if h(k) # d then
7: Add entry (k,d) to A’
8 Update ﬁ(d); remove k from C; break;

9: return A’

10: function ADJUST(E, d,C, Omax)

11: Lmax <~ (1 + emax)Li—l

12: if L;_1(d) 4+ ¢;—1(k) < Liax then

13: return TRUE

14: else if 7 & selected by v and satisfying (i)-(iii) then
15: foreach k£ € £ do

16: Disassociate k from d
17: Add k to C

18: return TRUE

19: else

20: return FALSE

A. Least-Load Fit Decreasing (LLFD)

In this part of the section, we introduce Least-Load Fit
Decreasing (LLFD) subroutine, which will be applied by all
the proposed algorithms in Phase III, based on the idea of
prioritizing keys with larger workloads. The design of LLFD
is motivated by the classic First Fit Decreasing (FFD) used
in conventional bin packing algorithms. The pseudo codes of
LLFD are listed in Algorithm

Generally speaking, LLFD sorts the keys in the candidate
set in a non-increasing order of their computation costs and
iteratively assigns the keys to task instances, such that (i) it
generates the least total workload (Line 4); and (ii) it tries
to adjust the key assignment, if the new destination task
instance is overloaded after the migration (Line 5). If such
key-to-instance pair is inconsistent with default mapping by

Key | k; | ks Move back : ks ks
Dest.| d, |d,
Ld; | Ld; | Ldi | Ldy
k1 kz k5 k3 k4 kg k1 kz k3 k4 k5 k5
—— —
Ld,| Ld, | iu& Ld, |
In.||.0

S;| M

Hem = - -

ky ks kiks ks ke ki ko ks | | ka ks ke
v — N

| dy | Ld; | Ld; | L d; |

53 I N = I] mn L

ky ks kiksks ks ki ks kzks ks ke

Ld | Ld; | Ld; | Ld; |

k, ks k4 ki ks kg ki ks ki) | ky ks kg

Dest.|d, | d, | d, | d,

Fig. 4. Running examples for LLFD and MinTable with the constraints that
the routing table size is not more than 2 and all instances should be absolute
balance. The heights of the bars indicate the workloads of the corresponding
keys. Each S; with j = {1,2, 3,4} is a running step in the algorithms. The
original routing table is at top of the figure, and the result routing tables are
listed at the bottom.

hashing (Line 6), an entry (k,d) is then added to the routing
table A (Line 7). After each iteration, LLFD updates the total
workload of the corresponding instance d and removes k from
the candidate set (Line 8). The iteration stops and returns the
result routing table, when the candidate set turns empty (Line
9).

Basically, the algorithm moves the “heaviest” key to the
task instance with minimal workload so far, which may
generate another overloaded task instance (referred as “re-
overloading” problem), if this key is associated with extremely
heavy cost. Consider the toy example on the left side of Fig.]
There are two instances: d; is responsible for keys k1, ko and
ks with costs 7, 4 and 5 respectively, generating L(d;) = 16,
and dy is associated with keys k3, k4 and kg with cost 2, 1
and 1 respectively, generating L(dy) = 4. Suppose Opax = 0,
meaning that the total workloads on both instances are required
to be equal (i.e., average workload L = 10). It is clear that
dy is overloaded and k;, which incurs the largest computation
cost, is expected to be disassociated from d;. Although L(d;)
decreases to 9, it is still larger than L(dy). Based on the
workflow of LLFD, k; is assigned to ds, only to overload ds as
a consequence. To tackle the problem, we add a new function,
called Adjust, to avoid the happening of such conflicts.

Specifically, if re-overloading does not happen after an
assignment, i.e., L;_1(d)+c;—1(k) < Lmax = (1+0max) Li—1,
this assignment is acceptable and Adjust immediately returns a
TRUE (Lines 12-13). Otherwise (Lines 14-20), Adjust attempts
to construct a nonempty key set (called exchangeable set and
denoted by &), by applying the selection criteria ¢ (e.g.,
highest workload first). The exchangeable set must satisfy
the following three conditions: (i) €& C {k'|F (k') = d}; (ii)
Vk' € g,Ci,1(k/’/) < Cifl(k‘); and (iii) Li,1<d) + Ci,1<k‘) -
Y wee Cim1(K') < Liax. Basically, (i) means that only keys

originally associated with d are selected for disassociation. (ii)
tries not to choose a key with larger computation workload for
disassociation, ensuring the decrease of the total workloads
on instance d. Finally, (iii) ensures that instance d does not
become overloaded, after the assignment (Lines 15-17).

Recall the running example in which LLFD tries to assign
k1 to do, which makes dy overloaded. A TRUE is returned
by Adjust because there exists an & = {ks} satisfying
constraints (i) - (iii). Therefore, k; is assigned to do, while k3
is disassociated from ds and put into C. Next, LLFD attempts
to assign ks to dy, because d; has less total workload at this
moment. However, a FALSE (a red cross shown on left side
of Sy in Fig. @) is returned by Adjust because overloading
occurs (since L(dy) + ¢(k3) = 11 > Lyax) and no valid
& exists, when neither of the two keys associated with d;
(k2 and ks) has smaller computation workload than that of
ks, violating constraint (ii). After this failure, LLFD is forced
to consider another option, by keeping k3 to do. Luckily, a
TRUE is returned this time, because a valid exchangeable set
& = {k4} exists. After disassociating k4 from ds and putting it
into C, ds is responsible for k1, ks and kg only, the keys with
dy remains unchanged, and k4 is now in C. The algorithm does
not terminate until C becomes empty, after k4 is assigned to
dy, finally reaching perfect balance at L(dy) = L(dz) = 10.

In the following, we present formal analysis on the robust-
ness and soundness of LLFD on basic load balancing problem,
with proofs available in Appendix. [A]

Theorem 1: If there is a solution for absolute load balanc-
ing, LLFD always finds a solution resulting with balancing
indicator 6;(d, F) no worse than 1(1 —) for any task

. Np
instance d;.

B. MinTable and MinMig Heuristics

The general workflow described above is essentially effec-
tive in guaranteeing load balance constraints, e.g., the LLFD
sub-prodedure. To address the optimizations on routing table
minimization and migration cost minimization, we discuss two
heuristics, namely MinTable and MinMig in this part of the
section.

algorithm 2 MinTable Algorithm

1: Phase I: Move back all keys in A.

2: 1) < highest computation cost ¢(k) first

3: Phase II: According to 1, select and disassociate keys from
each of the overloaded instances, put them into C

4: Phase III: A’ + LLFD (C, D, 0maz,)

5: return A’

The pseudocodes of MinTable is shown in Algorithm 2} In
order to minimize routing table size, in Phase I, all entries in
routing table A are erased. The highest computation workload
first criterion, which emphasizes on the computation cost, is
used for the second and third phases, so that minimal number
of entries are added into the new routing table A’ during the
key re-assignment and load rebalance process.

The two toy examples in Fig. [f] demonstrate how MinTable
helps to achieve a smaller routing table while keeping load
balance constraints fulfilled. The example on left side of Fig. E|

initially has two entries in routing table, i.e., (k3, d2) and
(ks, d1). LLFD is directly applied to achieve absolute load
balance L(d;) = L(ds), but resulting in a routing table with
four entries at the end. In contrast, before applying LLFD, the
example on right side of Fig. 4] moves back k3 and k5 (i.e.,
cleaning the routing table). Finally, it results in a routing table
with only two entries. The pseudo code of MinMig is shown
in Algorithm [3| Although the removal of keys from the routing
is virtual only, it increases the possibility of key migrations.
Therefore, there is no cleaning run in the first phase at all.

algorithm 3 MinMig Algorithm
1: Phase I: Do nothing.
2: 1) + largest v;(k,w) first, where ~;(k, w) = %
3: Phase II: According to 1), select and disassociate keys from
each of the overloaded instances, put them into C

4 Phase IIl: A’ « LLED (C, D, O,nas,)
5. return A’

To characterize both computation and migration cost, we
propose the migration priority index for each key, defined
as v;(k,w) = c;(k)?S;(k,w)~!. Its physical meaning is
straightforward, that is, a key with larger computation cost
per unit memory consumption has the higher priority to be
migrated. The weight scaling factor 8 is used to balance
the weights between these two factors under consideration.
Consider k; and ko, in Fig. 4| and assume window w = 1. We
have c¢(k1) = S(k1,w) = 7 and c(ko) = S(ka,w) = 4. If we
give equal weights to both ¢(k) and S(k,w), i.e., 8 = 1, then
v(k1,w) = y(k2,w) = 1. When we assign more importance
to migration cost, i.e., § = 0.5, ko gains higher priority for
migration. In addition, S also affects the size of the result
routing table, i.e., the larger [, the smaller size of routing table,
which will be shown in the experiment results in Appendix [A]
The largest ~;(k,w) first criterion, which is aware of both
computation and migration cost, is used during both key re-
assignment (Phase II) and load balance process (Phases III),
in order to minimize the bandwidth used to migrate the states
of keys (e.g., the tuples in sliding window for join operator).

C. Mixed Algorithm

Based on the discussion on the heuristics, we discover that
there are tradeoffs between routing table minimization and
migration cost minimization. Therefore, we propose a mixed
algorithm to intelligently combine the two heuristics MinTable
and MinMig, in order to produce the best-effort solutions
towards our target optimization in Eq. [3]

The basic idea is to properly mix MinTable (Phase I) and
MinMig (Phases II and III). In the first phase, the mixed
strategy moves back n keys, which are selected from A, based
on the smallest memory consumption S;_1 (k,w) first criteria.
The rest two phases simply follow the procedure of MinMig,
in which the largest ;(k, w) first criteria is used to initialize
candidate key set C and applied by LLFD in the last phase. For
the Mixed algorithm, the most challenging problem is how to
pick up the number of keys for back moves, i.e., n € [0, Na]
during the cleaning phase. Actually, MinTable and MinMig
works on two extremes of the spectrum in this step, such that
n = N4 in MinTable and n = 0 in MinMig.

algorithm 4 Mixed Algorithm

1: n < smallest memory consumption S;(k,w) first.

2: 1) < largest ;(k, w) first, where ;(k, w) = ;((:7)5)
3n+0

4. Abackup — A

5. do

6 A+~ Aback:up

7 Phase I: According to 7, select n keys from A and

move back them
8: Phase II: According to 1), select and disassociate keys
from each of the overloaded instances, put them into C
9: Phase III: A’ < LLFD (C, D, 044, %)
10: n=Nux — Anaz
11: while n > 0
12: return A’

Obviously, brute force search (named as Mixedgr) could
be applied to try with every possible n = 1,2,..., Ny,
with the optimal n* returned after evaluating the solution
with every n. Alternatively, we propose a faster heuristic in
Algorithm (4| It only tries a small number of values, which
are the amount of table entries overused in the last trial (Line
10). The trial starts from n = 0 (Line 3, same as MinMig),
and stops when it results in an updated A" of acceptable size,
ie., Na» < Apqp (Lines 11-12). Note that the efficiency of
the algorithm is much better than Mixedgp, although it may
not always find the optimal n* as Mixedgp does. Obviously,
the size of the result routing table by the mixed algorithm
is no smaller than that of MinTable approach. Similarly, the
migration cost of the result assignment function is no smaller
than that of the MinMig approach. However, mixed algorithm
is capable of hitting good balance between the heuristics, as is
proved in our empirical evaluations.Furthermore, the balance
status generated by Mixed as the following theorem (proof in

Appendix. [A):

Theorem 2: Balance status generated by Mixed is not
worse than that generated by LLFD.

IV. IMPLEMENTATION OPTIMIZATIONS

The overall working mechanism of the rebalance control
component, as is implemented in our distributed stream pro-
cessing engine, is illustrated in Fig. [5] In the figure, each
operation step is numbered to indicate the order of their
execution.

Controller

2. Construction of a new assignment function F”’

1. Load info

3. Migration plan|

—— 3. Migration pla
7 7o . .

. i le h i

4. Stop temporarily affected (Routing table Hash function \)

keys o 7 5. Keys migration
e — >
Tuples '
Processor Router 6. ACK Processor
Upstream task 7. Resume Downstream task
Frocted k
1ff eys

Fig. 5. Overall workflow.

At the end of each time interval (e.g., 10 seconds as the
setting in our experiments), the instances of an operator report
the statistical information collected during the past interval to a

controller module (step 1). The information from each instance
d includes the computation cost ¢;—1(k) and window-based
memory consumption S;_; (k,w) of each key assigned to it.
On receiving the reporting information, the controller starts
the optimization procedure (step 2) introduced in Section
It first evaluates the degree of workload imbalance among the
instances and decides whether or not to trigger the construction
of a new assignment function F” to replace the existing F. If
the system identifies load imbalance, it starts to execute Mixed
algorithm (Algorithm [4) to generate new A’ and F".

After calculating the keys in A(F, F’) for migration, the
controller broadcasts both F’ and A(F, F’), together with a
Pause signal to all the instances of upstream operator for
them to update the obsolete F', and temporarily stop sending
(but caching locally) data with keys in A(F, F’) (steps 3
and 4). Meanwhile, the controller notifies the corresponding
downstream instances (step 3).

Finally, the instances of downstream operator begin migrat-
ing the states of keys after the notification from the controller
(step 5) and acknowledge the controller when migration is
completed (step 6). As soon as the controller receives all the
acknowledgments, it sends out a Resume signal to all instances
of the upstream operator, ordering the tasks to start sending
data with keys in A(F, F'), since all the downstream instances
are equipped with the new assignment function (step 7). It is
worth noting that during the key state migration, there is no
interruption of normal processing on the data with keys not
covered by A(F, F').

One potential problem in the workflow above is the cost
of transmitting statistical information with the keys in step
1, which could easily contain millions of unique keys in
real application domains. The huge size of the key domain
may degenerate the scalability of the algorithms, on growing
computational complexity and memory consumption for these
metrics. To alleviate the transmission problem, we propose a
compact representation for the keys with acceptable informa-
tion loss for the algorithms.

The basic idea is to merge the keys with common charac-
teristics and represent them by a single record in the statistical
data structure. To accomplish this goal, we design a new 6-
dimensional vector structure for the statistical information,
(d',d,d", ve,vs,#), in which d’ denotes the instance to which
a key will be assigned next; d is the instance with which
the keys are currently associated during the reporting period
(ie., d = F(k)); d" is the instance assigned by the hash
function (i.e., d® = h(k)); v. denotes the value of compu-
tation workload; vg is the value of window-based memory
consumption; and #(> 0) is the number of keys satisfying
these five conditions. For example, a vector (dy, ds, d1,4,4,2)
indicates that there are two keys with computation workload
4 and memory consumption 4. They are currently associated
with instance ds, and the instance suggested by hash function is
d1, indicating that the routing table A at the upstream operator
must contain an entry for them. Finally, the record also implies
that they will be assigned to d;, meaning that the entry for
them in A is deleted and the move back operation is executed
on these two keys.

By employing this compact representation, the whole key
space K is transformed to the 6-dimensional vector space (de-

noted by /C¢). The upper bound on the size of the vector space
is approximately K¢ = |K¢| = O(N3, x |e(k)| x |S(k,w)]),
where Np is the number of downstream instances, which
is usually a small integer; |c(k)| and |S(k,w)| represent the
total numbers of distinct values on computation workload and
memory consumption in current sliding window, respectively.

A. Mixed Algorithm over Compact Representations

Apparently, the compact representation brings significant
benefits, by reducing both time and space complexity of the
Mixed algorithm (and MinTable and MinMig as well) proposed
in Section [l11} In the following, we briefly describe how Mixed
algorithm is revised based on the compact representation. To
make a clear description, let us revisit the Mixed algorithm
and look into the steps using the compact representations.

Phase I (Cleaning): According to the smallest S;_1(k,w)
first criterion, the Mixed algorithm selects n keys from A
and moves them back to original instance based on the hash
function. In the compact representation, the adapted Mixed
algorithm does not target on any individual key, but the 6-
dimensional vectors. In result, a back-move of keys is equiv-
alent to modifying the value of d’ to be the same as d" of
the selected vectors. The vector (d1,ds, d1,4,4,2) mentioned
above presents an example back-move of a number of keys.

Phase II (Preparing): When investigating the workloads of
a particular instance, say d;, the adapted Mixed algorithm
calculates the weighted sum of v, x # of all records con-
taining d’ = d;. If we have two records (dy,ds,d;,4,4,2)
and (dy,ds,ds,8,8,1), for example, the total workload with
respect to the keys is estimated as 16. Next, when the adapted
Mixed algorithm needs to select keys from an overloaded
instance and puts them into the candidate set C, the algorithm
again targets on those vectors in compact representations, and
simply replaces the value of d’ with a nil, indicating a virtual
removal of the keys linked to the vector. For example, if
(d2,da,d1,4,4,2) is disassociated from dy and put into C,
the adapted Mixed algorithm finally rewrites the record as
(nil,ds,dq1,4,4,2). Note that when a record is added into
C, i.e., containing d’ = nil, it is likely that there already
exists a record in C with exactly the same values on d, d”, v,
and vg. According to the definition on the uniqueness of the
compact representation, these two records need to be merged
by summing on the number field ‘#’.

Phase III (Assigning): The similar adaptation in Phase I
and II is also applied to LLFD, with only one exception that
the expected routing table A’ can not be directly derived but
rather indirectly calculated. This is because the final results
returned by the adapted LLFD is still in a compact form, as
a 6-dimensional tuple. In order to derive A’ and F”, a series
of additional actions are taken, including (i) picking up those
needing migration from the records returned by adapted LLFD,
i.e., tuples with d’ # d; (ii) selecting keys originally associated
with instance d and computation cost at v., according to
the selection criteria ¢ and based on the original complete
statistical information of keys collected by the controller; and
(iii) adding them to the key migration set A(F, F"). Finally, the
adapted algorithm returns the final result, with F” induced by
combining F' and A(F, F’), and A’ derived with F’ together
with h(k).

B. Discretization on v. and vg

As is emphasized above, the size of the 6-dimensional
vector space K¢ = O(N3 x |c(k)| x |S(k,w)|) depends on
le(k)| and |S(k,w)|. In practice, the values of computation
cost and memory consumption could be highly diversified,
leading to large |c(k)| and |S(k,w)|, and consequently huge
vector space K°. It is thus necessary to properly discretize the
candidate values used in ¢(k) and S(k, w), in order to control
the complexity blown by |c(k)| and |S(k, w)|.

Value discretization can be done in a straightforward way.
However, an over-simplistic approach could cause huge devi-
ations on the approximate values from the real ones. Such
deviations may affect the accuracy of workload estimation
and jeopardize the usefulness of the migration component. For
instance, assume that there are 10 keys with computation costs
C(/ﬁ) = 8, C(kQ) = 6, C(kg) = 3, C(k4) = C(k‘5) = 2 and
clkg) = -+ = c(k1p) = 1. If a simple piecewise constant
function is used, i.e., () = 2 when z € [1, 3], {(x) = 5 when
x € [4,6], {(x) = 8 when x € [7,9], and 0 otherwise. Despite
of a very small |c(k)| = 2, the total deviation, following the
formula below, caused by the approximation is fairly large:

10 10
6] = Z&‘ = Zc(kz) E(C(kz))’

Fig. illustrates how this simple piecewise constant func-
tion fails and the deviation 9; with respect to each value point.

6w—1-1-1-1 6:02-100-10000
‘_8—

I k) x ¥ clky) x

I S fclls) 0 6jjﬁﬁﬁﬁIﬁﬁﬁﬁﬁﬁjjiiiiﬁﬁﬁﬁﬁ,‘!’,(,‘,(_"_i?)__9

4 4 Vs Wa)

3 e S

2 2 8 9

1 1 86888

kl kZ k3 k4 k5 k6 k7 k& k9 k10 g k1 kz k3 k4 k5 k5 k7 kg kg klg "

Key ID Key ID

(a) A simple approach (b) Our proposed approach

Fig. 6. An example of comparing the simple piecewise discretization function
(a) and our proposed approach (b).

To tackle the problem, we propose an improved discretiza-
tion approach, denoted by ¢(z), which involves two steps. In
the first step, it generates a finite number of representative
values. Secondly, instead of using the nearest representative
for each value independently, our approach constructs the
discretized values in a more holistic manner. Assume the input
value is a series of » numbers in a non-increasing order by their
values of which the smallest is at least 1 (after normalization),
ie., 1, Tay ..., Ty, Vi, i’ € [I,n],i < iz, >z > 1.

In the first step, a simple method (half-linear-half-
exponential, HLHE) with a parameter R (called the degree of
discretization) is applied to determine the representative values,
where we require R = 2",r = 0,1,2,.... Therefore, a total
number of
max(x;)

m=r-+| R

|=r+s

representative values are generated and reorganized as a strictly
decreasing series, 41, Y2, - - - » Ym, Where y1 = sxX R, yo = (s—
1)XR, ..., ys = R (the linear part), and y, 1 = R/2 = 2" 1,
Ysio =2""2 ..., Ym—1 =2, Ym = 1 (the exponential part).

In the second stage, a greedy method is applied to finalize
the discretization by adopting an optimization framework.
The basic principle is to minimize the accumulated error
of all values, such that the sum over an arbitrary set of
approximate values tend to be an accurate estimation to the
sum over original values. Specifically, for each z; < i,
two representative values j € [2,m] that y;_1 > z; > y;
can be used to approximate x;. We define such y;_; and y;
as candidate representative values for x;. For the remaining
(z; > y1), they only have one candidate representative value,
which is y;. For each x;, one of the candidate representative
values is chosen when there are two options, denoted by ¢(x;),
so that the total deviation |d| is minimized. In particular, if the
current accumulated deviation is positive, x; is represented by
the larger value y;_; in order to cancel the over-counting.
Otherwise, x; chooses the representative value y;.

In the example of Fig. [6(b)] we let » = 2 and R = 4, thus
m = 2—&—% = 4. There are four representative values, e.g., y1 =
8, yo = 4, y3 = 2, ys = 1. At the time k3, whose c(k3) = 3, is
processed, the two representative values for it are y» = 4 and
ys = 2 respectively. Since the accumulated deviation caused
by k1 and ks equals to 2, we have ¢(c(ks)) = y2 = 4. This
results in a reduction on the accumulated deviation by 1. When
our proposed approach terminates, according to Fig. the
total deviation is zero, while the simple piecewise constant
function generates a total deviation at |§| = 3.

Based on discussion above, we have the following theorem:

Theorem 3: The value discretization always can be done
perfectly(|§| ~ 0) by the above two steps.

Proof: Due to data skew, the number of small load key is
always more than that of big load key. Futhermore, the smallest
representative values = 0, 1, 2 will not cause the accumulated
error of values. Then, the value discretization always can be
done perfectly(|d] ~ 0) by the above two steps. |

V. EVALUATIONS

In this section, we evaluate our proposals by comparing
against a handful of baseline approaches. All of these ap-
proaches are implemented and run on top of Apache Storm [1]]
under the same task configuration Np and routing table
size N4. To collect the workload measurements, we add a
load reporting module into the processing logics when imple-
menting them in Storm’s topologies. Migration and schedul-
ing algorithms are injected into the codes of controllers in
Storm to enable automatic workload redistribution. We use
the consistent hashing [14] as our basic hash function and
configure the parallelism of spout at 10. By controlling the
latency on tuple processing, we force the distributed system to
reach a saturation point of CPU resource for the Np number
of processing tasks with the requirement of absolute load
balancing (0,4, = 0). We show the results are averages of 5
runs. The Storm system (in version 0.9.3) is deployed on a 21-
instance HP blade cluster with CentOS 6.5 operating system.

Each instance in the cluster is equipped with two Intel Xeon
processors (E5335 at 2.00GHz) having four cores and 16GB
RAM. Each core is exclusively bound with a worker thread
during our experiments.

TABLE II. PARAMETER SETTINGS
Range Description

K [5-10%,10%,10°,10°] | Size of key domain
z [0,...,0.85.,...,1.0] Distribution skewness
f [0,...,1.0,...,2.0] Fluctuation rate
Omax | [0,...,0.08,...,1.0] Tolerance on load imbalance
B [1,...,1.5,...,2.0] Migration selection factor
r 10,1,2,3,4,5,6,7,8] Level partition distance
w [1,5,10,15,20] Time interval
Np [1,5,10,15,20,...,40] Number of task instances
Na | [0.,..,3-10%....5 - 107] | Size of the routing table

Synthetic Data: Our synthetic workload generator creates
snapshots of tuples for discrete time intervals from an in-
teger key domain K. The tuples follow Zipf distributions
controlled by skewness parameter z, by using the popular
generation tool available in Apache project. We use parameter
f to control the rate of distribution fluctuation across time
intervals. At the beginning of a new interval, our generator
keeps swapping frequencies between keys from different task
instances until the change on workload is significant enough,
ie., M > f. Parameter 0., is defined as the
tolerance of load imbalance, measured as the ratio of maximal
workload to minimal workload among the task instances. Our
algorithm Mixed is controlled by two more parameters 5 and
r, as defined in previous sections. The range of the parameters
tested in the experiments are summarized in Tab. with
default values highlighted in bold font. We also employ TPC-H
tool DBGen [2] to generate a synthetic warehousing workload.
And we revise Q5 in TPC-H into a continuous query over
sliding window as our testing target, because Q5 includes all
primitive database operations.

Real-World Data: We also use two real workloads in the
experiments. The first Social workload includes 5-day feeds
from a popular microblog service, in which each feed is
regarded as a tuple with words as its keys. There are over
5,000,000 tuples covering 180,000 topic words as the keys.
The second workload includes 3-day Stock exchange records,
consisting of over 6,000,000 tuples with 1,036 unique keys
(Stock ID) for stock transactions. For both datasets, we take
each day as a time interval, so the workload inside one window
size consists of the tuples in the last 24 hours. We run word
count topology on Social data, which continuously maintain-
ing current tuples in memory and updating the appearance
frequency of topic words in social media feeds. We run self-
join on Stock data over sliding window, used to find potential
high-frequency players with dense buying and selling behavior.
These two workloads evolve in completely different patterns.
To be specific, the word frequency in Social data usually
changes slowly, while Stock data contains more abrupt and
unexpected bursts on certain keys.

Baseline Approaches: We use Mixed to denote our pro-
posed algorithm mixing two types of heuristics. We also
use Mixedgr to denote the brute force version of Mixed
method, which completely rebuilds the routing table from

scratch at each scheduling point. We use MinTable to denote
the algorithm always trying to find migration plan generating
minimal routing table. Finally, we also include Readj and
PKG as baseline approaches, which are known as state-of-the-
art solutions in the literature. Readj is designed to minimize
the load of restoring the keys based on the hash function,
implemented by key rerouting over the keys with maximal
workload. The migration plan of keys for load balance is
generated by pairing tasks and keys. For each task-key pair,
their algorithm considers all possible swaps to find the best
move alleviating the workload imbalance. In Readj, o is a
configurable parameter, deciding which keys should take part
in action of swap and move. Given a smaller o, Readj tend
to track more candidate keys and thus finding better migration
plans. In order to make fair comparison, in each of the experi-
ment, we run Readj with different os and only report the best
result from all attempts. PKG [21] is a load balancing method
without migration at runtime. It balances the workload of tasks
by splitting keys into smaller granularity and distributing them
to different tasks based on randomly generated plan. Here, we
only use PKG approach for simple aggregation processing in
the experiments, because it does not support complex stateful
operations, such as join. Due to the unique strategy used
by PKG, aggregation topologies run on PKG must contain a
special downstream operator in the topology, which is used to
collect and merge partial results with respect to every key, from
two independent workers in the upstream operator. Moreover,
in the open source version of PK there is a parameter p
indicating the time interval between two consecutive result
merging. After careful investigation with experiments, we find
a larger p prolongs the response time of tuple processing,
reduces the additional computation cost and limits the maximal
number of live tuples (known as maximal pending tuples in
Storm) under processing in the system. We finally chose p at
10 milliseconds and set maximal pending tuples at 50, which
generally maximizes the throughput of PKG in all settings.
Note that we do not include LLFD and MinMig algorithms in
the experiments, because both of them can not control the size
of routing tables, therefore blowing off the memory space of
the tasks in some cases.

Evaluation Metrics: In the experiments, we report the fol-
lowing metrics. Workload skewness (i.e., M)7 is the
ratio of maximal workload on individual task instance to the
average workload. Migration cost reveals the percentage of
states associated with the keys involved in migration over
the states maintained by all task instances. Throughput is
the average number of tuples the system processes in unit
second. Average generation time is the average time spent on
the generation of migration plan in Storm controller. Finally,
processing latency is the average latency of individual tuples,
based on the statistics collected by Storm itself. In the rest of
the section, we report the average values for these metrics over
complete processing procedure, as well as the minimal and
maximal values when applicable, to demonstrate the stability
of different balance processing algorithms.

Load Skewness Phenomenon: To understand the phe-
nomenon of workload skewness with traditional hash-based
mechanism, we report the workload imbalance phenomenon

Vhttps://github.com/gdfm/partial-key-grouping

-5-Ny=40 -5 K=5+10° &
N,=20 K=10" /
-5-N=10 . = a
—+=Ny=5
—Avg=1

20% 40% 60% 80%
Percentile

(a) # of task instances

=

4]
-
3]

-
o

Workload Skewness
Workload Skewness
-

0
100% 20% 40% 60% 80%
Percentile

(b) Size of key domain

100%

Fig. 7.
scheme.

Cumulative distribution of workload skewness under hash-based

-5 Mixed w=1
Min Table w=1

-5~ Mixed w=5

—+Min Table w=5

Avg Generation Time(ms)
5
o
Migration Cost(%)

5 10 15 20 25 30 3 40
ND

(a) # of instances vs scheduling efficiency (b) # of instances vs migration cost

Fig. 8. Performance with varying number of task instances.

on the task instances by changing the number of task instances
and the size of key domain, respectively. The results of
load imbalance in Fig. [/| are presented as the cumulative
distribution of average workload among the task instances over
50 time intervals. Fig. implies that the skewness grows
when increasing the number of task instances. When there
are 40 instances (i.e., Np = 40), the maximal workload at
100% percentile is almost 2.5 times larger than the minimal
workload. Fig. shows that the workload imbalance is also
highly relevant to the size of key domain. When there are more
keys in the domain, the hash function generates more balanced
workload assignment. In Fig[7(b)] the maximal workload for
K =5,000 is around 4 times larger than the minimal one and
is much larger than the maximal load under larger key domain
size (e.g., K =1,000,000). Therefore, workload imbalance for
intra-operator parallelism is a serious problem and cannot be
easily solved by randomized hash functions.

Impact of Algorithm Parameters: We test the algorithm
parameters on synthetic datasets using two window sizes (i.e.,
w = 1 and w = 5), in order to understand their impacts
for short and long term aggregation over stream data. When
w = 1, migration decisions are made based on the current
stateful and instantaneous workload. When w = 5, more state
information in the last five intervals are included in the decision
making procedure.

Although the increase on Np produces more workload
imbalance, our migration algorithm Mixed performs well, by
generating excellent migration plan, as shown in Fig. |8} Mixed
costs a little additional overhead over MinTable algorithm for
balancing, but its migration cost is much lower than MinTable
when Np < 35 for both w = 1 and w = 5, as presented in
Fig.[8(b)l The cleaning step in MinTable algorithm also leads to
even higher skewness and much more migration cost in order
to achieve load balancing. When w = 5, Mixed keeps more

-
o
S

7 & ~-Mixed 20

£ 600 “5-Min Table =

9] s

£ 500 15

F g -5~ Mixed w=1

5 400 O Min Table w=1

=B ¢ S 10} |0~ Mixed w=5

a:: 300 R —+Min Table w=5

g 200 o HX 00

] NP Y~

m LA Rea

> 100 v

< V&)
8.02 0.050.080.110.140.17 0.2 0.3 04 05 8.02 0.050.080.110.140.17 0.2 0.3 04 05

max max

(a) Omax vs scheduling efficiency (b) Omax vs migration cost

Fig. 9. Performance with varying Omax.

historical tuples which can be used as the migration candidates.
This makes the migration easier and less expensive, when
compared to the case with w = 1. When Np > 35, however,
the migration cost of Mixed jumps, almost reaching the cost
of MinTable when Np = 40. This is because the outcome of
Mixed algorithm degenerates to that of MinTable algorithm,
when the minimal routing table size needed for target load
balancing exceeds the specified size of the table in the system.

Fig. 9 displays the efficiency of migration plan generation
and the corresponding migration cost with varying workload
balancing tolerance parameter 6,,,,. As expected, Migration
scheduling runs faster on synthetic dataset with larger 6,5 in
Fig. When 0., > 0.2, the efficiency of Mixed catches
that of MinTable. If stronger load balancing (i.e., smaller ;,,)
is specified, system pays more migration cost as shown in
Fig. P(b)l basically due to more keys involved in migration.
But MinTable incurs three times of the migration cost of Mixed
under the same balance requirement. Even for strict 0, =
0.02 (almost absolutely balanced), the algorithm is capable
of generating the migration plan within 1 second. Moreover,
migration cost with larger window size (i.e., w = 5) shrinks,
as the historical states provide more appropriate candidate keys
for migration plan generation.

In Fig. we report the results on varying key domain
size K. By varying K from 5,000 to 1,000,000, Mixed spends
more computation time on migration planning but incurs less
migration cost than MinTable. As shown in Fig. the
smaller the key domain is, the more skewed the workload
distribution will be. But our proposed solution Mixed shows
stable performance, regardless of the domain size, based on the
results in Fig. [[0(a)] In particular, migration cost decreases for
both MinTable and Mixed algorithms, when the window size
grows to w = 5.

In Sec. we present the possibility of efficiency im-
provement by applying compact representation for key related
information. In this group of experiments, we report the
performance of this technique in Fig. by varying the
degree of discretization (i.e., the value of R) on values of
computation cost v. and memory consumption vg. Fig. [[1(a)]
shows that discretization on both v. and vg is an important
factor to the efficiency of migration scheduling. The average
generation time of migration plan is quickly reduced when we
allow the system to discretize the values at a finer granularity.
Note that the point with label “Original Key Space” is the
result without applying the compact representation on keys,
while the point at R = 1 is the case of the finest degree of

N0 -5-Mixed 25 5 Mied w=1
%eoo " Min Table g e-mlie?fﬁsw“
: P {\K\T__m_’
o
5 O
s 15
@ 400 ‘5
g €10
© 200 g 6—o—0—0
g 5 0_/,9\0_’,¢
<
O L L L L 0 L L L L
5X10° 10* . 10° 10 5x10° 10* ‘ 10° 10°

(a) K vs scheduling efficiency (b) K vs migration cost

Fig. 10. Scheduling efficiency in terms of average generation time and
migration cost under different key domain size, K
-2
6000 — 0682
Original key space = =0
—~ S " “max
2 5000 - 05
< 6 ¢l
£ 4000 [04 "
e : %6 =002
o =
2 3000 & 0.3(| 6,
5 £
E 2000 & 02
j=2} T
& 1000 § 0.1
, | o P
1 2 4 8 16 32 64 128256 lRB 32 64 128 256
R
(a) R vs scheduling efficiency (b) R vs estimation error
Fig. 11. Performance with varied degrees of discretization for partitioning
granularity.

discretization on v, and vg. The efficiency is improved by an
order of magnitude when R = 8 (i.e., 0.6 second) compared
to “Original Key Space” (i.e., 6 seconds). Although larger
R leads to smaller |v.|, |vg| and smaller K¢ and makes the
migration plan faster, the error on load estimation grows (i.e.,
the percentage of divergence between actual workload of a task
instance and the estimated workload based on the discretizated
workload over the keys), as shown in Fig. [[1(b)} because the
discretization generates inaccurate load approximation for the
keys. However, such errors are no more than 1% in all cases,
while the degree of discretiazton R varies from 1 to 256 as

shown in Fig. [[1(b)

1S
e

2% Mixed 15/ -6-Mixed
T[S MinTable & ||-e-MinTable
£ || Readj 2 0l Readj
g = Mixed_BF O 101 = Mived_BF
= c
o kel
2 ©
glo3 k) 5
2 s
E:

10°

0.1 0.3 0.5 0.7 0.9 1 03 0.5 0.7 0.9

f f
(a) Stream dynamics vs efficiency (b) Stream dynamics vs MC

Fig. 12. Scheduling efficiency and migration cost with varying distribution
change frequency.

Since Readj is the most similar technique to our pro-
posal in the literature, we conduct a careful investigation
on performance comparison to evaluate the effectiveness of
our proposal. To optimize the performance of Readj, we
adopt binary search to find the best 6 for Readj. Fig. [12]
shows the performance on dynamic stream processing with
imbalance tolerance 6., = 0.08, by varying distribution
change frequency f. When increasing f, Readj presents less

promising efficiency when generating migration plan, since it
evaluates every pair of task instances and considers all possible
movements across the instances. Instead, Mixed makes the mi-
gration plan based on heuristic information, which outperforms
Readj by a large margin. The results also imply that brute
force search with Mixedgr is a poor option for migration
scheduling. When variances occur more frequently (i.e., with
a higher f), migration cost of Mixed grows slower than that
of Readj, while Mixedgp performs similarly to Mixed.

Throughput and Latency on Synthetic and Real Data : In
Fig.[T3] we draw the theoretical limit of the performance with
the line labeled as Ideal, which simply shuffles the workload
regardless of the keys. Obviously, Ideal always generates a
better throughput and lower processing latency than any key-
aware scheduling, but cannot be used in stateful operators for
aggregations. When varying the distribution change frequency
f, both the throughput and latency of Readj change dramat-
ically. In particular, Readj works well only in the case with
less distribution variance (smaller f). On the other hand, our
Mixed algorithm always performs well, with performance very
close to the optimal bound set by Ideal.

9 80
~ @ ©-Storm
m@ ¢ £ - Read]
94 370 |- Mixed
= ~ ~+
5 -©-Storm 2 Ideal
=% . -1 60
5 - Read] o
. =
37 -0~ Mixed ?
£ —+Ideal 850
F < A 5
) o . = AT~ Y

V

81030507 oﬂgflﬂl 131517 2 A 03050709111315L7 2
f

(a) Stream dynamics vs throughput (b) Stream dynamics vs latency

Fig. 13. Throughput and latency with varying distribution change frequency.

On Social data, we implement a simple word count topol-
ogy on Storm, with upstream instances distributing tuples to
downstream instances for store and aggregation on keywords.
On Stock data, a self-join on the data over sliding window is
implemented, which maintains the recent tuples based on the
size of the window over intervals. The result throughputs are
presented in Fig. [T4] The most important observation is that
the best throughput, on both of the workloads, is achieved
by running Mixed with 6,,, = 0.02, implying that strict
load balancing is beneficial to system performance. Mixed also
presents huge performance advantage over the other two ap-
proaches, with throughput about 2 times better than Storm and
Readj at smaller 6, in Fig. 14(b): The performance of Readj
improves by relaxing the load balancing condition, catching
up with the throughput of Mixed at 0,5« = 0.3 (Omax = 0.15
resp.) on Social (Stock resp.) This is because Readj works
only when the system allows fairly imbalance among the
computation tasks, for example 6,,,,x = 0.3. MinTable does not
care about migration cost and then it incurs larger migration
volume, which reduces the throughput of system during the
process of adjustment. PKG splits keys into smaller granularity
and distributes them to different tasks selectively. Therefore,
throughput of PKG is independent of the choice of 6.,
validated by the results in Fig.[T4(a)] The throughput of PKG is
worse than Mixed, because its processing involves coordination
between two operators. Despite of its excellent performance on
load balancing, the overhead of partial result merging leads

to additional response time increase and overall processing
throughput reduction. Overall, as shown in Fig. when
Omaz = 0.02, our method outperform PKG on throughput
by 10% and on response latency by 40%. Moreover, we
emphasize that PKG cannot be used for complex processing
logics, such as join, and therefore is not universally applicable
to all stream processing jobs.

10

®

Throughput(10%/s)
Throughput(10%/s)

4 Il storm
[MReadj Il storm
2 Il Mixed [Readj

[IPkG Il Vixed

Il MinTable

Il MinTable
—

0 —

0
8,002 6 =008 8 =015

(a) Social Data
Fig. 14. Throughput on real data.

8,703 6,,0,=0-02 6,,=008 8 =015

(b) Stock Data

0 =0.3
max

Scalability on Real Data: To better understand the perfor-
mance of the approaches in action, we present the dynamics
of the throughput over time on two real workloads, especially
when the system scales out the resource by adding new com-
putation resource to the operator. The results are available in
Fig.[I3] In order to test this kind of scale-out ability of different
algorithms, we run the stream system to a balance status, and
then add one more working thread (instance) to the system
starting the balance processing algorithms. The results show
that our method Mixed perfectly rebalances the system within a
much shorter response time than that of Readj. Though PKG is
Omas insensitive, it produces a lower throughput than Mixed
while 0,,,, = 0.1. As the explanation of Fig. PKG
needs to keep track of all the derived data from a spout until it
receives ack response and this action exacerbates its processing
latency. On Social data with 6,,,,, = 0.10, Read] takes at least
5 minutes to generate the migration plan for the new thread
added to the system. Such a delay leads to huge resource
waste, which is definitely undesirable to cloud-based streaming
processing applications. Similar results are also observed on
Stock. The quick response of Mixed makes it a much better
option for real systems.

©

a0 1
nax=0-2

-©-Mixedg =02
——Readj8, =02
=%-=stom L

Throughput(*loa)

=02

0 200 400 600
Time(s)

(a) Social data

Time(s)

0 00
(b) Stock data

Fig. 15. Performance during system scale-out.

Dynamics on TPC-H for Q5: We use D BGen [2] to generate
1 GB TPC-H dataset by producing zipf skewness on foreign
keys with z = 0.8. We run Q5 on the generated dataset
for one hour and set window size as 5 minutes, since the
join operations in 5 are implemented by different processing
operators. The data imbalance slows down the previous join
operator (upstream instances) and suspends the processing on
downstream join operators. This bad consequence of such
suspension may be amplified with the growing number of

IS
-
I

1uaMixed == Readj Storm === MinTable

w
w

Throughpul(*l()[‘)

N

Thi roughput(*104)

[N}

wusMixed == Read] Storm === MinTable
L) O H

. aa] B F
. . mE . LR DR TP -
~-.vk7.= R A2 s‘.,‘"ﬁ..n\.; R A R -(,’; IR o ‘:, 2
B

10 900 1800 2700 3600 10 900 1800 2700 3600
Time(s) Time(s)

(a) emaz =0.1 (b) emaz =0.2

Fig. 16. Dynamic adjustment on TPC-H data for Q5.

task instances. In particular we test the effects by triggering
the distribution change in every 15 minutes with f = 1.
The results are shown in Fig. [[6] Without any balancing
strategy, Storm presents poor throughputs. Mixed is capable of
balancing the workload in an efficient manner and achieving
the best throughput under any balancing tolerance.

VI. RELATED WORK

Different from batch processing and traditional distributed
database [7]], [19], [27]], [28], [33]], the problem of load
balancing is more challenging on distributed stream processing
systems, because of the needs of continuous optimization and
difficulty with high dynamism. There are two common classes
of strategies to enable load balancing in distributed stream
processing systems, namely operator-based and data-based.

Operator-based strategies generally assume the basic com-
putation units are operators. Therefore, load balancing among
distributed nodes is achieved by allocating the operators to the
nodes. In Borealis [32]], for example, the system exploits the
correlation and variance of the workloads of the operators, to
make more reliable and stable assignments. In [31]], Xing et al.
observe that operator movement is too expensive for short-term
workload bursts. This observation motivates them to design
a new load balance model and corresponding algorithms to
support more resilient operator placement. System S [29],
as another example, also generates scheduling decisions for
jobs in submission phase and migrates jobs or sub-jobs to less
loaded machines on runtime based on complex statistics, in-
cluding operators workload and the priority of the applications.
Zhou et al. [35] presents a flow-aware load selection strategy
to minimize communication cost with their new dynamic
assignment strategy adaptive to the evolving stream workloads.
In order to improve system balance property, [5] presents a
more flexible mechanism by using both online and offline
methods under the objective of network traffic minimization.
A common problem with operator-based load balancing is
the lack of flexible workload partitioning. It could lead to
difficulty to any operator-based load balancing technique, when
an operator is much more overloaded than all other operators.

Data-based strategies allow the system to repartition the
workload based on keys of the tuples in the stream, motivated
by the huge success of MapReduce system and its variants.

Elastic stream processing is a hot topic in both database
and distributed system communities. Such systems attempt to
scale out the computation parallelism to address the increasing
computation workload, e.g., [12], [30]. By applying queuing
theory, it is possible to model the workload and expected

processing latency, which can be used for better resource
scheduling [[10]. When historical records are available to the
system, it is beneficial to generate a long-term workload evolu-
tion plan, to schedule the migrations in the future with smaller
workload movement overhead [8]]. Note that all these systems
and algorithms are designed to handle long-term workload
variance. All these solutions are generally too expensive if
the workload fluctuation is just a short-term phenomenon. The
proposal in this work targets to solve the short-term workload
variance problem with minimal cost.

A number of research work focus on load balancing in
distributed stream join systems. [9] models the join operation
on a square matrix, each side of which represents one join
stream. It distributes tuples randomly to cells on each line (or
column) in matrix, which produces a potential join output. To
avoid these problems, in [20], it proposes a join-biclique model
which organizes the clusters as a complete bipartite graph for
joining big data streams. In [13], it classifies skewness on join
key granularities and divides the joins into three types, e.g.,
B-Skew join, E-Skew join and H-Skew join. It proposes to
deal with load imbalance by using different join algorithms.
In [25], it designs a two-tiered partitioning method which
handles hot tuples separately from cold tuples and distributes
keys with heavy keys (big granularities) first. DKG [23] also
distinguishes heavy keys from light ones by granularities and
applies greedy algorithms for load balance. Although these
techniques are effective for stream job applications, they are
not directly extensible to general-purpose stream processing.

Flux [24] is the widely adopted load balancing strategy, de-
signed for traditional distributed streaming processing systems.
It simply measures the workload of the tasks, and attempts
to migrate workload from overloaded nodes to underloaded
nodes. One key limitation of Flux is the lack of consideration
on the routing overhead. In traditional stream processing
systems, the workload of a logical operator is pre-partitioned
into tasks, such that each task may handle a huge number of
keys but processed by an individual thread at any time. The
approach proposed in this paper allows the system to reassign
keys in a much more flexible manner. Our approach also takes
routing overhead into consideration, because it is unrealistic to
fully control the destination for all keys from a large domain.

Nasir et al. [21]], [22] design a series of randomized routing
algorithms to balance the workload of stream processing
operators. Their strategy is based on the theoretical model
called power-of-two, which evaluates two randomly chosen
candidate destinations for each tuples and chooses the one
with smaller workload estimation. Their approach is more
appropriate for stateless operators in streaming processing, and
a subset of stateful operators by introducing an aggregator to
combine results of tuples sent to different working threads.
A number of stateful operators, such as join, may need all
historical tuples with certain keys in order to generate complete
and accurate computation results, which cannot be supported
by such scheme. The method proposed in this paper, however,
does not have such limitation, thus applicable to any stateful
operator with perfect load balancing performance.

Readj [11]] is proposed to resolve the stateful load balance
problem with a small routing table, which is the most similar
work to our proposal. It introduces a similar tuple distribution
function, consisting of a basic hash function and an explicit

hash table. However, the workload redistribution mechanism
used in Readj is completely different from ours. The algorithm
in Readj always tries to move back the keys to their original
destination by hash function, followed with migration sched-
ules on keys with relatively larger workload. Their strategy
might work well when the workload of the keys are almost
uniform. When the workloads of the keys vary dramatically,
their approach either fails to find a reasonable load balancing
plan, or incurs huge routing overhead by generating a large
routing table. The routing algorithms designed in this paper
completely tackle this problem, which presents high efficiency
as well as good balancing performance in almost all circum-
stances.

VII. CONCLUSION AND FUTURE WORK

This paper presents a new dynamic workload distribution
mechanism for intra-operator load balancing in distributed
stream processing engines. Our mixed distribution strategy is
capable of assigning the workload evenly over task workers
of an operator, under short-term workload fluctuations. New
optimization techniques are introduced to improve the effi-
ciency of the approach, to enable practical implementation over
mainstream stream processing engines. Our testings on Apache
Storm platform show excellent performance improvement with
a variety of workload from real applications, also present huge
advantage over existing solutions on both system throughput
and response latency. In the future, we will investigate the
theoretical properties of the algorithms to better understand the
optimality of the approaches under general assumptions. We
will also try to design a new mechanism, to support smooth
workload redistribution suitable to both long-term workload
shifts and short-term workload fluctuations.

REFERENCES

[1] Apache Storm. http://storm.apache.org/.
[2] The TPC-H Benchmark. http://www.tpc.org/tpch.

[3] D. Abadi, Y. Ahmad, M. Balazinska, and et al. The design of the
borealis stream processing engine. In CIDR, pages 277-289, 2005.

[4] Y. Ahmad and U. Cetintemel. Network-aware query processing for
stream-based applications. In VLDB, pages 456-467, 2004.

[5] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive online scheduling
in storm. In DEBS, pages 207-218, 2013.

[6] T. Chen, H. Haussecker, A. Bovyrin, and et al. Computer vision
workload analysis: Case study of video surveillance systems. Intel
Technology Journal, 9(2), 2005.

[7] D. Dewitt and J. Gray. Parallel database systems: The future of high
performance database systems. Communications of the ACM, 35(6):85—
98, 1992.

[8] J. Ding, T. Fu, R. Ma, M. Winslett, Y. Yang, Z. Zhang, and H. Chao.
Optimal operator state migration for elastic data stream processing.
Mccarthy, 2015.

[91 M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch. Scalable and
adaptive online joins. VLDB, 7(6):441-452, 2014.

[10] T. Fu, J. Ding, R. Ma, M. Winslett, Y. Yang, and Z. Zhang. Drs:
Dynamic resource scheduling for real-time analytics over fast streams.
In ICDCS, pages 411-420, 2015.

[11] B. Gedik. Partitioning functions for stateful data parallelism in stream
processing. VLDBJ, 23(4):517-539, 2014.

[12] B. Gedik, S. Schneider, M. Hirzel, and K. Wu. Elastic scaling for data
stream processing. [EEE Trans. Parallel Distrib. Syst., 25(6):1447—
1463, 2014.

http://storm.apache.org/
 http://www.tpc.org/tpch

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Huebsch, M. Garofalakis, J. Hellerstein, and I. Stoica. Advanced join
strategies for large-scale distributed computation. VLDB, 7(13):1484—
1495, 2014.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In STOC,
pages 654-663, 1997.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for
the one-dimensional bin-packing problem. In Foundations of Computer
Science, pages 312-320, 1982.

R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K. Wu,
H. Andrade, and B. Gedik. Cola: Optimizing stream processing
applications via graph partitioning. In Middleware, pages 308-327.
2009.

S. Kulkarni, N. Bhagat, M. Fu, and et al. Twitter heron: Stream
processing at scale. In SIGMOD, pages 239-250, 2015.

M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf.
Monalytics: Online monitoring and analytics for managing large scale
data centers. In /ICAC, pages 141-150, 2010.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: Mitigating
skew in mapreduce applications. In SIGMOD, pages 25-36, 2012.

Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream
join processing. In SIGMOD, pages 811-825, 2015.

M. Nasir, G. Morales, D. Garciasoriano, N. Kourtellis, and M. Serafini.
The power of both choices: Practical load balancing for distributed
stream processing engines. In /CDE, pages 137-148, 2015.

M. Nasir, A. U., G. Morales, N. Kourtellis, and M. Serafini. When
two choices are not enough: Balancing at scale in distributed stream
processing. ICDE, 2016.

N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and B. Sericola. Effi-
cient key grouping for near-optimal load balancing in stream processing
systems. In DEBS, pages 80-91, 2015.

M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An
adaptive partitioning operator for continuous query systems. In ICDE,
pages 25-36, 2003.

R. Taft, E. Mansour, M. Serafini, J. Duggan, A. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning
for distributed transaction processing systems. VLDB, 8(3):245-256,
2014.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, and et al. Storm@ twitter. In
SIGMOD, pages 147-156, 2014.

N. ufler, B.and Augsten, A. Reiser, and A. Kemper. Load balancing
in mapreduce based on scalable cardinality estimates. In ICDE, pages
522-533, 2012.

C. Walton, A. Dale, and R. Jenevein. A taxonomy and performance
model of data skew effects in parallel joins. In VLDB, pages 537-548,
1991.

J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K. Wu,
and L. Fleischer. Soda: An optimizing scheduler for large-scale stream-
based distributed computer systems. In Middleware, pages 306-325.
2008.

Y. Wu and K. Tan. Chronostream: Elastic stateful stream computation
in the cloud. In ICDE, pages 723-734, 2015.

Y. Xing, J. Hwang, U. Cetintemel, and S. Zdonik. Providing resiliency
to load variations in distributed stream processing. In VLDB, pages
775-786, 2006.

Y. Xing, S. Zdonik, and J. Hwang. Dynamic load distribution in the
borealis stream processor. In ICDE, pages 791-802, 2005.

Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in
parallel joins in shared-nothing systems. In SIGMOD, pages 1043—
1052, 2008.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In
SOSP, pages 423-438, 2013.

Y. Zhou, B. Ooi, and K. Tan. Dynamic load management for distributed
continuous query systems. In ICDE, pages 322-323, 2005.

algorithm S Simple Algorithm

input: task instances in D
output: A’
1: Disassociate keys from all the instances
2: foreach d in D do
3 L(d)+0
4: Add all keys to C, i.e., C < K
5: foreach & in C in descending order of ¢(k) do
6 foreach d in D in ascending order of L(d) do
7 Associate key k£ with instance d, i.e.:
8 L(d) = L(d) + c(k)
9: if h(k) # d then
10: Add entry (k,d) to A’
11: Remove k from C;
2: return A’

—_

APPENDIX

In order to derive theoretic results about the LLFD al-
gorithm, we first look at a more simplified key assignment
algorithm, namely the Simple algorithm. We next derive a
serious of theoretic results based on the Simple algorithm.
Lastly, we show how these results are applicable to the LLFD
algorithm. As described in Algorithm [5] the Simple algorithm
works in the following way, at first, it disassociates and puts
all the keys into the candidate set C (Lines 1-4). Secondly it
sorts these keys in a descending order of the computation cost
c(k). Finally it sequentially assigns each key to the instance
with the least total workloads so far(Line 5-11).

Definition 1: A perfect assignment is defined as the ap-
proach that can assign keys to instances resulting in Vd;, d; €

D,L(d;)) =L(dj) =L = NLD > kex (k).

Lemma 1: Given the instance set D of size Np, key set K

of size K and computation cost of each key c¢(k), where keys

are in a non-increasing order of their computation costs, i.e.,

c(k1) > e(ke) > -+ > ¢(K), if the perfect assignment exists,
we have:

1 -

K-—-1
?Lv q:1727"'7L
q

Np

I C))

C(quD"Fl) <

Proof: Assuming c(kqnp+1) > qjllf/, then we have

c(k1) > c(ke) > > c(kgnp+1) > g4pL- This means
that for keys from k; to k,n,,, each instance can at most be
associate with ¢ of them. In result, any instance that is associ-
ated with the (¢Np +1)-th key will generate workloads larger
than L, which contradicts the assumption of the existence of
the perfect assignment.]

Lemma 2: Given the instance set D of size Np, key set
of size K and computation cost of each key c(k), where keys
are in a non-increasing order of their computation costs, i.e.,
c(k1) > e(kg) > -+ > ¢(K), if the perfect assignment exists
and c¢(k1) < L (the computation cost of any individual key is
smaller than the average workload of task instances), we have

K > 2Np.

Proof: This is straight forward given (a) the perfect as-
signment exists and (b) the computation cost of any individual
key is smaller than L, because for each instance, there must
be at least two keys assigned to it. []

Lemma 3: Given the instance set D of size Np, key set K
of size K and computation cost of each key c¢(k), where keys
are in a non-increasing order of their computation costs, i.e.,
c(k1) > c(kg) > -+ > c¢(K), if the perfect assignment exists
and c(k1) < L, we have:

1

'(1_7%)

ema/Z <
Np

1
-3
where 0,00 = maxdeD(L(dTH).

Proof: We prove by considering the worst case (in terms
of load balance) where (a) the (2Np+1)-th key has the largest
possible computation cost c¢(kan,+1) = L/3, according to
Lemma [I| and Lemma [2} (b) Keys after the (2Np + 1)-th
have equal amount of computation costs, denoted by &, which
are very close to zero; (c) The remaining workloads, i.e.,
> pex ¢(k)— 3 L—e(K —2Np—1), all concentrate on the first
2Np keys and are evenly distributed, summarized as follows:

Npiféfsz(K72NDfl)

for i=1,2,...,2Np;

Np
c(ki) = 1L for i=2Np+1;
€ for ¢>2Np+1.

When ¢ — 0, we have:

4 L

Lpox = L(d) = c(k; k <-L—-——,

Iglea,i))(() C()+C(2ND) 3 3ND
where ¢ = 1,2,...,2Np. Note Lyax = c(k;) + c(kanp)
is because according to the Simple algorithm, keys k;,¢ >
2Np + 1 will never be assigned to the instance with L ax.
This completes the proof according to our definition of 0,,,x.
|

Theorem 1: Given the instance set D of size Np, key set
IC of size K and computation cost of each key c(k), where
keys are in a non-increasing order of their computation costs,
ie., c(k1) > c(ko) > --- > c(K), if the perfect assignment
exists and c¢(k1) < L, LLFD always finds a solution resulting
with balancing indicator 6(d, F') no worse than (1 — NLD) for
any task instance d.

Proof: According to Algorithm |1} it has a larger search
space than that of the Simple Algorithm, and is devoted to
finding the assignment with more balanced workloads among

instances, i.e., 0(d, F) < Oper < 3 (1 — N—), which is
proved in Lemma [3] P [

Theorem 4: Balance status generated by the Mixed rep-
resented by 6,,, is not worse than the balance status 6g;,,
produced by the Simple algorithm algorithm.

Proof: Supposing Opriz > Ogim, now we take Ogim,
as 04z, then the Mixed algorithm overload instance and
Jeop in Mixed’s migration process. Because the Mixed has
tried all instances to put c¢(keop) for without overload as
shown in Algorithm [} then Vd,d € D, c(keop) + L(d) —
Dok e{k|e(k)<e(cop)} C(K) is larger than upbound. This is
contradicts to begin supposing: Opsi. > Ogim. [|

With the defaulted parameter settings, our Mixed algorithm
with different numbers of N4 has different migration cost as
shown in Fig.[I7] When we set N 4 to the values less than 1000
(calculated by 2" with i < 10) for 6,4, = 0.08, our algorithm
generates a large migration cost for it acts as algorithm (Alg.

20¢
S
= 15
o
(@]
c
9o 10
©
f=y
= 5
O L L L L L L L
1 3 5 7 9 11 13
I
N, ()
Fig. 17. Migration cost with different N4 by Mixed.
10 : : : :
— -@-Gmax=0.02
S s 6 =0.08 1
*_ max
[—
| --0__ =0.15 |
@
=]
s
= 47]
=
5
g 2]
6 7 8 9 10 11 12;
of Adjustment (2
Fig. 18. Routing table changing along with # of adjustments.

and leaves alone N4 requirement. But when N4 is relaxed
to 2000 (¢ > 11), migration cost decreases greatly, since our
algorithm acts according to Mixed algorithm which can reduce
the routing back actions greatly. Furthermore, the different
degrees of balance status (6,,,4,) require different minimum
N4, and it will drastically reduce the migration cost shown in

Fig.

Fig. [[8] shows the change of routing table size for different
numbers of adjustment. We use algorithm(Alg.|3)) to do balance
and set K = 10% to verify the results quickly. Obviously,
the smaller 6,,,, accelerates the growth of routing table. We
also observe that routing table sizes with different 6,,,,S
converge to the same size (around 9350 entries) in Fig. [I8] This
is because Min Mig does balancing without considering the
constraint for routing table size. In other words, a key is paired
to the task randomly when the basic assignment function has
caused imbalance. Therefore, the probability of a key appears

in routing table is &]{}_1, and then, after a long period of load
D

balancing, the routing table size should be Nﬁi;l - K with K
as the key size.

We show the migration cost with different window size in
Fig. [I9] Since the larger window size provides more chance
for finding the appropriate migration keys (v;(k,w)), the
migration cost of Mixed is smaller than MinTable.

To characterize both computation and migration cost, we
propose the migration priority index for each key, defined as
vi(k,w) = ¢;(k)?S;(k,w)"" as in Sec. B is used to
measure the importance of computation cost and the memory
consumption which decides the migration priority of keys. In
Alg. 3] a key with the larger +;(k,w) has the higher priority

20

-—=- Mixed
==-Min Table

[y
ul

10t

Migration Cost (%)

(0] © e
1 3 5 7 9 11 13 15
w
Fig. 19. Migration cost vs window size.
4
10210

-—=-6, _ =0.02

Routing Table Size

1 11 1.2 1.3 1.4 lBS 1.6 1.7 1.8 1.9 2

Fig. 20. Routing table size in different S.

to be migrated. Larger [represents that the migration method
concerns more on faster computation rather than on less
migration cost (memory consumption). Furthermore, larger
will produce smaller routing table since the migration method
preferentially migrates keys with large load. Fig.[20|and Fig. [21]
show the change of routing table size and migration cost with
different values of 5. Those results are produced by the Min-
Mig algorithm, and each result is an average value generated
by running 10 times of balance adjustments. In Fig. g=1
means the migration candidates are evaluated according to the
load per unit memory consumption. In this case, keys with
smaller load would be selected and a larger routing table will
be generated. As [is set larger, migration method gradually
tends to move the bigger load keys, then routing table size
becomes smaller. Furthermore, when 3 € [1.5,2], routing
table size is stable because the migration candidates are almost

Migration Cost (%)

1 1.1 1.2 1.3 1.4 1[.35 1.6 1.7 1.8 1.9 2

Fig. 21. Migration cost in different 5.

selected only by the load of keys. The lines in Fig. 2] show
results by the influence of parameter /3. Based on these sets of
parameter tests, we select 8 = 1.5 as the default value in our
experiments.

	I Introduction
	II Preliminaries
	II-A Data and Workload Models
	II-B Problem Formulation

	III Algorithms
	III-A Least-Load Fit Decreasing (LLFD)
	III-B MinTable and MinMig Heuristics
	III-C Mixed Algorithm

	IV Implementation Optimizations
	IV-A Mixed Algorithm over Compact Representations
	IV-B Discretization on vc and vS

	V Evaluations
	VI Related Work
	VII Conclusion and Future Work
	References
	Appendix

