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ABSTRACT
Semantic Web, and its underlying data format RDF, lend themselves

naturally to navigational querying due to their graph-like structure.

�is is particularly evident when considering RDF data on the

Web, where various separately published datasets reference each

other and form a giant graph known as the Web of Linked Data.

And while navigational queries over singular RDF datasets are

supported through SPARQL property paths, not much is known

about evaluating them over Linked Data. In this paper we propose

a method for evaluating property path queries over the Web based

on the classical AI search algorithm A*, show its optimality in the

open world se�ing of the Web, and test it using real world queries

which access a variety of RDF datasets available online and that

are not necessarily known in advance.
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1 INTRODUCTION
�e Resource Description Framework (RDF) [30] is the World Wide

Web consortium (W3C) standard for representing Semantic Web

data. In essence, an RDF graph is a set of triples of internationalised

resource identi�ers (IRIs), where the �rst and last of them represent

entity resources, and the middle one relates these resources, just

as is it done in graph databases [4]. �e o�cial query language for

RDF databases is SPARQL [15].

To answer the need for including navigational features into

SPARQL, the latest version of the language includes property paths,
a set of queries that can be seen as the analogues of established

graph database languages such as regular path queries and two-way

regular path queries [11]. Consequently, property paths are already

supported by the vast majority of existing SPARQL engines (e.g.,

[10, 24, 37]). �e inclusion of navigational queries is also present

in most other graph database models (see e.g. [4, 7]).

Besides the traditional approach where one issues a query over a

(set of) graph databases, the community has further raised the need

for a fundamentally di�erent way of querying RDF data: to obtain

answers of queries over the whole corpus of RDF data present on the

Web and linked together into what is known as the Web of Linked
Data, in a distributed way and without assuming any mediation

nor centralised organisation in control of the data, following the

Linked Data Principles [9].

�e fundamental property of RDF data that makes this querying

possible is that the IRIs in RDF documents published online should

be dereferenceable. �is basically means that by accessing any given

IRI, we obtain a new RDF document describing its neighbourhood

(or a part of it) in the Linked Data graph. Let us explain how this
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works using the online RDF documents published by DBLP, one

of the simplest datasets now forming part of the Web of Linked

Data. In the RDF representation of DBLP, each researcher is given a

unique IRI, as well as each paper. �e authorship relation indicating

that an author A wrote a paper P is then represented by the triple

{P , dc:creator,A}. �e IRI for each author, then serves as a good

starting point for investigating the DBLP dataset, as dereferenc-

ing their IRI will intuitively give us all the papers wri�en by this

author. For example, if we dereference the IRI M.Stonebraker, rep-

resenting Michael Stonebraker, we obtain a document containing,

amongst other things, the following triples

M.Stonebraker foaf:name “M. Stonebraker”

inTods:StonebrakerWKH76 dc:creator M.Stonebraker
inSigmod:PavloPRADMS09 dc:creator M.Stonebraker

�ese triples indicate that M.Stonebraker is the author of

the papers represented by IRIs inTods:StonebrakerWKH76 and

inSigmod:PavloPRADMS09, and that the name of the entity repre-

sented by M.Stonebraker is indeed “Michael Stonebraker”. Sup-

pose now that we need to retrieve the names of all the co-authors

of Michael Stonebraker. It is very easy to do this using the linked

data infrastructure: We �rst dereference the IRI M.Stonebraker,

obtaining an RDF document that contains, in particular, a triple

{P , dc:creator, M.Stonebraker} for each paper P authored by M.

Stonebraker. �en we just need to dereference each of the IRIs of

these papers: dereferencing each of these IRIs P gives us triples of

the form {P , dc:creator,A}, and now we know that A is a coau-

thor of M. Stonebraker. �e last step is to further dereference the IRI

of each of these researchers, to look for a triple {A, foaf:name,N }
that indicates the name of the researcher (in this case N ).

Of course, the query looking for co-authors of Michael Stone-

braker can be seen as a �xed pa�ern: namely, it is a path of length

two, starting in the IRI M.Stonebraker and traversing the edge

dc:creator backwards (thus reaching a paper wri�en by Michael

Stonebraker), and then traversing the dc:creator edge forwards

to reach one of his co-authors. But what happens when we want to

generalise this query and obtain the collaboration reach of Michael

Stonebraker, that is, his co-authors, the co-authors of his co-authors,

their co-authors, etc? �is is similar to the popular notion of Erdős

number, but this time starting with a di�erent author. To answer

such a query a �xed length path will no longer su�ce, since we do

not know the distance between the starting node and the ending

node in advance. We therefore need to use property paths; in this

case this would be done using the query

M.Stonebraker (ˆdc:creator/dc:creator)* ?x,

which repeats the simple path from one author to a paper (using

ˆdc:creator to follow an edge labelled dc:creator in a reverse

direction) and then to another author (using dc:creator) an arbi-

trary number of times, as signi�ed by the star operator *. �e idea

is as before, but now once a co-author is retrieved, search does not

stop, but continues with this (co-)author as the starting node.
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When evaluating these queries we have only dereferenced and

fetched the documents that we needed in order to answer the query,

and thus we are taking full advantage of the nature of Linked Data.

�ere is another fundamental advantage of this approach: we can

cross between di�erent domains without any e�ort by using the

infrastructure of the Web, which happens when a dereferenced

IRI links to another IRI residing on a di�erent server. �is is in

contrast with, for instance, issuing a single distributed query to

a centralised endpoint, since we can access an arbitrary number

of di�erent sources. Furthermore, we can access data that is not

published on dedicated endpoints; all that we need is data published

on the standard Web architecture. Up to our best knowledge, this

framework of distributed, decentralised and ungoverned querying

has not been considered before the advent of Linked Data.

�e advantages of these approaches have led the Semantic Web

community to investigate the fundamentals of querying over the

Web [18], and developing algorithms for answering SPARQL queries

over Linked Data [19, 35]. Unfortunately, despite the potential that

property paths could have in Web querying, most of the algorithms

developed in this context focus on the pa�ern matching features of

SPARQL, and do not consider property paths. Indeed, the majority

of studies about property paths only consider how they work over

a single centralised dataset [5, 14, 26, 38]. And while the need

for understanding how property paths might work over the Web

has repeatedly been raised by the research community [8, 20, 21],

previous studies have mostly focused on understanding appropriate

semantics and/or proposing new languages to help users navigate

the Web, instead of describing the algorithms computing these

answers. �e only exception is [13], suggesting a basic depth-�rst

search algorithm in the context of NautiLOD queries: a language

proposal that extends property paths. �erefore, the main objective

of this paper is to answer the question: How can one e�ciently
evaluate property path queries over the Web of Linked Data?

Contributions. Our main contribution is an algorithm for e�-

ciently retrieving answers to property path queries over Linked

Data. Our solution is based on the observation that evaluating

property paths can be seen as a search problem over an initially

unknown graph. Indeed, in the examples above we start from one

known IRI (M.Stonebraker) and begin exploring its neighbours

guided by the query we are trying to answer. But this problem has

been well studied by the Arti�cial Intelligence community, and it

is generally agreed that the most appropriate solution here is an

heuristic-search algorithm such as A* [16, 31]. In this paper we

propose a variant of A* for the se�ing of Linked Data by using the

property path we are trying to answer as a heuristic to guide our

search. �e main advantages of this approach are the following:

- It allows to overcome shortcomings of basic graph traversal

algorithms such as depth-�rst search (DFS) and breadth-�rst

search (BFS). In fact, we show that A* dominates BFS and DFS,

and that it is optimal with respect to the part of the graph that

became available during the search. �is, in some sense, is the

best we can hope for in the open-world se�ing of the Web.

- It does not only allow to �nd pairs of nodes connected by a

property path, but it can also return (one of the) shortest paths

which witness this connection: a feature that existing SPARQL

engines are currently lacking.

- It is very robust when evaluating property paths live over the

Web infrastructure, and can o�en answer queries which fail even

on SPARQL implementations executed over a local dataset.

Apart from describing the basic implementation of the A* al-

gorithm and proving its optimality, we also develop several op-

timisations geared towards query answering in the Linked Data

se�ing. Most notably, we show that dereferencing multiple IRIs

in parallel can speed up the computation of property paths signi�-

cantly. Finally, we describe how our implementation runs over the

Web of Linked data using a number of real-world queries which

utilise di�erent RDF datasets. We compare our approach to BFS

and DFS-based algorithms and their parallel versions, showing that

A* is superior when it comes to querying over the Web.

Outline. We formalise Linked Data and property paths in Section

2. In Section 3 we describe how DFS and BFS can be used to answer

property path queries and what are their shortcomings. In Section

4 we introduce the A* algorithm and show its optimality. Optimi-

sations are presented in Section 5, and real-world experiments in

Section 6. We conclude in Section 7.

2 PRELIMINARIES
RDF graphs. Let I and L be countably in�nite disjoint sets of

IRIs and literals, respectively. An RDF triple is a triple (s,p,o) from

(I ∪ L) × I × (I ∪ L), where s is called subject, p predicate, and o
object. An (RDF) graph is a �nite set of RDF triples. For simplicity

we only deal with RDF documents that do not contain blank nodes.

Linked Data. We are interested in computing navigational queries

over the wide body of RDF documents published on the Web that

comprise what is known as the Web of Linked Data. As customary

in the literature (see e.g. [3, 17]), we treat this corpus of documents

as a tuple W = (G, adoc), where G is a set of RDF graphs and

adoc : I → G ∪ {∅} is a function that assigns graphs in G to

some IRIs, and the empty graph to the rest of the IRIs. Note that

previous work (e.g. [17]) usually de�nes adoc as a partial function.

We adopt instead the convention that adoc(u) = ∅ whenever adoc
is not de�ned for u, as it simpli�es the presentation.

�e intuition behind this de�nition is that G represents the

set of documents on the Web of Linked data, and adoc captures

dereferencing; that is, adoc(u) gives us the neighbours of u in G.

Note that G is usually not available and has to be retrieved by

looking up IRIs with adoc.

Example 2.1. We can now formalise the operations performed in

the introduction over the linked data architecture of DBLP. Starting

with the IRI M.Stonebraker, we can invoke adoc on this IRI to

fetch its associated graph

adoc(M.Stonebraker) =
M.Stonebraker foaf:name “M. Stonebraker”

inSigmod:PavloPRADMS09 dc:creator M.Stonebraker

.

.

.

.

.

.

.

.

.

When looking for the coauthors of M. Stonebraker, we might

want to fetch adoc(inSigmod:PavloPRADMS09), which will give

us a graph containing, amongst other things, triples of the form

(inSigmod:PavloPRADMS09, dc:creator,A), with A being the IRI
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of the authors of the paper. To get the name ofA we fetch the graph

adoc(A) and look for the triple with foaf:name as the predicate.

Property Paths. Navigational queries over graph databases com-

monly ask for paths that satisfy certain properties. �e most simple

of them correspond to regular path queries, or RPQs [2, 12], which

select pairs of nodes connected by a path conforming to a reg-

ular expression, and 2-way regular path queries, or 2RPQs [11],

which extend RPQ with the ability to traverse an edge backwards.

SPARQL features a class of navigational queries known as property
paths, which are themselves an extension of the well known class of

2RPQs. For readability we assume we deal only with 2RPQs, adopt-

ing the formalisation in [26]. Note however that our algorithms

(and our implementation) work for all property path expressions.

Formally, we de�ne property paths by the grammar

e := u | e− | e1 · e2 | e1 + e2 | e∗ | e?,

where u is an IRI in I. �e semantics of property paths, denoted by

JeKG , for a property path e and an RDF graph G, is shown below.

JaKG = {(s, o) | (s, a, o) ∈ G },
Je−KG = {(s, o) | (o, s) ∈ JeKG },

Je1 · e2KG = Je1KG ◦ Je2KG ,

Je1 + e2KG = Je1KG ∪ Je2KG ,

Je∗KG =
⋃
i≥1

Je i KG ∪ {(a, a) | a is a term in G },

Je?KG = JeKG ∪ {(a, a) | a is a term in G }.

Here ◦ is the usual composition of binary relations, and ei is the

concatenation of i copies of e .

2.1 Evaluating Property Paths via Automata
As in the case of the query computing the coauthor reach of M.

Stonebraker, one is usually interested in computing all the IRIs that

can be reached from a starting IRI u by means of a property path

expression. Formally, we study the following problem.

Problem: PPComputation

Input: Property Path e , RDF graph G, starting IRI u
Output: All IRIs v such that (u,v) ∈ JeKG

Alternatively, one may wish to compute the full evaluation JeKG
of pairs connected via a path conforming to e . However, this op-

eration is seldom used in practice: it is not an intuitive query to

ask, and when using property paths in SPARQL one usually obtains

starting points from other pa�erns or joins of pa�erns. Also, com-

puting the full JeKG is not even supported in all SPARQL systems

(for instance Virtuoso allows only property paths with a starting

point). Furthermore, as we will see in the following sections, in

the open world se�ing of Linked Data it is only natural to have a

starting point for our search, since it is unrealistic to expect the

computation to traverse and manipulate the entire Web graph. �is

is why we chose to focus on PPComputation.

To solve the PPComputation problem, the theoretical literature

proposed a simple algorithm based on automata theory. To present

this algorithm, note �rst that our property paths are nothing more

than regular expressions over the alphabet I± = I ∪ {u− | u ∈ I}
that contains all IRIs and their inverses. �us, for each property

path e we can construct a nondeterministic �nite state automaton

(NFA)Ae overI± that accepts the same language as e , when viewed

as a regular expression. We can now show:

Proposition 2.2 ([11, 12, 26]). PPComputation can be solved in
O(|G | · |e |) (thus linear in both the size of the graph and the query).

�e idea is as follows. Let G be an RDF graph, e a property

path expression and u an IRI. First, we construct the automaton

Ae = (Qe ,I±,q0

e , Fe ,δe ) equivalent to the query e , whereQe is the

set of states, q0

e is the initial state, F is the set of �nal states and

δe ⊆ Qe × I± × Qe is the transition relation. Next, from G and

Ae we construct the labelled product graph G ×Ae whose nodes

come from I × Qe , and there is an edge from a node (u1,q1) to

a node (u2,q2) labelled with a ∈ I if and only if (i) G contains a

triple (u1,a,u2) and (ii) the transition relation δe contains the triple

(q1,a,q2), that is, if in Ae one can advance from q1 to q2 while

reading a. Similarly, there is an edge between (u1,q1) and (u2,q2)
labelled with a− ∈ I− if (i) (u2,a,u1) ∈ G and (ii) (q1,a

−,q2) ∈ δe .

It is now not di�cult to show the following property:

Lemma 2.3 ([12]). A pair (u,v) belongs to JeKG if and only if there
is a path from (u,q0

e ) to (v,q
f
e ) in the labelled graph G ×Ae , where

q
f
e ∈ Fe is a �nal state of Ae .

We can now solve the PPComputation problem by traversing

the product graph G ×Ae starting in (u,q0

e ) and returning all the

IRIs v such that we encounter a node (v,qfe ), with q
f
e ∈ Fe , during

our traversal. �us, in a sense, one can recast the problem of query

computation (in a single graph) as the problem of searching for all

connected �nal nodes in the product graph. �is duality between

evaluation and search is a crucial component of our approach for

querying multiple graphs on the Web of Linked Data.

3 COMPUTING PROPERTY PATHS OVER
THEWEB

When computing the answer of a property path over the Web, we

cannot simply rely on the algorithm outlined in Section 2.1, because

this assumes that we have our entire graph in memory, which is

not a feasible option for the case of the Web. Having a starting

IRI u comes in handy here, as we can emulate the algorithm from

Section 2.1 by dereferencing u, retrieving its neighbours in adoc(u),
and continuing from there, thus building a local copy of a portion

of the Web graph needed to answer the query.

To formalise this, let us de�ne the Web graph G
Web

as the RDF

graph consisting of the union

⋃
u ∈I adoc(u) of all the graphs result-

ing by dereferencing an IRI in I (i.e. the complete Web of Linked

Data). From here onwards we assume that adoc(u) gives us the

neighbours of u in the Web graph (see Section 5.2 for a discussion

of how to deal with the shortcomings of the current Linked Data

infrastructure). �e problem we are now interested in is solving

PPComputation above for the graph G
Web

, i.e. the problem:

Problem: PP over the Web

Input: Property Path e , starting IRI u
Output: All IRIs v such that (u,v) ∈ JeKGWeb

Now, although the approach of Section 2.1 would require us to

do our search over G
Web
× Ae , we can recast PP over the Web

as �nding paths inside a subgraph GP ⊂ G
Web
× Ae which is
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constructed dynamically by dereferencing IRIs starting at u. And

although the graph GP might be much smaller (in fact, we can

stop constructing it when we desire), selecting the best algorithm

for producing this graph and doing path searching over it is not

an obvious task, due to the following issues not occurring in the

classical path-�nding se�ing.

First, path-�nding algorithms are designed to work with graphs

that can be either stored in memory or generated e�ciently. In

contrast, graph GP is generated by dereferencing IRIs which in-

volves resolving a number of HTTP requests. �e time required

to complete a request dominates signi�cantly the time required to

carry out any operation performed in memory. E�cient algorithms

for this problem should therefore aim at reducing network requests,

a factor that is usually not considered when solving path-�nding

problems. �e second issue is that here we are interested in more

than one solution. As such, an algorithm that returns answers

incrementally seems to be a more sensible option than one that

computes all answers prior to returning any.

Next, we discuss how classical path-�nding algorithms can be

modi�ed to return answers to property path queries over the Web

and pinpoint some of their shortcomings in this se�ing.

3.1 Depth-First Search
Depth-First Search (DFS) is an easy-to-implement path-�nding algo-

rithm that can be used to solve the PP over the Web problem. On

input a starting IRI u and an automaton Ae over I±, the algorithm

begins a search over the graph G
Web
×Ae starting with the node

init = (u,q0

e ), where q0

e is the initial node of Ae . �e goal of the

algorithm is to look for nodes of the form (v,qf ), with v an IRI and

qf a �nal state ofAe ; this is commonly known as the goal condition

of the algorithm. At every moment during execution, the algorithm

maintains a search frontier (or Open list) implemented as a stack.

At initialisation, the frontier is set to only contain the start node

init. In the main loop, a node s is extracted from the frontier and

expanded by computing its neighbours in G
Web
×Ae , by means of

the function Neighbours. All neighbouring goal nodes are returned,

and then all neighbours that have not been previously added to the

frontier are now inserted at the top of the frontier. �e algorithm

terminates unsuccessfully if the frontier empties.

A pseudo code for DFS is presented in Algorithm 1. Note that we

need Open to be a stack for DFS (Line 7). Observe additionally that

the algorithm does not return a path but rather a node from which

a path can be obtained by following the so-called parent pointers

(set in Line 11). Finally, observe that in the context of navigational

query answering, computing the neighbours of a node (function

Neighbours) needs IRI dereferencing (set in Line 16) which in turn

requires network communication, an operation that may take sig-

ni�cantly more time than others carried out by the algorithm, such

as data management.

�ere are three properties of DFS that are important for query

answering. First, DFS can be easily modi�ed to return paths in-

crementally instead of only one path. Indeed, instead of returning

in Line 12, the node just found to be a goal node can be added to

a list of solutions. In the same spirit, one can easily adapt DFS

to return the �rst k solutions by introducing k as an additional

parameter. Second, DFS is complete for �nite graphs: if a goal node

Algorithm 1: Breadth/Depth-First Search

1 function Search(u, Ae )
2 init← (u, q0

e )
3 init.parent← null
4 if q0

e ∈ Fe then return init or add init to solutions

5 Initialise Open as an empty stack (DFS) or queue (BFS)

6 Initialise Seen as an empty set

7 Insert init into both Open and Seen
8 while Open is not empty do
9 Extract node s = (v, q) from Open and compute Neighbours(s)

10 for each t = (v ′, q′) in Neighbours(s) that is not in Seen do
11 t.parent← s
12 if q′ ∈ Fe then return t or add t to solutions

13 Insert t into both Open and Seen

14 function Neighbours((v, q))
15 Initialise Succ as an empty set and RDF graph Gtemp as an empty graph

16 Gtemp ← adoc(v)
17 for each IRI a ∈ I and state q′ s.t. (q, a, q′) is in δe do
18 for each triple (v, a, v ′) in Gtemp do Insert (q′, v ′) into Succ

19 for each IRI a− ∈ I− and state q′ s.t. (q, a−, q′) is in δe do
20 for each triple (v ′, a, v) in Gtemp do Insert (q′, v ′) into Succ
21 return Succ

is reachable from init then the algorithm eventually retrieves this

node. �is is important because it guarantees that all solutions

to a query are eventually returned. �ird, the memory footprint

of DFS is relatively low. Actually, if the depth of the node on top

of the stack is k and the maximum branching factor (number of

neighbours of a node) is b, then the size of Open is O(kb).
To see how DFS works when solving PP over the Web, let

us consider the �rst steps taken when processing the prop-

erty path (dc:creator− · dc:creator)∗, with the starting IRI

M.Stonebraker, which was presented in the introduction. First, let

Ae be the following NFA:

q0start q1

dc:creator−

dc:creator

As explained in Lemma 2.3, the starting node for our search

is (M.Stonebraker,q0). In the �rst iteration we extract this

node from Open, dereference the IRI M.Stonebraker, obtain-

ing, amongst others, the triple (inTods:StonebrakerWKH76,

dc:creator, M.Stonebraker). �is will allow us to add to our

frontier the node (inTods:StonebrakerWKH76,q1) and we pro-

ceed similarly for other triples in adoc(M.Stonebraker). For the

second iteration, let us assume (inTods:StonebrakerWKH76,q1)
is at the top of the stack. When expanded, DFS will lookup

adoc(inTods:StonebrakerWKH76) and retrieve, amongst other

things, all nodes connected to inTods:StonebrakerWKH76 by

means of a label dc:creator. �is, in particular, yields all 4 au-

thors of this paper, but (M.Stonebraker,q0) is not added to Open
because it was already in Seen. For the next iteration DFS takes one

of these nodes, say (G.Held,q0), expands them again, obtaining all

papers of G. Held; the next iteration expands one of these papers,

adds all the authors to the list of answers; and so on.

Algorithm 1 implements a loop detection by preventing the in-

sertion of a previously seen node to Open. �is is important to

guarantee that the algorithm terminates over a �nite graph and

that the answers are complete. In our case this implies that we

are looking for simple paths, albeit not in the RDF graph but in
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the product graph G
Web
× Ae . In practice this implies that our

algorithm looks for paths where the same IRI may be repeated at

most a number of times equivalent to the states of the expression

automata Ae . Completeness of DFS in our context follows from

a simple pumping argument and the fact that property paths are

regular expressions over I±.

�e most notable drawback of DFS is that there is no guaran-

tee on solution quality, and solutions with much shortest paths

may be missed. For instance, in the query above it will return the

co-authors of G. Held, which are at distance two or more from

M. Stonebraker, before returning the other authors of the paper

inTods:StonebrakerWKH76. In practice this means that we would

need many more HTTP requests to retrieve subsequent solutions,

which in turn means more time to compute answers.

3.2 Breadth-First Search
To alleviate the drawbacks of DFS, one could consider instead using

Breadth-First Search (BFS), another complete search algorithm that

is guaranteed to �nd shortest paths. BFS is similar to DFS in most

aspects: it keeps a search frontier (i.e. the Open list) during execu-

tion and in each iteration it extracts a node from the frontier and

then expands it. �e most important di�erence is that BFS, instead

of always expanding the deepest node in the frontier, it always

expands the shallowest one. At the algorithmic level, BFS can be

obtained from DFS by simply changing underlying data structure

for Open to a FIFO queue instead of a stack. As such, successors of

a node are always added at the end of the queue, and therefore a

shallow node is always selected for expansion.

However, BFS also su�ers from an important drawback in our

context: BFS has the potential of needing many iterations to �nd

a �rst solution to the problem. Indeed, assume once again that a

node has at most b neighbours, and imagine that the shortest path

in the search graph has k edges. �en, all nodes that are reachable

in less than k edges are added to Open which means that O(bk )
iterations are needed before such a path is found.

3.3 Issues with BFS and DFS
Both BFS and DFS have issues with some queries. Consider for

example the following query, starting with M. Stonebraker:

(dc:creator− · dc:creator)∗ · dc:creator− · rdfs:label,
that is, intuitively we want to retrieve the papers wri�en by a

co-author of M. Stonebraker, or by a co-author of some of his co-

authors, and so on. Furthermore, take the realistic assumption

that there are hundreds of IRIs connected via dc:creator− with M.

Stonebraker (indeed, Stonebraker’s DBLP entry, as of the writing

of this paper, contains 298 papers).

Let us now focus on what BFS does with this query. It will �rst

dereference the IRI for Stonebraker, adding the IRI of each of his

298 papers to Open. �en, it will dereference each of these IRIs,

which requires 298 requests over the network. When each of these

IRIs are expanded, we add to Open the co-authors of Stonebraker.

Only a�er all the IRIs for Stonebraker’s papers are expanded, it will

expand the IRI of one Stonebraker’s coauthors, and, immediately

will �nd a solution path.

Waiting for 298 HTTP requests before obtaining the �rst answer

is not sensible: in this case only three requests are needed to �nd

the �rst answer. Indeed, starting from Stonebraker’s IRI, we just

choose the IRI for one of Stonebraker’s papers, we expand such an

IRI, from where we choose the IRI of one of his co-author’s. A�er

dereferencing the la�er IRI we �nd the �rst solution.

DFS has di�erent yet important issue with this very same query.

To �nd a �rst solution, DFS actually does the minimum amount

of e�ort, dereferencing the minimum number of IRIs, as described

above. �e issue appears when looking for the answers that follow

the �rst. Because the focus of DFS is depth, when executed over

DBLP, the 5
th

answer of our query has length 6, the next 4 answers

have length 12, and the following ones 32 and up. �is implies that

DFS will incur in more computation time to retrieve these answers,

as well as more h�p requests. Moreover, returning these lengthy

paths �rst does not seem intuitively right, as we normally want to

display simpler, shorter paths �rst. Indeed, it is not hard to contrive

examples in which the length of solutions increases much faster

than in our examples, even when many shorter solutions exist.

What we need is a good balance between execution time and

solution quality. In our example, a sensible way to proceed would

be to take the IRI for the �rst paper, look at its authors, list them,

and then proceed likewise with the second paper. �is balance

has been studied in the area of Heuristic Search, for many years,

producing algorithms that are guided by a heuristic function h, that

is such that h(s) estimates the cost of a path from s to a goal node.

Expansions are signi�cantly (usually, exponentially) reduced as one

improves the “quality” of h. Next we discuss the challenges of using

of using heuristic search over Linked Data.

4 AI SEARCH TO THE RESCUE
A* is one of the most simple and well-studied heuristic algorithms

capable of solving path search problems like the one we described

in the previous sections. In this section we study how to apply it to

the problem of answering property paths over the Web.

�e main di�erence between A* and the algorithms described

earlier is that the search frontier is a priority queue where the

priority is given by f (s), a function that estimates the cost of a

solution that passes through s [16]. A high-level description of A*

is as follows. At initialisation, the initial node is added to the Open
queue. A* now repeats the following loop: �rst, it extracts a node

with the highest priority from Open. It returns s if it is a goal state;

otherwise, it expands s to obtain its neighbours, adds them to Open
and continues execution. Next we give a formal description of A*.

�e search graph of A* is implicitly described by (1) a start node

sstart ; (2) a set of actions Act ; (3) a partial successor function Succ ,

such that Succ(a, s), if de�ned, returns a set S of successor nodes;

(4) a goal condition, which is a boolean function over nodes—goal
nodes are those nodes for which this function returns true; (5) a non-

negative cost function c between successor nodes. �e objective of

the algorithm is to �nd a path from sstart to a goal node.

An additional argument required by A* is a heuristic function

h, which is a non-negative function over nodes such that h(s) is

an estimate of the cost of a path that starts in s and reaches a goal

node. �e heuristic is key to the performance of A*. An empirically

well-known fact is that as h is more accurate, time savings can be

very big because expansions are signi�cantly reduced. It can be

proven that when h is admissible, that is, for every s it holds that
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Algorithm 2: �e A* Algorithm

1 procedure A*
2 Closed← empty set

3 Open← empty priority queue ordered by f a�ribute

4 д(sstart ) ← 0

5 f (sstart ) ← h(sstart )
6 Insert sstart into Open
7 while Open , ∅ do
8 Extract s from Open
9 if s is a goal node then

10 return s or add s to list of solutions

11 Expand(s)

12 procedure Expand (s)
13 Insert s into Closed
14 for each a in Act such that Succ(a, s) is de�ned do
15 for each s ′ in Succ(a, s) do
16 t ← s ′
17 if t is not in Seen then
18 Add t to Seen
19 д(t ) ← ∞
20 cost ← д(s) + c(s, t )
21 if cost < д(t ) then
22 д(t ) ← cost
23 f (t ) ← д(t ) + h(t )
24 parent (t ) ← 〈s, a 〉
25 if t is a goal and f (t ) ≤ f (top(Open)) then
26 return t or add t to list of solutions

27 if t < Open then Insert t in Open
28 else Update priority of t in Open

h(s) does not overestimate the cost of any path from s to a goal

node, then A* �nds a minimum-cost path from sstart to a goal node.

Algorithm 2 shows a pseudo-code for A*. �e priority function

is de�ned as f (s) = д(s) + h(s), where h is the heuristic function

de�ned above and д(s) is the cost of the best path found so far

towards s . In an implementation of A*, a hash table is used to store

nodes that have been generated in an expansion (cf. Line 18), and

parent-, д-, h-, and f - values are stored as properties of s .
A �nal and important observation is that A* can be easily mod-

i�ed to return a sequence of answers, instead of a single one. In

this case, we simply modify the return statement in Line 10 by

something that adds s to a list.

Using A* for computing property paths. Let us show how

we use A* to solve PP over the Web. �at is, given as inputs

a property path e and a starting IRI u, we look for all v such that

(u,v) ∈ JeKGWeb
. LetAe = (Qe ,I±,q0

e , Fe ,δe ) be the automata over

I± that is equivalent to e . Recall that (see Lemma 2.3 and Section

3) we can reduce this problem to searching for all nodes (v,qf ), for

an IRI v and a state qf ∈ Fe , over the graph GP ⊂ G
Web
×Ae such

that there is a path from (u,q0

e ) to (v,qf ). In turn, this problem

can be seen as an A* description where (1) the start node sstart
is (u,q0

e ); (2) the set Act of actions corresponds to IRIs in I±; (3)
the partial successor function Succ corresponds to the edges of

G
Web
×Ae , that is, if s = (u,q), we say (u ′,q′) ∈ Succ(a, s) if both

(u,a,u ′) ∈ adoc(u), and (q,a,q′) is a transition in Ae , or if both

(u ′,a,u) ∈ adoc(u), and (q,a−,q′) is a transition in Ae ; (4) a node

s = (v,q) is a goal if q ∈ Fe ; and (5) the cost function is 1 for each

pair of nodes connected by Succ.

�ere is an important subtlety that distinguishes our algorithm

from classical A* applications. Just as in the case of BFS and DFS,

q0start

q1

q2

dc:creator− dc:creator

dc:creator−

Figure 1: An automaton �nding papers of the co-authors of
M. Stonebraker.

the successors of (u,q) must be obtained by dereferencing an IRI

(using, for example, the function Neighbours from Algorithm 1).

�is again means that the most costly operation is the expansion of

new successor nodes, and as such any implementation of A* must

try their best to �nd a way of reducing this bo�leneck. We explain

how to do this in Section 5.1. But before, let us see how to choose a

good heuristic function in our scenario.

4.1 A Heuristic for Navigational�eries
Heuristic functions are essential for the performance of A*. We also

want A* to be optimal, so our heuristic must be admissible, that is,

it should not overestimate the cost of path to a goal node.

Let A be an automaton over I±. Our heuristic for this problem

is de�ned as follows: for all nodes (v,q) over I ×Qe , where Qe are

the states of Ae , we de�ne h((v,q)) as the minimum distance from

q to a �nal state of Ae (and as∞ if no path from q to a �nal state

exists). To illustrate our heuristic consider Figure 1, corresponding

to the automaton of the query for papers of the coauthor reach of M.

Stonebraker introduced in Section 3.3. �en we de�ne h(u,q1) = 2,

h(u,q0) = 1, and h(u,q2) = 0, for every u ∈ I. Usually h(u,q) is

implemented as a simple lookup in a table. Given an automaton A
we denote the heuristic de�ned as described above by hA.

Our heuristic hAe is admissible for each property path e , as long

asAe is the minimum NFA for e . To see this, note that the minimum

number of actions required to reach a goal node from node (u,q)
cannot exceed the number of edges of a shortest path between the

automaton state q and a �nal state. �is is because each successor

(u ′,q′) of node (u,q) must be such that there is an edge between q
and q′ in the automaton’s graph.

4.2 �eoretical Guarantees
A well-known property of A* is that is �nds cost-optimal (i.e., short-

est) paths. Here we provide an optimality result of the same sort.

Now, because the function adoc(u) is not necessarily guaranteed

to return all triples containing u, we cannot show optimality over

the entire Web, but rather only over the graph we have already

discovered, that we denote by G
A*

.

Formally, given an execution of A*, the labelled graph G
A*
⊂

G
Web
× Ae contains the edge (s,a, s ′) i� (1) s ∈ Closed , and (2)

s ′ ∈ Succ(a, s). Notice that this correspond to the product ofAe with

the graph that contains all triples present in any of the documents

that have been retrieved so far in our computation. �e following is

an optimality result both for BFS and A* run with our property-path

heuristic.

Theorem 4.1. Let GA* be de�ned as above from a run of A* that
has returned N answers with either h = hAe or h = 0. Let πk be
path found to the k-th solution found by A*, for any k ∈ {1, . . . ,N }.
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Furthermore, let ck be the length of the k-th shortest path from sstart
to any goal state over GA*. �en the cost of πk is ck .

sketch. Let Gi
A*

denote G
A*

right a�er the i-th solution has

been returned. We prove by induction that the i-th solution found

by A* would be the �rst solution found by A* if we were to mark

as non-goals all solutions found prior to the i-th solution. Now we

use the fact that the heuristic is admissible and thus the solution

found is the i-th optimal over Gi
A*

. �

In practice, as we see later on, BFS runs slower than A* with our

heuristic. Interestingly, we can prove that A* is be�er in the sense

that BFS has to expand at least as many nodes as A*.

Theorem 4.2. Let (u, e) be an IRI and a property path. �en every
node expanded by A*, used with hAe , is also expanded by BFS.

Proof. We observe that hAe (s) > 0 for every non-goal state s .
�e result now follows from �eorem 7 in [31]. �

5 OPTIMISING QUERY EXECUTION
In this section we provide several optimisations to the base algo-

rithms presented in Section 3 and Section 4. We start by describing

how parallel expansions can be used in order to reduce the execu-

tion times of our search algorithms. We then explain what are the

current shortcomings of the Linked Data infrastructure and pro-

pose a way to overcome them using endpoints. Finally, we discuss

a way of tweaking the heuristic used in A* in order to both avoid

unnecessary network requests and �nd answers sooner.

5.1 Parallel Expansions
All of our search algorithms function in such a way that they select

a set of nodes which will serve as the starting point in the next

iteration, and then start the search from these nodes one by one.

An issue with this is that a request over the network—which on

average takes more than a second— is needed per each dereference.

Instead of expanding one node at a time, our algorithms can

bene�t greatly from expanding multiple ones in parallel. More

speci�cally, we modify the algorithm to extract up to k of nodes that

could be at the top of theOpen, and expand them in parallel. k is now

a paramenter of the algorithms which can be understood as a degree
of parallelism. To obtain k-BFS and k-DFS, we modify Algorithm 1

such that Line 16 deals with up to k top-valued nodes from Open,

and neighbours are computed for them in paralell. Similarly, k-A* is

obtained by extracting up to k nodes with the highest f -values from

Open in Line 8 of Algorithm 2, and expanding them all in parallel

in line 11. In all 3 algorithms, a�er all successors are computed, we

add them all together to Open, in the same order that we would

have, had the nodes been expanded sequentially. It is then not hard

to see that optimality (�eorem 4.1) still holds for k-A* (and k-BFS).

In Section 6 we show that, depending on the degree of parallelism,

the computation is sped up tenfold in some instances.

5.2 Using �e Endpoint Infrastructure
�e evaluation algorithms presented in previous sections rely on

the dereferencing mechanism of Linked Data and work under the

assumption that when a speci�c IRI is dereferenced, we obtain

all the triples mentioning such an IRI which reside on the server

we are using. Unfortunately, it was shown repeatedly that this is

generally not the case when working with Linked Data [22, 23],

which can lead to incomplete answers since many triples containing

the dereferenced IRI might not be returned. �is is particularly

problematic when working with inverse links, as it is estimated

that publishers include only about a half of the triples where the

requested IRI appears as the object [23].

Many Linked Data providers also set up public SPARQL end-

points where users can query the dataset, so we can partially alle-

viate the lack of Linked Data infrastructure by relying on public

SPARQL endpoints together with Linked Data. When evaluating

property paths over Linked Data, we combine the two approaches

and, each time we dereference an IRI, we also query the appropri-

ate endpoint in order to obtain the triples mentioning the said IRI.

Furthermore, we query the endpoint only asking for links in the

appropriate direction. For instance, if our property paths needs

to traverse the author edge forwards starting from an IRI start,

we ask the query SELECT ?x WHERE {start author ?x} to the

appropriate endpoint and similarly for the backwards edges.

5.3 Minimising Network Requests
We have argued above that dereferencing is an expensive operation.

When A* is modi�ed to �nd multiple answers, as we proposed above

(i.e., by simply adding solutions to a list), some expansions may be

carried out sooner than we would want, leading to unnecessary

dereferencing. Indeed, our heuristic assigns the value 0 to any node

of the form (u,qf ) with qf a �nal state (because the distance to a

�nal state is 0). Assuming qf has outgoing transitions, the standard

A* algorithm would prioritise the expansions of those nodes over

any other node with the same f value, an operation that intuitively

would take us farther from the goal.

We can postpone these expansions by using a slightly di�erent

heuristic, de�ned as follows. Let A = (Q, Σ,qo , F ,δ ) be an NFA.

�e pathmax distance
ˆd(q,q′) between two states is de�ned as

ˆd(q,q′) = 1 + minq |δ (q,a) is de�ned
d(q,q′), if δ (q,a) is de�ned for

at least some a ∈ Σ, or
ˆd(q,q′) = ∞ otherwise; and where d is the

usual graph distance between q and q′. �en the pathmax heuristic

ˆhA with respect to A is de�ned as
ˆhA((u,q)) = minqf ∈F

ˆd(q,qf ),
that is, the minimum pathmax distance from q to any �nal state of

A. �is is a standard technique used by search algorithms in which

a node may have to be re-expanded [25, 33]. Interestingly, one can

see that the pathmax distance
ˆd coincides with the usual distance

in all states of the automata except for the �nal states. We avoid

early re-expansion of nodes with �nal states because the heuristic

for them now corresponds to 1 plus the minimum of the heuristic

value of the neighbours of this state.

6 EXPERIMENTAL EVALUATION
In this section we evaluate how an implementation of A* algorithm

performs when executing property path queries over a real Web

environment. To establish a baseline, we also compare the perfor-

mance of A* with BFS and DFS, the only other algorithms proposed

so far in the literature. We begin by presenting our experimental

setup, the queries, and then compare how A* fares against BFS and

DFS, showing that A* outperforms the other two algorithms on a

regular basis. Next we investigate the impact of parallel requests on
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Figure 2: A* minimises the requests needed to obtain answers of q Coauthor, q NATO and q Bacon

our algorithms. As we see, adding parallelism reduces total runtime

for all three algorithms, with A* remaining the most consistent. In-

terestingly, all algorithms tend to look more alike as more and more

parallel requests are allowed. Finally, we discuss some real-world

examples of the paths retrieved by our algorithms.

6.1 Experimental Setup
We selected 11 navigational queries that are inspired by previous

benchmarks (see e.g. [14, 32]). �ese queries are representative

of several di�erent features of property paths, ranging from easy,

�xed-depth ones to queries using multiple star operations which

are much harder to evaluate. Our queries target one or more of

the following Linked Data domains: YAGO, a huge knowledge

base extracting data from Wikipedia and various other sources [29];

DBPedia [6], one of the central datasets of the Linked Data initiative

that also originates from Wikipedia; Linked Movie Database, the

best known semantic database for movie information [27]; and the

Linked Data domain of DBLP. Our implementations will always use

the optimisation techniques presented in Section 5.2 and Section 5.3,

while we assess the bene�ts of parallelism (Section 5.1) separately.

As an example, below are 3 of the 11 queries we use. For complete

details of the queries, results of all our runs, and implementation

of our algorithms, please refer to our online appendix [1].

q Coauthor: �e property path (coauthor− · coauthor)∗ in the

DBLP dataset, starting from the IRI of M. Stonebraker. �is property

path looks for the IRI of all authors that are related to M. Stonebraker

on DBLP, by a co-authorship path of arbitrary length.

q NATO: A property path that selects all places that host an entity

dealing with a NATO member state, according to YAGO.

q Bacon: A property path that looks for the IRIs of actors having

a �nite Bacon-number
1
, and that navigates using links and/or IRIs

present in any of YAGO, DBPedia or Linked Movie Database. �is

is an interesting query, as currently the only way to evaluate it is

by means of our Linked Data approach (see [8] for a discussion).

To assess our algorithm we use two indicators: the number of

HTTP requests made to compute a fraction of the answers, and the

time needed to compute them. In both cases we want to minimise

the number of requests, or the amount of time needed to produce

the answers. We note that the number of requests is a much be�er

indicator on how the algorithm works: because HTTP requests

take considerably more time than all the other operations, the total

1
An actress has Bacon number 1 if she acted in the same movie as Kevin Bacon, and

Bacon number n if she acted with someone with Bacon number n − 1.

time of computing our queries is essentially given by the number

of requests performed by the algorithm. �is also rules out the

dependence on parameters which we have no control over, such as

the Internet tra�c, or the availability of servers providing us with

data. �us, by focusing on requests we ignore latency di�erences

that may persist even a�er taking several runs of the same query.

All experiments were run without an access to the data locally,

relying solely on the Web infrastructure to retrieve the data needed

at each step of the computation. �e experiments were run on a

Manjaro Linux machine with a i5-4670 quad-core processor and

4GB of RAM. To avoid �ooding servers with requests we only ran

our search until we either found 1 000 answers, retrieved more

than 100 000 triples from the server, or reached a 10-minute time

limit. Each experiment was ran 10 times, and since the results were

largely equivalent, we report the numbers of the latest execution.

�e source code for running the experiments is available at [1].

6.2 Heuristic Search Against BFS and DFS
�e general conclusion of our experiments is that A* both requires

fewer requests and is faster than BFS and DFS. Before reporting

our results in full, let us examine the runs of queries q Coauthor,
q Bacon and q NATO presented above. Figure 2 shows the num-

ber of requests needed to compute a fraction of the total answers

available for these queries. In particular, we see that both A* and

DFS are the best choice for the query q Coauthor, because they

produce more answers using fewer HTTP requests (even though

the quality of the answers produced by A* is arguably be�er – see

below). On the other hand, BFS requires around 300 expansions to

start producing answers, which results in a much slower through-

put altogether. Next, both A* and BFS are the best choice for the

query q NATO. �is is again expected, because this query requires

less navigation and more shallow exploration. It is interesting to

see that in this case A* really simulates the optimal BFS search. On

the other hand, DFS wastes a lot of time exploring long paths and

obtaining “deep” answers. Finally, in the case of q Bacon, A* is

shown to strictly beat both BFS and DFS. In the case of BFS, this is

mostly because A*’s heuristic allows a �ner control on which links

to explore, and the main detractor for DFS is that it starts exploring

initial links which o�en require many requests before encountering

a solution.

Full results. For reasons of space, we cannot report the remaining

8 experiments with the same detail, so instead we do the following.

For each query, we analyse the complete behaviour of the answers
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vs. request and answers vs. time curves. We say that an algorithm

dominates the others if it is such that it returns at least as many

answers as any other for 80% of the range of requests (or time)

for which we evaluate them. For example, in Figure 2 we see that

A∗ dominates the other algorithms for queries q Coauthor and

q Bacon, while in the case of q NATO both A∗ and BFS dominate.

�e total number of times each algorithm dominates (out of 11

queries) is shown below, for both the answers vs. request and an-

swers vs. time curves (full details are found in our online appendix

[1]). Once again, A∗ remains the most consistent option.

Measure A* BFS DFS

Requests v/s Answers 11 3 4

Time v/s Answers 11 3 4

6.3 �e E�ect of Parallel Requests
Next, we test the e�ect of allowing parallel requests in our algo-

rithms, as presented in Section 5.1. �is optimisation goes a long

way into tackling the slow latency of Web requests, one of the

main problems of querying over the HTTP protocol. Indeed, HTTP

requests are such an important bo�leneck in our algorithm that

allowing parallel requests essentially means parallelising the entire

algorithm. Issuing parallel requests also so�en up high latency

pockets or temporary network problems. Moreover, we can also

expect the algorithms to be accelerated even further when the num-

ber of allowed requests is increased, simply because more requests

essentially means more parallel instances of our algorithm and even

more so�ening power. �e other interesting observation is that, as

we allow more parallel requests in our algorithms, all of A*, BFS

and DFS start to look alike, and in fact it is easy to see that all three

algorithms are essentially equivalent in the limit where we issue

an in�nite number of requests at the same time.

To empirically test these observations, we issued new live runs

of the 11 queries described in the previous sections, but this time

using parallel versions of A*, BFS and DFS. To see the impact on the

number of parallel threads allowed, we report experiments with

a maximum of 10, 20, and 40 parallel threads. Before reporting

the full results, let us start with comparing the results of the algo-

rithm with no parallelism against the one with 20 parallel threads.

Figure 3 shows the time needed to compute the answers of query

q Coauthor, for all three algorithms on their non-parallel version

and on their parallel version with a maximum of 20 threads. As

we see, the time needed to compute the same amount of answers

decreases by almost tenfold in all three cases. Moreover, the parallel

version of BFS now behaves almost as A* and DFS when computing

the �rst 300 answers (it then reaches a stalemate because all shallow

answers have already been discovered).

Full results. As expected, the time taken to compute answers

decreases drastically (the behaviour is the same as for q Coauthor).
Perhaps more interestingly, we focus on how algorithms change

when more parallel threads are allowed. In order to do this, we

repeat the same reports made in the previous subsection, but this

time for di�erent levels of parallelism. More precisely, for each of

our 11 queries and 4 di�erent thread counts we report which of A*,

BFS or DFS dominates in the time needed to compute the answers.

As we see as more parallelism is allowed into the algorithms, both

BFS and DFS start becoming more competitive compared to A*.
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Figure 3: Answers over time on q Coauthor. �e parallel
versions (in red) are much faster than the non-parallel ones.

dblpAuthor:Michael_Stonebraker
ˆdc:creator dblpPub:conf/acm/MuthuswamyKZSPJ85
dc:creator dblpAuthor:Matthias_Jarke
rdfs:label "Matthias Jarke"

dblpAuthor:Michael_Stonebraker
ˆdc:creator dblpPub:conf/dbvis/AikenCLSSW95
dc:creator dblpAuthor:Mybrid_Spalding
rdfs:label "Mybrid Spalding"

dblpAuthor:Michael_Stonebraker
ˆdc:creator dblpPub:conf/vldb/StonebrakerABCCFLLMOORTZ05
dc:creator dblpAuthors:Adam_Batkin
rdfs:label "Adam Batkin"

Figure 4: Paths for the 10th, 50th, and 200th answers found
by A* on q Coauthor.

Max parallel calls A* BFS DFS

1 11 3 4

10 7 3 3

20 7 3 3

40 6 4 5

6.4 Returning paths
So far we have only talked about �nding pairs of nodes that form

the answer of a property path query, as dictated by the SPARQL

standard. However, our search algorithms can also be used to

compute the entire path between two nodes, and in fact we can get

them at a very marginal cost: we already need to keep track of all

the expansions, so we can produce paths simply by returning the

IRIs corresponding to each of the requests made by our algorithm.

Paths can be used as a justi�cation for the answers, or to con-

tinue extracting more information a�erwards. In the case of queries

over Linked Data, we can even use the paths of queries to gather

information about the structure of the Web itself. For these rea-

sons returning paths is a very sought-a�er functionality of graph

query languages, and is present for example in the popular Neo4j

engine [34]. Unfortunately, a language capable of returning (all)

paths, or even (all) simple paths, is bound to be very complicated to

evaluate [5, 28], and this is the reason why the SPARQL standard

does not include such a functionality. In our case we have a natural

workaround for this issue, as our search focuses on shortest paths,

which are known to be easier to evaluate than simple paths.

As an example of the usefulness of paths, it was by analysing

paths that we inferred that A* normally produces be�er answers

than DFS (because the paths are shorter). As an illustration, Figure 4
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presents paths witnessing the answers 10, 50, and 200 of a run of the

query q Coauthor with A*. From the query itself all that we can

say is that these three researchers are connected to M. Stonebraker

by a coauthorship path of arbitrary length. However, by looking

at the paths we now know that they are direct coauthors. On the

other hand, the length of paths retrieved by DFS are going to be

much higher. For one run of q Coauthor with DFS the lengths of

the answers 10, 50 and 200 were respectively 14, 74, 312.

7 CONCLUSIONS AND FUTUREWORK
�is paper presents the �rst fundamental study of the problem of

computing property paths over the Web. We showed how to cast

query answering as an AI search problem, and provided an optimal

algorithm based on the classical A* algorithm. We provide strong

theoretical and practical evidence that A* is a be�er alternative

than both BFS and DFS in the context of Linked Data, and this can

be sped up even further by allowing parallel execution threads.

In terms of future work, we identify three main challenges we

plan on tackling.

Using triple pattern fragments. As noted in Section 5, there

are some issues with the Linked Data infrastructure; most notably,

it does not provide all the information one would expect when

dereferencing IRIs. While it is possible to alleviate this issue by

using endpoints, since their uptime can be erratic, it was recently

suggested that a more lightweight infrastructure of triple pa�ern

fragments [36] would be more appropriate for the task. In the

future we plan to test how using triple pa�ern fragments a�ects

the performance and accuracy of our algorithms when compared

to the standard endpoint infrastructure.

Answering NautiLOD and LDQL queries with A*. NautiLOD

[13] is a traversal-based language proposed as an option to SPARLQ

when querying Linked Data, in which one has more �ner control

on how is the Web going to be traversed. In the same spirit, LDQL

[20] is another language aimed at controlling how data is to be

retrieved, albeit much less powerful than NautiLOD. �e interesting

observation is that we can also cast the query evaluation problem

for these languages as a search problem, and thus A* should also

provide optimal query answering algorithms. In fact, the algorithm

proposed in [13] is essentially what we de�ne here as k-DFS, so one

can naturally suspect that A* should provide a be�er behaviour.

A* in local computations. Although we based our investigation

in the context of Linked Data, there is some evidence that our ap-

proach might have potential in the classical se�ing where data is

available locally. �e main reason is the fact that the currently

available property path evaluation algorithms demand a lot of re-

sources, especially when dealing with property paths that use the

Kleene star operator, and current systems cannot easily cope with

these requirements [8]. On the other hand, we have seen that the

memory usage of an A*-based algorithm is directly dependant on

the amount of answers that need to be computed, and each answer

requires an almost negligible amount of additional memory. �is

suggests that, in those cases when we do not need all the answers,

an approach based on A* might be a be�er option.
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