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ABSTRACT
While most prior studies in Location-Based Social Networks (LS-
BNs) have mainly centered around areas such as Point-of-Interest
(POI) recommendation and place tag annotation, there exists no
works looking at the problem of associating place-type to venues
in LBSNs. Determining the type of places in location-based social
networks may contribute to the success of various downstream
tasks such as Point-of-Interest recommendation, location search,
automatic place name database creation, and data cleaning.

In this paper, we propose a multi-objective ensemble learning
framework that (i) allows the accurate tagging of places into one
of the three categories: public, private, or virtual, and (ii) iden-
tifying a set of solutions thus o�ering a wide range of possible
applications. Based on the check-in records, we compute two types
of place features from (i) speci�c pa�erns of individual places and
(ii) latent relatedness among similar places. �e features extracted
from speci�c pa�erns (SP) are derived from all check-ins at a spe-
ci�c place. �e features from latent relatedness (LR) are computed
by building a graph of related places where similar types of places
are connected by virtual edges. We conduct an experimental study
based on a dataset of over 2.7M check-in records collected by crawl-
ing Foursquare-tagged tweets from Twi�er. Experimental results
demonstrate the e�ectiveness of our approach to this new prob-
lem and show the strength of taking various methods into account
in feature extraction. Moreover, we demonstrate how place type
tagging can be bene�cial for place name recommendation services.

CCS CONCEPTS
•Information systems →Information systems applications;
Location based services;

KEYWORDS
Location-Based Social Networks; Place-type tagging; POI recom-
mendation

1 INTRODUCTION
Recently, with the rapid development of GPS-enabled smart phones
and Web 2.0 technologies, location-based social networks (LB-
SNs) have become very popular. Typical examples of LBSNs are
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Foursquare,1 Facebook Places,2 Yelp,3 BrightKite, 4 and Gowalla,5
etc.. In LBSNs, users can share their locations (e.g., tourist a�rac-
tions, shops, cinemas, restaurants etc.) via check-in facilities, write
reviews, connect with their friends, and upload photos among oth-
ers.

Location or venue is one of the main concept in LBSNs, and the
number of venues in LBSNs is growing continuously. For example,
Foursquare had more than 10 million registered users with 1 bil-
lion check-ins in September 2011, and by April 2012 the number of
check-ins doubled [19]. In LBSNs, a venue can be business, physical
location, or virtual location. LBSNs allow registered users to explic-
itly record their presence at a venue. Users can choose to display
their check-in information on their connected friends’ Foursquare
sites, and post the check-ins on their Twi�er or Facebook accounts.
Most of the LSBN services allow users to create new venues using
various methods,6 especially when they unable to �nd their current
place during their check-in process. Apart from that, LBSNs users
can add “tags” to venues or leave “tips” to venues, which are crucial
for assisting users in searching and exploring new places as well as
for developing recommendation services [1, 14, 36].

To support various business purposes, most LBSNs services grant
users unique opportunities by allowing them to freely create venues,
add tags, and leave tips. Although this represents incredible and
unique business opportunities, it also presents important challenges
by adding noise into the user-generated place records for many
downstream tasks such as Point of Interest (POI) recommendation,
place search, data �ltering, and automatic place name database
creation that can perform be�er with high quality data. In [36],
authors observed that about 30% of created venues in Whrrl and
Foursquare are lacking any meaningful textual descriptions. Based
on our observation of data collected from Twi�er, many of these
place records are personal places (e.g. a user’s private home) or
entities without any physical location (e.g. online stores).

People in architecture, urban planning, philosophy, and geogra-
phy have de�ned and categorized places mainly into four categories
[22]:

• public places, places that do not systematically limit the
entry of people. Typical examples include public squares,
parks, and beaches.

• semi-public places such as restaurants, stores, and other
commercial places where entry is not limited as long as
one is engaging in the sanctioned activities such as eating,
drinking, and shopping.

1h�ps://foursquare.com/
2h�ps://www.facebook.com/places/
3h�ps://www.yelp.com/
4h�ps://brightkite.com/
5h�p://gowalla.com/
6For example, Foursquare allows users to create new venues via Foursquare website
or mobile applications
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• private places, that are not open to all. Typical examples
are people’s homes, gardens, bedrooms.

• virtual places, which do not have an actual physical loca-
tion, e.g., online shopping stores, chat rooms.

In this work, we use public to also include semi-public places
and tag all places in our dataset as one of the three categories: pub-
lic (+ semi-public), private, or virtual. Please note that distinc-
tion between public places and semi-public places could have
considerable relevance to some downstream tasks such as place
recommendations. For example, public places are essentially free,
visiting the other (semi-pubic) might involve a cost of some kind
(admission fee, purchasing of items) that makes it less a�ractive to
an unwi�ing visitor. For this current study, we merge these two
categories into one to simplify the task of place-type detection.

Given the high volume of check-ins and existing businesses on
LBSNs, even a low rate of private and virtual place creation results in
a large number of private and virtual places. As a result, private and
virtual places may bring irrelevant and ambiguous information
to various downstream tasks, which makes automatic place-type
detection an important research problem. Despite its practical
importance, place type detection is a particularly challenging task
for several reasons:

• data diversity– Check-in records contain diverse types
of data including time, location, and text. �erefore, due to
the heterogeneous nature LBSNs, methods that e�ectively
take all these data types into consideration for place-type
detection must be developed.

• sparse information – When creating a venue, a user is
asked to provide a few a�ributes of the venue, such as the
venue’s name, address, location, category, zip code, cross
street, and etc. However, in many cases a�ributes such as
address, category, zip code, and country are not provided
by the users. Moreover, users personal experiences (tips)
associated with most of the check-in records are either
contain a few words or just empty. Without enough context
and background knowledge, it is di�cult even for a human
to determine whether a given place is public or private in
the physical world.

• overwhelming noise– Almost 30% of the check-in records
do not contain any meaningful textual descriptions.

• ambiguity – place names can be ambiguous. So, only re-
lying on place names would be challenging to di�erentiate
between place types. Fortunately, in our dataset we have
user check-in activities at various places and times. �ere-
fore, we propose to explore the user behaviours to extract
useful pa�ern and features from check-in records in order
to distinguish place types.

Whereas most prior computational studies have focused on place
labels (e.g., restaurants food, shopping, hotel travel, arts entertain-
ment) annotation [6, 16, 36], there has been a lack of work looking
at place-type detection in LBSNs. To the best of our knowledge, this
is the �rst a�empt to solve the problem of place-type detection in
LBSNs. For doing so, fundamental issue is identifying and extract-
ing a number of descriptive features for each place type from the
available check-in records. Following the idea of [36] for semantic
annotation of places, we explore the set of user behaviours and

look for unique features of places recorded in the check-in data for
the speci�c task of place-type classi�cation. We know that human
behaviours are not completely random [12] and so can be predicted
[17]. For example, people o�en go for cinema on a Friday/at the
weekend in the evening. Moreover, people exhibit pa�erns in their
activities, e.g. various places visited by the same person at the same
time may be similar (e.g. having the similar type).

Similar to [36], we compute two kind of features: (i) speci�c pat-
terns (SP) at individual places; and (ii) latent relatedness (LR) among
similar places. Features computed from SP, corresponding to a given
place, can be derived from all check-ins at that place. We compute
features from LR to determine the relatedness among similar places.
Since we have only small number of places manually annotated
with their type, we can make good use of LR by deriving descriptive
features of a given place from its “related” places. To facilitate the
extraction of LR features, we adapted a similar strategy proposed in
[36] to build a graph of related places (GRP) by exploiting the regu-
larity of user check-in records to similar places. In particular, we
explore di�erent graph representations: (i) visitors-place; and (ii)
time-place relationship from the user check-in records. We employ
di�erent techniques to these graphs to measure their relatedness.
Finally, we calculate the probability of the category tag for each
place by leveraging the relatedness of places on the graph and treat
them as LR features for supervised learning algorithms.

We then implement a supervised ensemble learning framework
de�ned as a multi-objective optimization problem in order to i)
obtain accurate classi�cation results even when training evidences
are limited; and ii) identify di�erent solutions thus o�ering a wide
range of possible application scenarios. Indeed, depending on the
task at hand, precise classi�cation may be required (e.g. �ltering)
or high recall may be preferred (e.g. ranking of places for recom-
mendation).

Finally, we examine the usefulness of place-type tagging in the
context of place name recommendation. In particular, we present a
neural network framework to complete the place recommendation
task and compare its performance in various scenarios.

2 RELATEDWORK
Previous studies in LBSNs can broadly be divided into two di�erent
categories: recommendations and place labeling.
Recommendation in LBSNs is basically divided into four di�erent
categories [2] : i) location recommendations, which suggest loca-
tions (e.g., POIs) or sequential locations (such as travel routes) to a
user; ii) user recommendations, which suggest popular users (like
local experts), potential friends (i.e., who share similar interests and
preferences), or communities, which a user may wish to join due to
shared interests and activities; iii) activity recommendations, which
refer to activities that a user may be interested taking; iv) content
recommendations, which suggest media as photos, videos, and web
contents, to the user. Depending on the working methodology and
used data a�ributes, recommender systems in LBSNs can be divided
into: a) content-based recommendation, which uses data from a
user�s pro�le and the features of locations; b) link analysis-based
recommendation, which applies link analysis models, e.g., hyper-
text induced topic search (HITS) and PageRank; and c) collaborative
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�ltering (CF) recommendation, which infers a user�s preferences
from historical behavior.

Venue recommendation has been the focus of research in LBSNs.
Several recommendation systems have been proposed in the litera-
ture including [8, 37, 42]. In [8], authors developed GeoSocialDB–a
recommender system for providing three services, namely, location-
based news feed, location-based news ranking, and location-based
recommendation. In particular GeoSocialDB implemented these
services as query operators inside a database engine to optimize
the query processing performance. An interesting strategy, namely,
user-centered collaborative location and activity �ltering (UCLAF)
method is proposed in [42], to pull many users’ data together and
apply collaborative �ltering to �nd like-minded users and like-
pa�erned activities at di�erent locations. Authors in [42] modeled
the user-location-activity relations with a tensor representation,
and proposed a regularized tensor and matrix decomposition so-
lution which can be�er address the sparse data problem in mobile
information retrieval. In line with [42], [37] analyzed location
recommendation services for large-scale LBSNs, by exploiting the
social and geographical characteristics of users and locations/places.
Precisely, they proposed a variant of friend-based collaborative �l-
tering (FCF) technique, namely Geo-Measured FCF (GM-FCF), based
on heuristics derived from observed geospatial characteristics in
the Foursquare dataset for location recommendation.

Recently, researchers started to explore the content informa-
tion on LBSNs for POI recommendation. In [13], authors showed
that content information in LBSNs can be useful for POI recom-
mendations. In particular, authors studied three types of content
information (namely POI properties, User Interests, and Sentiment
Indications) and proposed a uni�ed framework to model them to
achieve be�er performance for POI recommendation.

Di�erent from the above mentioned works, several works exist
to study sequential location recommendations based on either users’
social media post [20, 35] or users’ GPS trajectories [5, 39]. A Large
volume of works have also been proposed for other categories
of recommendations: user recommendations [10, 28, 38], activity
recommendations [43], and content recommendations [25, 30].
Place labeling is the process of a�aching semantic labels to venues,
such as home, work, and school [16]. Place labeling techniques can
be categorized mainly into two types: i) Manual; and ii) automatic.
�ere are several prototypes exist that allows end users to manually
label the places they visit, such as Reno [31], Connecto [3], and
IMBuddy [15]. Automatic place tagging techniques can be classi�ed
mainly into two categories: i) rule based; and ii) machine learning
based approach. In [44], authors proposed a system that rely on
manually designed classi�cation rules to infer the semantic category
of a place. Despite e�ectiveness, this kind of methods require
substantial e�orts in rule design.

One of the very �rst a�empts to propose a machine learning
model that deals with place labeling task is proposed by [21]. �e
authors developed a system that uses hierarchically structured
conditional random �elds to generate a model of a person’s activities
and places. �e computational models are learned over features
from the locations of nearby restaurants, grocery stores and bus
stops as well as the timing of visits. In [6], authors proposed a
Hidden Markov Model (HMM)-based Location Extraction algorithm
called HLE, which adopts a supervised learning based method for

extracting user’s daily signi�cant semantic locations using mobile
phone data.

Recently, the introduction of Nokia Mobile Data Challenge (MDC)
[18] has clearly established the importance of place labeling tasks.
�e MDC provided labeled data and cell phone logs for 114 people
(80 for training, 34 for testing) with an average of 282 days of ob-
servation for each one. All of the participants for the place labeling
task adopted machine learning techniques and used phone features,
including the time and duration of visits, to infer place label.

One of the most in�uencing work in this direction is proposed
by [36], who considered the problem as multi-label classi�cation
problem and used supervised classi�cation strategy to tackle the
problem. In order to learn the classi�er, two groups of features
are computed from the check-in records. First group of features
are derived from the pa�erns observed in places with same tag.
�e second group of feature is computed by exploiting similarities
among similar places. �ese feature sets are used as inputs for the
place labeling phase to learn a binary SVM for each tag. Finally,
output of all SVM classi�ers are assembled to derive the �nal labels.
�ey conducted a experimental study based on a dataset collected
from Whrrl for a period of one month consisting of 5,892 users,
53,432 places and 199 types of tags. Based on Yelp tag hierarchy,
they merge those 199 semantic tags into 21 categories to simplify the
task of place label annotation. Although these works are valuable
in the context of LBSNs, its scope di�ers from our speci�c goal of
place-type detection.

3 PROBLEM FORMULATION
Let P =

{
p1,p2, .....,p |p |

}
be the set of places in our dataset, where

|P | denotes the total number of places. Each place pi ∈ P can
be represented as pi = 〈namei , lati , loni , Ai 〉 that indicates its
given name, latitude, longitude, and a�ributes such as address,
location, zip, cross street, and country. Moreover, some additional
information is also available in the form of total number of check-
ins, time of check-ins etc.. Given all the information for each place
pi , our goal is to predict its place type t ∈ {public,private,virtual}.

3.1 Approach Overview
In this section we present an overview of the approach adopted for
place-type detection problem. �e �rst step of the algorithm takes
care of feature extraction, while the second step deals with place
type assignment. While we explore SP in the check-in records of
individual place to extract �rst group of features, the LR between
similar places is used to compute descriptive features of a given
place compared to its similar places. Supervised learning strategy is
used to learn several ternary (public, private, and virtual) classi�ers
over the two groups of features derived from SP and LR on a set
of manually labeled data in the place-tagging phase. Finally, indi-
vidual decisions of classi�ers are combined using a multi-objective
ensemble learning framework to achieve higher accuracy and o�er
robust solutions to the task at hand.

3.2 Features derived from SP
Our motivation is to extract discriminative features from places of
similar type. One can expect that at di�erent places, users conduct
themselves in accordance with the accepted activities o�ered by
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these places. As a consequence, distinct pa�erns form in the aggre-
gated behaviors of users at di�erent place types. �ese pa�erns are
embedded in the check-in activities of users in LBSNs.

• Total Number of Check-ins: We observed (shown in Figure
1(a)) from the collected dataset that public places (same
as restaurants and universities) a�ract higher numbers of
check-ins than private places (e.g. home, private luxury
vehicles). �erefore, the number of check-ins is considered
as an important feature for the classi�cation of place type.

• Total number of distinct users: �is feature aims to capture
the total number of distinct users who checked-in or were
tagged at a speci�c place.

• Check-in time in a week: We examine (as shown in Figure
1(b)) the check-in pa�erns for di�erent categories of places
over the day of a week. We �nd that users check-in at
a university more o�en on weekdays than at weekends.
In contrast, they checked-in to online shopping stores at
weekends more frequently than during weekdays.
• User check-in locations: We �nd from our dataset that lo-

cation distribution pa�erns of users checking-in at public
places is di�erent from those observed for virtual or pri-
vate places; public places has o�en a�ract high volume of
check-ins from various locations that are either near or far
within same city or region from the place’s physical ad-
dress, while virtual places have check-ins sca�ered across
much wider geographical areas. �erefore, we compute
the minimum, maximum, as well as average distance of
check-in users at a speci�c place and consider these values
as discriminative features for the classi�cation of places
such as online chat rooms and restaurants. To measure
the distance between longitude/latitude points, we use the
Haversine formula [33] to calculate the great-circle dis-
tance between two points, i.e. the shortest distance over
the earth’s surface.

• n-grams: We use 1-3 token sequences. Features are encoded
simply as binary indicators regarding whether the n-gram
appears in the place names.

• Place pro�le: We observed that places with more complete
pro�le are more likely to be public. We consider, two
a�ributes, namely, ‘contact”, “cross street”. Features are
encoded simply as binary indicators regarding whether the
entries are there or not.

3.3 Features derived from LR
�e rationale behind extraction of features from LR is that people’s
activities are not completely irregular. For example, we usually go to
places for food at lunch/dinner time, visit places for shopping in the
late a�ernoon, and usually return to our home in the evening. Such
pa�erns appear for certain users in our dataset and so we explored
these to tag similar places. To record the relatedness among places
and compute discriminative features, similar to [36] we built a
graph of related places (GRP), where places are linked based on
their relatedness, as measured from the information embedded in
the user check-ins using the Random Walk and Restart method [32]
(RWR). On the GRP, we compute the label probability of each place
leveraging the relatedness of places. �e derived label probability

Figure 1: Check-in details at di�erent place types: (a) Num-
ber of visitors at Cafe andHome, (b) Distribution of check-in
time at University and Online Shop.

is used as a feature for classi�cation. �e details of our feature
extraction from LR model are as follows.
Graph of Related Places: To facilitate the extraction of features
from latent relatedness among similar places, following the idea of
[36] we build two graphs: visitor-place and time-place graph. �e
underlying idea behind visitor-place is that the majority of users
more o�en visit similar places. �e motivation behind time-place
graph is that the timing of check-ins at similar places may be similar.
�ese graphs can be formally de�ned as:

• A visitor-place Graph, Gu (Vu ,Eu ), is an undirected bi-
partite graph. Here, Vu = U ∪ P , where U and P are
the sets of all users and places, respectively, and Eu =
{ei, j |c(ui ,pj , .) ∈ C}, whereC is the collection of all check-
in records and c(ui ,pj , .) denotes that user ui has visited
place pi at some time. Each edge ei, j ∈ Eu is associated
with a weight wi, j , denoting how o�en user ui has visited
place pi . Formally, wi, j = |{c(ui ,pj ,hs )}|, where hs is the
time stamp.

• A time-place Graph, Gt (Vt ,Et ), is an undirected bipar-
tite graph. Here, Vt = H ∪ P , where H and P are sets
of all times (i.e. hours), and places, respectively, and Et =
{ej,s |c(.,pj ,hs ) ∈ C}, whereC is the collection of all check-
in records and c(.,pj ,hs ) denotes that a user has visited
placepj at timehs . In this graph, each edge ej,s∈ Et is asso-
ciated with a weight w j,s , denoting how o�en pj has been
checked in at time hs . Formally, w j,s = |{c(ui ,pj ,hs )}|.

Places are connected indirectly through visitors and times in
the graphs described above. To construct the GRP, the relatedness
of places from the visitor-place and time-place graphs needs to be
derived. In this experiment, we calculate two relatedness values
rux,y and r tx,y for every pair of places px ,py using RWR over the
visitor-place and time-place graphs, respectively, and then merge
them into one relatedness value between place nodes in the GRP.
Below we only present how our RWR technique is applied on the
visitor-place graph since the operation in time-place graph is similar.

Given a node x , RWR is carried out by randomly following one
of its links to another nodey in the visitor-place graph depending on
the transition probabilities of these links, as well as on a probability
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a to restart at node x . Our random walk transition matrix consists
of two zero matrices, i.e. visitor-visitor matrix (VV) and place-
place matrix (PP), and a visitor-place (UP) matrix and transpose
UPT , where the probability of transiting between a place pj and a
visitor ui is proportional to wi, j . �e stationary (or steady-state)
probabilities of each pair of nodes can be acquired by recursively
processing RWR until convergence. �e converged probabilities
(i.e., relatedness values) give us the long-term visiting rates from
any given node to any other node. In this way, we can calculate the
relatedness of all pairs of location nodes, denoted by rpx,y (∀px ,py ∈
P ). Accordingly, we can derive two relatedness values rux,y and r tx,y
from visitor-place and time-place graph, respectively. A�erwards,
we calculate the overall relatedness value for each pair of location
as equation 1.

r
p
x,y = ηr

u
x,y + (i − η)r tx,y ,∀px ,py ∈ P (1)

where η is a smoothing factor in the range 0 to 1. Finally, a graph of
related place (GRP) is built where each place is connected to places
with top-k relatedness values.
Place type label probability estimation: Our dataset contains
millions of check-ins and it is challenging to create a su�cient
amount of labeled data to cover various cases of public, private, and
virtual places. �erefore, we build GRP which is able to make use of
a large amount of unlabeled data to infer the label of a given place
from its related places. In order to estimate the label probability of a
place to be labeled, we derive the probability from the place tags of
its neighbours recursively [23]. Assume Ni be the set of immediate
neighbours with edges connecting place pi , and yi be a variable
denoting a tag of place pi . For all possible tags t ∈ T , we adopt a
method similar to [36] for deriving the �nal Pr (yi = t |Ni )(t ∈ T )
for each place pi . �e label probability of pi is calculated by taking
into account both the weighted average of the label probabilities of
places in Ni , and the current label probability of pi itself as equation
(2).

Pr (n+1)(yi = t |Ni ) = β (n+1) 1
Z

∑
pj ∈Ni

r
p
j,iPr

n (yj = t |Nj )

+ (1 − β (n+1)
t )Pr (n)(yi = t |Ni ) (2)

where Z =
∑
pj ∈Ni r

p
j,i is a normalization term and r

p
j,i is the

relatedness between places pj and pi , and Pr (n)(yi = t |Ni ) de-
notes the estimation of Pr (yi = t |Ni ) at round n. We also de�ne
β
(n+1)
t = β

(n)
t α , where β (0)t (t ∈ T ) is a constant between 0 and 1,

and α is a decay factor, i.e., 0 < α < 1.
We have initialized the label probability for each place pi ∈ P as

follows.

Pr (0)(yi = t |Ni ) =


0.5, if pi ∈ ptest
1, if pi ∈ P − Ptest and t ∈ Ti
0, if pi ∈ P − Ptest and t < Ti

where ptest denotes the set of testing places, i.e., unlabeled data
that do not have any place type tag. �e label probability of a
testing place is initialized as 0.5, while the label probability of a
manually tagged place is set to 1 or 0 according to the labels. �e

label probability estimated for a place pi is treated as the LR feature
for supervised learning.

4 LEARNING FRAMEWORK
An ensemble of classi�ers is a set of classi�ers whose individual
decisions are combined in some way (typically by weighted or
binary voting) to classify new examples [11]. In particular, ensemble
learning is known to obtain highly accurate classi�ers by combining
less accurate ones thus allowing to overcome the training data size
problem. �ere are methods for constructing ensembles in the
literature [11]. In this experiment, we propose ensemble learning
as a multi-objective optimization (MOO) problem. Our motivations
are two-fold. First, [27] showed that MOO strategies demonstrate
improved results when compared to single objective solutions and
state-of-the-art baselines. Second, MOO techniques propose a set
of solutions rather than a single one. As place type tagging can be
thought of as an intermediate module in some larger application (e.g.
POI recommendation, place search, or database creation), o�ering
di�erent solutions can be a great value.

4.1 MOO Problem De�ntion
A de�nition of multi-objective optimization can be stated as fol-
lows: �nd the vector x = [x1,x2, . . . ,xn ]T of decision variables
that optimizes O objective functions {O1(x),O2(x), . . . ,OO (x)} si-
multaneously which also satisfy user-de�ned constraints, if any.
�e concept of domination is also an important aspect of MOO. In
case of maximization, a solution xi is said to dominate x j if both
conditions (3) and (4) are satis�ed.

∀k ∈ 1, 2, . . . ,O, Ok (xi ) ≥ Ok (x j ) (3)
∃k ∈ 1, 2, . . . ,O, Ok (xi ) > Ok (x j ) (4)

Finally, the set of non-dominated solutions of the whole search
space S is called the Pareto optimal front, from which a single
solution may be selected based on any suitable criterion.
Ensemble learning can be seen as a vote-based problem. Suppose
that one has a total number of N classi�ers {C1,C2, ...,CN } trained
for an M class problem. �en, the vote-based classi�er ensemble
problem can be de�ned as �nding the combination of votes V per
classi�er Ci , which will optimize a quality function F (V ). V can
either represent a binary matrix (binary vote-based ensemble) or a
matrix containing real values (real/weighted vote-based ensemble)
of size N ×M . In case of binary voting,V (i, j) represents whetherCi
is permi�ed to vote for class Mj . V (i, j) = 1 is interpreted as the ith
classi�er being permi�ed to vote for the jth class, elseV (i, j) = 0 is
interpreted as the ith classi�er is not permi�ed to vote for the jth

class. In case of real voting, V (i, j) ∈ [0, 1] quanti�es the weight of
the vote ofCi for the classMj . If a particular classi�er is con�dent in
determining a particular class, then more weight should be assigned
to that particular pair, otherwise less weight should be a�ributed.
In terms of MOO formulation, the classi�er ensemble problem at
hand is de�ned as determining the appropriate combination of
votes V per classi�er such that objectives O1(V ) and O2(V ) are
simultaneously optimized where O1 = recall and O2 = precision.
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4.2 Evolutionary Procedure
�e multi-objective methods used here are based on the search
capabilities of the non-dominated sorting genetic algorithm [9].

String Representation: In order to encode the classi�er ensem-
ble selection problem in terms of genetic algorithms, we propose
to study three di�erent representations.
(1) Simple Classi�er Ensemble (SCE): each individual classi�er is
allowed to vote (or not). �e chromosome is of length N and each
position takes either 1 or 0 as value.
(2) Binary Vote-based Classi�er Ensemble (BVCE): each individual
classi�er is allowed to vote (or not) for a speci�c class Mj . �e
chromosome is of length N ×M and each position takes either 1 or
0 as value.
(3) Real/weighted Vote based Classi�er Ensemble (RVCE): all clas-
si�ers are allowed to vote for a speci�c class Mj with a di�erent
weight for each class. �e chromosome is of length N ×M and each
position takes a real value.

Fitness: Each individual chromosome corresponds to a possible
ensemble solution V , which must be evaluated in terms of �tness.
Let the number of available classi�ers be N and their respective
individual F -measure values by class Fi j , i = 1 . . .N , j = 1 . . .M
(i.e. Fi j is the F -measure of Ci for class Mj ). For a given place p,
receiving class Mj is weighted as in equation (5) where the output
class assigned byCi to p is given by op(p,Ci ). Note that in the case
of SCE, V (i, j) is rede�ned as V (i, .) and Fi j as Fi . .

f (p,Mj ) =
∑

i=1:N&op(p,Ci )=Mj

V (i, j) × Fi j . (5)

Finally, the type of place p is given by arдmaxMj f (p,Mj ). As
such, classifying all places from a development set gives rise to two
�tness (or objective) values, which are, respectively, recall (O1) and
precision (O2) and must be optimized simultaneously.

Optimization and Selection: �e multi-objective optimization
problem is solved by using the Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [9]. �e most important component of NSGA-II
is its elitism operation, where the non-dominated solutions present
in the parent and child populations are moved to the next genera-
tion. �e chromosomes present in the �nal population provide the
set of di�erent solutions to the ensemble problem and represent
the Pareto optimal front.
It is important to note that all the solutions are important, represent-
ing a di�erent way of ensembling the set of classi�ers. However, for
the purpose of comparison with other methods, a single solution is
required to be selected. For that purpose, we choose the solution
that maximizes the F -measure based on its optimized sub-parts
recall and precision as shown in equation (6):

F -measure = 2 × recall × precision
recall + precision

. (6)

5 CHECK-IN DATA COLLECTION AND
LABELING

Since personal check-in information on location-sharing services
like Foursquare, Gowalla, and Facebook Places is typically restricted
to a user’s immediate social circle (and hence unavailable for sam-
pling), we take an approach similar to [7] to collect check-ins. In

particular, we sampled location sharing (geo-tagged) Foursquare
tagged tweets from Twi�er Public Stream7 for a month (from 1
March 2014 to 1 April 2014) and �ltered out non-English tweets.
Using this approach, we collected a dataset consisting of 155,27
users who performed 2,737,442 check-ins at 314,650 venues globally.
In order to identify the language of a check-in message, we leverage
the language detection library developed by Cybozu Lab [29].

Since no annotated place dataset exists, we designed our own
annotation task using the crowdsourcing service of CrowdFlower
platform.8 We randomly sampled 10,000 venues and uploaded them
to CrowdFlower. In particular, we represent each venue with details
such as total number of check-ins, total number of unique users and
their locations, tweet text, and asked crowdFlower annotators to
decide whether the place is a public, private, or virtual place. �ere
was a fourth option available to the annotators namely “Unsure”,
when they are not con�dent about their decision. Each annotator
was presented with detailed annotation instructions. Each venue
was annotated by at least 4 annotators. Venues receiving a majority
vote (at least 3 or more) for a particular class are considered as
gold-standard, with the reminder rejected. �e gold-standard data
set contains 9,218 venues: public=6591; private=862; virtual=1765.

We follow standard rules of thumb for spli�ing a sample into
a training set, a development set, and a test set. In particular, we
divide instances of each place category from the gold-standard into
the ratio of 3:1:1 for training, development, and testing, respectively.
�e �nal distributions are presented in Table 2.

6 EXPERIMENTS
Experiments for learning are run in a two-step process. First, N =
10 individual classi�ers are learned over the features extracted
from SP and LR on the training instances. For each classi�er Ci ,
Fi . (global F -measure) and Fi j (F -measure for class Mj ) values
are stored. All experiments were run over the Weka platform.9
Following Weka’s denomination, the list of the 10 classi�ers is as
follows: NaiveBayes, NBTree, MultilayerPerceptron, RandomForest,
J48, LMT, RBFNetwork, Logistic, SimpleLogistics, and SMO. In order
to assess the quality of each individual classi�er, each one was
tested on the test set containing 1844 venues. �e results of the
top-5 classi�ers are given in Table 3.

�e second step of the experiment is the optimization proce-
dure. For that purpose, we used the development set consisting
of 1844 venues. Based on the development set, the evolutionary
optimization using NGSA-II is run for three representations (SCE,
BVCE, RVCE) and the best solution is selected based on maximum
F -measure as de�ned in equation (6). Performance results are pre-
sented in Table 1 and compared to two baseline ensemble techniques
(BSL1, BSL2). BSL1 corresponds to Boosting with the single Logistic
classi�er, and BSL2 is a SVM solution with 10 features, each one
corresponding to the output class (i.e., public, private, virtual) of
each of the 10 classi�ers.

As expected, our methodology signi�cantly outperforms BSL1
and BSL2 in terms of F -measure for the RVCE representation. In
particular, BSL1 su�ers from the use of a single classi�er family

7h�ps://dev.twi�er.com/docs/streaming-apis/streams/public
8h�p://www.crowd�ower.com/
9h�p://www.cs.waikato.ac.nz/ml/weka/
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Method RVCE BVCE SCE BSL1 BSL2
Public (p, r, f1) (0.77,0.75,0.76) (0.73,0.71,0.72) (0.75,0.74,0.74) (0.67,0.65,0.66) (0.66,0.65,0.65)
Private (p, r, f1) (0.79,0.77,0.78) (0.74,0.71,0.72) (0.78,0.75,0.76) (0.68,0.66,0.67) (0.67,0.67,0.67)
Virtual (p, r, f1) (0.76,0.74,0.75) (0.72,0.71,0.71) (0.75,0.73,0.74) (0.66,0.64,0.65) (0.65,0.63,0.64)
Overall (p, r, f1) (0.76,0.74, 0.75) (0.73,0.71,0.72) (0.73,0.73,0.73) (0.68,0.65,0.66) (0.66,0.65,0.65)

Table 1: Precision (p), recall (r), and f-measure (f1) achieved by di�erent ensemble learning strategies for the place-type tagging
task.

Dataset Public Private Virtual Total
Training 3955 516 1059 5530

Development 1318 173 353 1844
Test 1318 173 353 1844

Table 2: Distribution of places in training, development, and
test sets.

Classi�ers Precision Recall F -measure
Logistic 0.65 0.64 0.64

SMO 0.63 0.64 0.64
RandomForest 0.59 0.58 0.58

LMT 0.58 0.56 0.57
SimpleLogistics 0.56 0.55 0.56
Table 3: Results of single learning strategies.

while BSL2 cannot generalize over the small amount of training
data. Moreover, the most �ne-tuned strategy in terms of ensemble
learning demonstrates improved results when compared to coarse-
grain solutions. Improvements of 3% and 2% are shown against
BVCE and SCE, respectively. In Table 4, we provide some exam-
ples of venues tagged as public, private, and virtual by the RCVE
representation.

Public Private Virtual
CST Brands Corner Store My Grand Villa BlogtoRead
Central Park West, NYC Kia Optima Ex. MoneyGram

Astoria Plaza, HK Static Caravan TransferWise
CDG Airport My Farm house Boohoo
Wells Fargo Apt. Home Lavish Alice

Table 4: Examples of automatically tagged public, private,
and virtual places.

In order to understand the spectrum of the di�erent solutions
on the Pareto front, we present in Table 5 three di�erent situations:
the solution that maximizes precision (line 1), the solution that
maximizes recall (line 2) and the solution that maximizes F -measure
(line 3). Results show that high overall performances are provided
by every solution. However, depending on the application at hand,
one may expect to �nd a be�er tuned con�guration.

Measures Recall Precision F -measure
Max precision 0.69 0.79 0.73

Max recall 0.78 0.70 0.73
Max F -measure 0.74 0.76 0.75

Table 5: Precision and recall spectrum.

7 APPLICATION
We propose to test the usefulness of place-type tagging in the con-
text of POI recommendation in LBSNs since it can be bene�cial for
many scenarios. including helping users explore a�ractive loca-
tions, as well as helping LBSNs to increase revenues by providing
users with intelligent location services and location-aware adver-
tisements. Note that our ultimate goal here is to examine whether
place-tagging can improve the overall performance of a POI recom-
mendation system.

With the available check-in records, existing recommendation
approaches can be employed for POI recommendation in LBSNs
by treating POIs as items. �ese approaches are mainly centred
around collaborative �ltering and matrix/tensor factorization [40].
In this experiment, we used neural networks to complete the task
for several reasons: (i) it is natural to consider the POI recommen-
dation problem as a sequential prediction problem since a user’s
visiting history can be considered as a sequence of venues, (ii) neu-
ral networks have been successfully applied to tackle sequence
prediction problems [24, 41], and (iii) neural networks can learn
richer representations compared to matrix factorization, and are
more powerful in modeling complex relationships [4].

We formulate the POI recommendation problem as a sequential
prediction problem [26]. Let U={u1,u2, ..u |U |} be the user set and
P={p1,p2, ..p |P |} be the set of venues/places in our data set. For
each user u, there is a sequence of places visited by the user rep-
resented as Su=(B1

u ,B
2
u , ..B

t−1
u ), where Btu is a set of venues/places

visited by user at time t (we considered time t of granularity one
day). �e sequential prediction problem is to predict Btu for each
user u, given Su .

In this work, we propose to follow the work of [34] and introduce
neural network-based recommender (NNR) framework consists of
three layers: embedding, hidden, and output layers. �e embedding
layer takes a user id and the venues in the user’s last k baskets. In
the dataset, following the notion of item recommendation, basket
is de�ned as a list of places visited by a user on one day. First,
the inputs are transformed into a distributed representation where
each user and place are represented as a vector u ∈ Rdu and v ∈
Rdp , respectively. We obtain the user matrix U ∈ Rdu∗|U | and
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place matrix V ∈ Rdp∗|P | by pu�ing all user and place vector
together. Both U and V are learned during training. �e output
of the embedding layer is the concatenation of the user’s and the
place’s representation and can be represented as h1 = Rdu+k∗dp .
It can be considered as representative of both the user’s personal
interest (what places the user likes) and sequential relatedness
between places (the e�ect of places visited before compared to
places visited next).

�e next layer in the proposed neural network model is a non-
linear hidden layer, which transforms h1 to a hidden representa-
tion h2 with dimensions l . Here h2 = tanh(W1h1 + b1), where
W1 ∈ Rl∗|h1 | ,b1 = Rl∗1 are parameters to be learned. tanh, the
most commonly used activation function in neural networks, is
considered for this experiment. Finally, the output layer is a so�max
layer, which produces the probabilities of the next places:

s =W2h2 + b2, Pr(i j ∈ Bt |u,Bt−1, ..,Bt−k ) =
e
sij∑ |P |

n=1 e
sin

whereW2 ∈ R |P |∗l ,b2 ∈ R |p |∗1 are parameters to be learned.
Our model has several advantages over existing state-of-the-art

methods such as collaborative �ltering and matrix/tensor factor-
ization. Firstly, it can successfully model longer dependencies by
varying the window size k (i.e. by taking a list of places visited by
a user over a longer period of time) of the embedding layer, while
other methods only capture the in�uence of recently visited places.
Secondly, the embedding layer is �exible and capable of handling
other features such as user and place a�ributes other from user ids
and place ids. Finally, the hidden layer gives the freedom to model
more complex relationships between users and places.

We conduct experiments to access the e�ectiveness of our ap-
proach on the check-in records collected for the period 1 March
2014 to 1 April 2014. Firstly, we split the dataset D into two non-
overlapping sets: a training set Dtrain and a test set Dtest . Again
we followed standard procedure for spli�ing a sample into a train-
ing set, a development set, and a test set. In particular, the spli�ing
is done by pu�ing places visited by each user in the last week of our
collection period into Dtest , and the remaining ones into Dtrain .
We used training data to create recommendations, and then we
checked whether a user had followed the recommendation during
the testing period, i.e. a �xed time period of one week. For each
user we discarded all places from the test set (and corresponding
predictions) that this user had already visited in the past, under the
assumption that recommending to users new locations that they
have never been to before is of greater importance recommending
some already visited location. Note that this makes the prediction
task much harder, as simply recommending already visited places
is trivial.

Based on the test set, the dimensions of h2(i .e ., l), user vector
(i.e.,du ), and place vector (i.e.,dp ) are optimized. We recommend
the top-C places for each user, denoted as B̂tu , and use recall and
precision over all test baskets using the top-5, -10 and -20 lists for
evaluation. Precision (p) and recall (r) are de�ned as follows.

p =

∑
u
|Btu ∩ B̂tu |

|U| ∗C , r =

∑
u
|Btu ∩ B̂tu |∑
u
|Btu |

Figure 2: Precision and recall of neural networks based rec-
ommender with and without private place �ltering. NNR
represent model without private place �ltering while the
model, denoted as NNR-WF, includes private place �ltering
step.

In order to check the usefulness of place-type tagging in POI
recommendation, an additional �ltering step is introduced. Specif-
ically, we removed places tagged as private from the dataset and
measured the performance of NNR. Note that for �ltering of private
places, high precision is preferred over recall and so the solution
presented in the �rst line of Table 5 is considered. Comparative
precision and recall scores are presented in Figure 2(a) and (b), re-
spectively. �e �gures show that the neural network recommender
with the private place �ltering step included (denoted as NNR-WF
in the �gures) is slightly be�er in terms of precision and recall than
its counterpart. Note that only unvisited POIs are recommended
for each user which explains the somewhat low performance of
all methods. Results also indicate that place-type tagging can be
utilized in the data preprocessing step to enhance the performance
of POI recommendation.

8 CONCLUSIONS
To the best of our knowledge, we presented the �rst work on detec-
tion of place-type in location-based social networks. We adopted
supervised machine learning strategy to tackled the problem of
tagging places as public, private, or virtual. Due to the small amount
of ‘gold standard’ training data, we proposed an ensemble learn-
ing solution, the underlying idea of which is to reduce bias by
combining multiple classi�ers instead of relying on a single one.
In particular, recently developed multi-objective-based ensemble
techniques have been applied to improve overall accuracy. By
extracting e�ective features from check-in records and exploring
large amounts of unlabeled data, our work achieves reasonable
accuracies for all place types. Finally, we proposed to take a look at
how recommender systems can bene�t from this task. Precisely, we
examined neural network-based POI recommendation and reported
comparative results where place-type tagging is considered as an
intermediate module. In future, we would like to consider other
neural networks which can model longer sequential dependencies
and use additional features such as user’s immediate social circle
and place a�ributes for POI recommendation.
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