
A Datalog Framework for Modeling Relationship-based Access Control Policies

EDELMIRA PASARELLA, Universitat Politècnica de Catalunya

JORGE LOBO, Institució Catalana de Recerca i Estudis Avanï£¡ats (ICREA) and Universitat Pompeu Fabra

Relationships like friendship to limit access to resources have been part of social network applications since their beginnings. Describing

access control policies in terms of relationships is not particular to social networks and it arises naturally in many situations. Hence,

we have recently seen several proposals formalizing different Relationship-based Access Control (ReBAC) models. In this paper, we

introduce a class of Datalog programs suitable for modeling ReBAC and argue that this class of programs, that we called ReBAC Datalog

policies, provides a very general framework to specify and implement ReBAC policies. To support our claim, we first formalize the

merging of two recent proposals for modeling ReBAC, one based on hybrid logic and the other one based on path regular expressions.

We present extensions to handle negative authorizations and temporal policies. We describe mechanism for policy analysis, and then

discuss the feasibility of using Datalog-based systems as implementations.

1 INTRODUCTION

Lately, there has been a growing interest within the access control community in the concept of Relationship-based

Access Control (ReBAC). ReBAC has been used in social networks almost since their beginnings with the well-known

friendship relationship of Facebook as its prototypical example. Technical awareness of the concept was first reported in

[15], and perhaps the first formalization in the context of social networks was reported in [5]. Describing access control

policies in terms of relationships is not particular to social networks. For example, a doctor can look at your medical

records if he or she is your family doctor, or you can read a paper in a repository if you are one of its reviewers. At the

core of the model there is a graph in which nodes represent users and resources, and arcs are labeled with relationships.

Policies are described through paths among nodes in the graph (e.g., a-friend-of-a-friend represents a path of three

nodes and two arcs). Recently, several papers have proposed different formalizations for ReBAC [4, 7, 8, 13, 17]. In

this paper we argue that Datalog provides a very general framework for ReBAC modeling. To support our claim we

work with two of the most sophisticated proposals, one based on hybrid logic and the other one based on path regular

expressions, and show how complementary features of the two approaches can be captured in Datalog. The hybrid

logic proposal has been developed in a series of papers that started with a modal logic as a modeling language [14],

then it evolved into a model based on hybrid logic [4, 13], and more recently, an implementation embedded in the open

source medical records system OpenMRS has been reported in [25]. This provides some maturity to the project. The

second proposal follows the more explicit approach of defining a path specification language over the relationship

graph to write policies. Results for path based ReBAC are more dispersed since more emphasis has been given to

describing other parts of the access control systems (see for example [6, 7, 17]) and less to the formal characterizations

of the expressibility. The work we have chosen for path specification, [8], is one of the most recent proposals and it

incorporates features of earlier works with a more precise description of its expressibility. We then show how working

under the Datalog framework we can easily extend the model (in ways that it would not be obvious to do formally in

hybrid logic), we can also do policy analysis and have efficient implementations. Our contributions in this paper are the

following:

2017.

1

2 Edelmira Pasarella and Jorge Lobo

(1) We introduce a carefully selected subset of Datalog with equality constraints as a ReBAC policy specification

language which ensures efficient implementations.

(2) We then extend the hybrid logic HL of [4] to be able to express the path expressions of [8] and show a sound

and complete translation of the extended HL policies into ReBAC Datalog policies.

(3) We extend ReBAC Datalog policies to be able to express negative authorizations, all easily done formally

because of Datalog.

(4) We show how we can also use Datalog itself to find policy gaps and policy conflicts, and briefly discuss how to

implement conflict resolution strategies.

(5) We further extend the language to handle temporal policies.

(6) We present precise complexity and expressibility results of the basic ReBAC Datalog which together with item

(2) characterize the complexity of the (extended) hybrid logic for ReBAC.

(7) We present evidence that policy evaluation can be done in the order of a few milliseconds using off-the-shelf

Datalog engines with relationship graphs having hundred of thousands of arcs.

We end with some concluding remarks.

2 REBAC DATALOG POLICIES

We are going to closely follow the terminology from the hybrid logic of [4] in our definitions, but first, we need to

recall some basic notions of Datalog with constraints. For writing Datalog programs we need three disjoint (possibly

infinite) sets C, Var and P of constant symbols, variables and predicate symbols. There is a positive integer associated to

each predicate symbol called its airty. A term in Datalog is any variable or constant symbol. An atom is an expression

of the form p(t1, . . . , tk), where p is a predicate symbol of arity k and t1 through tk are terms. A literal is any atom

p(t1, . . . , tk) or its negation ¬p(t1, . . . , tk). A negated atom is called a negative literal; otherwise is called positive. If all

the terms appearing in a literal/atom are constants the literal/atom is called ground. Constraints are expressions of the

form t1 = t2 or t1 , t2 for any two terms t1 and t2. Variables will be denoted using capital letters. A Datalog rule is an

expression of the form:

c1, . . . , ck, L1, . . . , Lm → A (1)

where the Li are literals , A is an atom, the ci are constraints, for k,m ≥ 0. The expression c1, . . . , ck, L1, . . . , Lm is called

the body of the rule, A the head, and the rule a definition of the predicate that appears in A. An informal reading of a

Datalog rule is that if there is a ground instance of the rule (i.e., all variables in the rule are replaced with constants) for

which the constraints in the rule are valid, and we already know that every ground literal in the body is true then we

can infer that the ground instance of A in the head of rule is true. A Datalog program is a finite set of Datalog rules.

The intended meaning of a Datalog program is given by a set of ground atomsM and is defined in terms of another

set of ground atoms I given as input to the program. The setM contains the (ground) atoms in I , which are assumed to

be true, plus the set of ground atoms that can be inferred to be true using the rules and the input I . Ground atoms outside

M are assumed to be false. More formally, given a set of Datalog rules D, we call the set of all constants mentioned

in D the active language of D. We denote by Gr (D) the set of Datalog rules obtained by replacing in all possible ways

the variables in the rules with constants in the active language of D. Note that Gr (D) will be empty if D does not

mention any constant. Since ground atoms are also Datalog rules the same definitions of active language and Gr (.)

apply when we consider a Datalog program and an input. We will use for the interpretation of constraints the unique

name assumption [24] in which all constants are assumed to be different from each other. Given a set of ground atoms

Datalog Framework for Modeling ReBAC Policies 3

M , and an atom A, we writeM |=Dataloд A iff there exists a ground instance A′
of A such that A′ ∈ M . If A is ground

and A < M , we writeM |=Dataloд ¬A.

Definition 2.1. Given a Datalog program D and an input I , a set of ground atoms M is a model of I ∪ D iff M is a

minimal set (i.e., there is no a proper subset ofM) for which the following equation holds:

M = {A | c1, . . . , ck, L1, . . . , Lm → A ∈ Gr (I ∪ D), ∀ci : ci is true, and ∀Li : M |=Dataloд Li}.

In general, I ∪ D may have zero, one or more models. But as we will see later, policies will have a single model.

In its most simplest form, a query to a Datalog program D with input I is to ask whether a ground atom A is true

in every model of I ∪ D. If this is the case we will write I ∪ D |=Dataloд A; we write I ∪ D |=Dataloд ¬A if ¬A is

not true in any model of I ∪ D. The definition can be extended to non-ground atoms if I ∪ D has a unique modelM :

I ∪ D |=Dataloд A iffM |=Dataloд A. We can also have a conjunction of literals L1, . . . , Lm, m > 1, as a query and we

write M |=Dataloд L′1, . . . , L
′
m as an answer if and only if L′1, . . . , L

′
m are ground instances of the literals L1, . . . , Lm

where variables are consistently replaced across the literals and ∀i M |=Dataloд L′i .

Protection states (see [4]) . The underlying principle behind ReBAC is that from the point of view of specifying access

control policies it is sufficient to have an abstract representation of the state of the system to protect built upon three

fundamental concepts: the set of objects that form part of the system (e.g., users, resources), a set of properties that can

be associated to individual objects, and a set of binary relationships between these objects - a relationship graph where

vertices are objects and edges are labeled with relationship names. Hence, a protection state in ReBAC Datalog will be

described by a set of ground atoms where only two predicate symbols are used, a 3-ary predicate rel and a 2-ary predicate

prop. The set of constants C, is partitioned into three disjoint sets, a set of nominal constants Cn representing names of

objects, a set propositional constants Cp, representing properties, and a set of (binary) relationship names Cr. A ground

atom of the form rel(n1, r1, n2) can be member of a protection state only if n1, n2 ∈ Cn and r1 ∈ Cr. A ground atom of

the form prop(n1, p1) can be member of a protection state only if n1 ∈ Cn and p1 ∈ Cp. Intuitively speaking, Cn is the

set of objects over which policies will be expressed. It contains the names of all the objects that can request access to

resources, usually called principals, as well as the names of resources for which principals can request access to. Cr is the

set of names of relationships that can be defined over these objects such as Alice is friend of Bob (rel(alice, friend, bob): a

principal-to-principal relationship), Bob owns Printer1 (rel(bob, own, printer1): a principal-to-resource relationship), or

Alice is member of Department Alpha (rel(alice,member, alpha): here Alpha is an abstract entity which is used only to

simplify policy specifications, e.g. all members of Alpha have access to Printer1). A propositional name in Cp is meant to

represent a property that a collection of objects may have, like being a medical doctor, prop(alice, doctor), or a patient,

prop(bob, patient), or the property of being a Java program, prop(file.jar, java), or a video file, prop(file.avi, video).1

Policies. Policy defines a new relation between principals and resources that grants the principals access to the

resources. In ReBAC Datalog policies this relationship is defined by checking properties of the objects typically reachable

through the relationship graph either from the principal making the request or the resource that the principal wants to

access as well as conditions over the paths used to reach these objects. This means that policies define new relations in

terms of the relationships in the graph that represents the protection state under consideration.

Before we formally introduce policies let us examine a few examples based on the following scenario. Assume there

is a head hunter company, HHC, that has a ReBAC system to manage the access privileges of its clients to profiles of its

1
Other representations could be used (e.g., to better represent numerical attributes such as age), but they might never express relationships between

objects. Our model just simplifies the presentation.

4 Edelmira Pasarella and Jorge Lobo

Fig. 1. Partial view of the HHC protection state

pool of candidates. To this end, HHC uses the LinkedIn and Facebook profiles of its candidates and clients. Fig. 1 depicts

a partial view of the protection state held by HHC. In this graph principals are the nodes alice, bob, carl, eve,mary, rose

and will and the nodes pr_b and pr_a are resources. Arcs are labeled with the relationship names profile (of), friend (of)

and contact (of). HHC has a special group of candidates qualified as senior advisors depicted inside dark squares in the

graph. The principal alice is in this group. Hence, the protection state will contain atoms like rel(bob, profile, pr_b),

rel(carl, friend, alice), or prop(alice, senior_advisor), etc. HHC policies grant its clients (requesters) access to the

professional profiles (resources) from its pool of candidates.

One of the simplest policies HHC could define is that any LinkedIn contact of the owner of a profile can access the

profile. This policy can be expressed in Datalog as follows:

Policy1

rel(Res, profile,O), rel(Req, contact,O) → grant(Req,Res)

Following this policy, if rel(pr_b, profile, bob) and rel(eve, contact, bob) are in the the protection state, eve is granted

access to pr_b. It is easy to see that in the protection state depicted in Fig. 1, the access is granted, i.e., we are able to

infer grant(eve, pr_b). Expressing this simple policy in Datalog allows us to highlight very basics features of the model.

First, the protection state I will be defined independently from the set of policies D, and will be the input to the program

to answer queries. Second, typically an access request comes with at least two parameters: who/what is making the

request and what resource is being requested. This fact is captured in our formalization by granting to a requester (eve)

access to a resource (pr_b), if the query grant(eve, pr_b) is true in I ∪ D: I ∪ D |=Dataloд grant(eve, pr_b).

The initial motivation behind ReBAC came from social networks where policies are expressed in terms of the

relationships between owners of resources and requesters independent of the resources (think of the friend relationship

in Facebook and the access that having that relationship grants). Nevertheless, requesters ask for access to resources;

the ownership relation is kept as a “tacit condition." Our policy makes explicit this “tacit condition" by reaching an

owner of a resource through the relationship graph (e.g., rel(Res, profile,O)), and then, having identified the owner,

checking conditions in the paths between the owner and the requester (e.g., rel(Req, contact,O))2. Now, let’s assume

2
For the sake of explanation, we describe as if the rule body is evaluated from left to right, but positive literals can be evaluated in any order. Datalog

engines aim to find the order that produces the most efficient evaluation.

Datalog Framework for Modeling ReBAC Policies 5

HHC extends the access to any contact of a contact of the owner of the profile. This condition is modeled in Datalog by

the rule below with the introduction of a new variable Z:

Policy2

rel(Res, profile,O), rel(Req, contact,Z),

rel(Z, contact,O) → grant(Req,Res)

From this policy rule and the protection state depicted in Fig. 1 we have that I ∪ D |=Dataloд grant(will, pr_b). In this

case, Z will be instantiated with mary. This policy alone grants access only to contacts that are at distance two of the

owner of the profile. To keep access to direct contacts of the owner we need both policy rules. Several rules represent

the disjunction of the rules, e.g., Policy1 or Policy2. Notice that neither carl nor rose has access to pr_b. To extend the

chain to contacts at distance three we just need a new fresh variable, for instance, W and the rule will be:

rel(Res, profile,O), rel(Req, contact,Z),

rel(Z, contact,W), rel(W, contact,O) → grant(Req,Res)

In general, fresh variables memorize intermediate nodes reached along the traversal of chains in the relationship

graph to later be recalled in another part of the rule. Observe that evaluating the rule from left to right, in the sub-

query rel(Req, contact,Z), the variable Req is bound since it occurs in the request and is “passed" to the program

by a query such as grant(carl, pr_b). Then, if there exists an atom rel(carl, contact, o) in the protection state (like

rel(carl, contact,will)), Z will get bound to o, and hence, bound in the sub-query rel(Z, contact,W) and so on. This way

of traversing relationships in the protection state can be followed to limit the traversal of the graph during policy

evaluation to be through objects related to Req or Res.

Next, assume HHC wants to grant access to senior advisors’ profiles only when the requester has two different

contacts in common with the advisor. This policy can be captured by the following rule:

Policy3

rel(Res, profile,O), prop(O, senior_advisor),

rel(Req, contact,Z1), rel(Req, contact,Z2),

rel(O, contact,Z1), rel(O, contact,Z2),

Z1 , Z2 → grant(Req,Res)

This policy introduces two new features. One is an example of how properties over objects in the protection state are

expressed - the second literal in the body of the rule. The second one is the use of inequalities to express some counting

over relationships that will not be possible without constraints. From Policy3 and the protection state in Fig. 1, we get

I ∪D |=Dataloд grant(will, pr_a). To extend the policy to three or four contacts we merely need to add extra predicates

to traverse the contact relation with new variables and then make sure that the variables get bound to different values

by introducing more inequalities.

Suppose now that, to minimize conflicts of interest, HHC modifies Policy3, so that these two common contacts

cannot both be personal friends of the senior advisor. The policy is modified as follows:

6 Edelmira Pasarella and Jorge Lobo

Policy4

rel(X, friend,Z1), rel(X, friend,Z2) → r(X,Z1,Z2)

rel(Res, profile,O), prop(O, senior_advisor),

rel(Req, contact,Z1), rel(Req, contact,Z2),

rel(O, contact,Z1), rel(O, contact,Z2),

Z1 , Z2,¬r(O,Z1,Z2) → grant(Req,Res)

The new feature in this policy is negation. The negative condition is defined in two steps. First, a new rule to describe the

condition to be complemented is defined. Second, the negation of this condition is added to the policy rule. An important

safety condition for the evaluation of negative sub-queries is that the values to check must be derived positively. This

implies that all variable bindings in the negative conditions will be limited to values that are mentioned in the protection

state (the active language). Hence. the negative sub-query ¬r(O,Z1,Z2) must be evaluated after all its variables have

been bound by other sub-queries in the rule. Considering Fig. 1, we can see that I ∪D |=Dataloд grant(will, p_a) because

I ∪ D |=Dataloд ¬r(alice, carl, rose).

The last example introduces path traversals of unbounded length. HHC wants to grant access to a profile to any

contact in the network of contacts of the candidate owning the profile. In this case, the condition over the network of

contacts is that there must be a chain (of any length) with ending points the requester and the owner of the resource.

This corresponds to checking whether for a requester u asking to get access to a resource r owned by o, the pair (u, o)

belongs the transitive closure of the contact relation. The formalization in Datalog is the following:

Policy5.

rel(X, contact,Y) → r(X,Y)

r(X,Y) → rtc(X,Y)

r(X,Z), rtc(Z,Y) → rtc(X,Y)

rel(Req, contact,O), rtc(Req,O) → grant(Req,Res)

The relation rtc consists of all those pairs that appear in some path connecting u and o with all the arcs labeled contact.

This relation is defined in Datalog as a recursive rule (i.e., a rule in which the predicate in the head of the rule also

appears in the body). In Fig. 1, we have I ∪ D |=Dataloд grant(rose, pr_b).

In the rest of this section we formally define ReBAC Datalog policies. In particular, we define policies that cover all

the features highlighted in Policy1–Policy5.

For writing policies, in addition to the predicates used in protection states, there are three more types of predicates

in the language: a set of binary predicates called derived relationship predicates, {nr1, . . . , nrs}, a corresponding set of

binary predicates called transitive closure relationship predicates {tnr1, . . . , tnrs}, and a set of predicates of different

arities called global property predicates {g1, . . . , gt}. We call nri the basic predicate of the transitive closure predicate

tnri. We call basic literal any literal of the form rel(t1, r, t2), ¬rel(t1, r, t2), prop(t1, p) and ¬prop(t1, p), where p ∈ Cp,

Datalog Framework for Modeling ReBAC Policies 7

r ∈ Cr, and each ti is either a variable or a constant in Cn. Similarly, we call derived relationship literals, transitive

closure literals and global property literals to literals that use predicate symbols from the appropriate sets.

Definition 2.2. A ReBAC policy D, comprises two sets of Datalog rules:

(1) A non-empty ordered set D̂ = {r1, . . . , rm } such that the following conditions hold for every ri :

(a) Every variable that appears either in a negative literal or in a (positive or negative) global condition literal

in the body of ri , must also appear in the head or in a positive relationship, transitive closure or basic

literal in the body of ri .

(b) If ri defines a derived relationship predicate then every variable that appears in the head must also appear

in either a derived relationship, transitive closure or basic positive literal in the body of ri .

(c) If a rule r j defines either a derived relationship predicate or a global property predicate and the predicate

appears in a literal in the body of ri , then j < i .

(d) Unless ri defines grant, there is no other rule that defines the predicate defined by ri .

(e) The predicate grant does not appear in the body of ri .

(f) rm defines the predicate grant.

(2) A set ∪si=1
TRi , where there is a set TRi for each derived relationship predicate nri containing the rules:

nri(X,Y) → tnri(X,Y)

nri(X,Z), tnri(Z,Y) → tnri(X,Y)

Condition (1a) is the safety condition for the evaluation of derived predicates discussed in the example (Policy4).

Condition (1b) is also a safety condition. If variables appear in the head of a rule but not in the body then whenever a

grounding of the rule body is true, it fixes the value of the variables in the head that appear in the body. The rest of the

variables in the head can be bound to any constant independent of the active domain. Condition (1c) limits recursive

definitions to the transitive closures. Condition (1d) limits disjunctive definitions to the predicate grant. Condition (1e)

prevents grant to be defined recursively on itself and Condition (1f) makes sure the predicate grant is defined.

We recall that a Datalog program D is hierarchical if there exists an assignment of integers to the predicate symbols

such that for every rule in D the integer assigned to the predicate in the head is larger than the integers assigned to the

predicates in the body. D is called stratified if there is an assignment such that for every rule in D the integer assigned to

the predicate in the head is larger than or equal to the integers assigned to the predicates appearing in positive literals

in the body and larger than the integers assigned to predicates appearing in negative literals. It is easy to see that any

ReBAC policy D is always stratified and if it does not use transitive closure relations, D can be limited to be just D̂, and

hence, D is hierarchical. It is a well-known property of stratified Datalog programs that they have a unique model [20].

Hence, for any protection state I and ReBAC policy D there is a unique intended modelM(D ∪ I).

Definition 2.3. Given a ReBAC policy D and a protection state I , we say that a permission request (u, r), from a

principal u to access a resource r is granted iff

D ∪ I |=Dataloд grant(u, r)

Effective mechanisms to answer Datalog queries exist and a lot of effort has gone to optimize these methods since

Datalog is the core mathematical foundation of the relational database model and the database query language SQL.

More about the complexity and implementation of query answering procedures will be discussed later in the paper.

8 Edelmira Pasarella and Jorge Lobo

3 EHL REBAC POLICIES

The content of this section is mainly from Bruns et al. [4]. In [4] the authors introduced a hybrid logic HL for the

specification of ReBAC policies. In this logic, from which we have borrowed the terminology for ReBAC Datalog, there

are four disjoint sets of symbols, a set N of nominal symbols, an infinite setV of variables, a set I of labels and a set

P of propositional symbols. We denote by n, X , i and p generic nominal symbols, variables, labels and propositional

symbols respectively. Policies in HL represent properties involving a fixed number of arcs in a relationship graphs.

Following [8], we extend the logic to also cover a subclass of properties that can refer to a finite but unbounded set of

arcs described as simple regular expressions.

Definition 3.1. A formula in the extended hybrid logic EHL can be:

(1) any nominal symbol n, variable X or proposition p,

(2) any term of one of the following forms: ¬ϕ, ϕ1 ∧ ϕ2, @nϕ, @Xϕ, and ↓Xϕ, πϕ, given that ϕ, ϕ1 and ϕ2 are

hybrid formulas and π a path expression having one of the following forms:

(a) ϵ representing the empty path

(b) ⟨i⟩ or ⟨−i⟩

(c) π1π2, for any two path expressions π1,π2

(d) π+, for any path expression π

The definition of HL formulas [4] considers only simple path expressions of the form (b) above. Models in EHL are

triples (S, {Ri ⊆ S × S |i ∈ I},V), where S is a non-empty set of nodes, and V : N ∪ P → 2
S
, a total function with

V (n) being a singleton set for any n ∈ N . A valuation д : V → S , is a total function assigning variables to nodes. Let

д[X 7→ s] denote the valuation that maps X to s and any X ′ , X to д(X ′). A nominal symbol n will denote the single

object in V (n). The pair (S, {Ri |i ∈ I}) can be interpreted as a labeled graph in which its vertexes are the nodes in S

and the labeled arcs between the vertexes are defined by the Ri relations.

Let us revisit the scenario of policies Policy1–Policy5 from the point of view of models in EHL. In Fig. 1, the set of

nodes S = {alice, bob, carl , eve,mary, rose , will ,pr_a,pr_b} corresponds to the nominal symbols in N , the relations

are pro f ile = {(pr_b, bob), (pr_a, alice)}, contact = {(alice , bob), (alice , carl), (bob,mary), (alice ,mary), (alice , rose),

(bob, eve), (eve , rose), (mary, will), (rose, will)} and f riend = {(alice , carl), (bob, carl), (eve , will)}. We assume that

V (alice) = {alice},V (bob) = {bob},V (pr_b) = {pr_b} and senior_advisor is a propositional symbol in P. In this example,

V (senior_advisor) = {alice}, however, in general, for a propositional symbol p, V (p) is not necessarily a singleton set.

The pair (S, pro f ile ∪ contact ∪ f riend) is called a social graph in [4]. Given an EHL model M , a node s ∈ S and a

valuation д, a satisfiability relation |= over EHL formulas is defined inductively as follows:

Definition 3.2. (1) M, s,д |= X iff д(X) = s

(2) M, s,д |= n iff V (n) = {s}

(3) M, s,д |= p iff s ∈ V (p)

(4) M, s,д |= ¬ϕ iffM, s,д ̸ |= ϕ

(5) M, s,д |= ϕ1 ∧ ϕ2 iffM, s,д |= ϕ1 andM, s,д |= ϕ2

(6) M, s,д |= ϕ1 ∨ ϕ2 iffM, s,д |= ϕ1 orM, s,д |= ϕ2

(7) M, s,д |= @nϕ iffM, s∗,д |= ϕ and V (n) = {s∗}

(8) M, s,д |= @Xϕ iffM,д(X),д |= ϕ

(9) M, s,д |=↓Xϕ iffM, s,д[X 7→ s] |= ϕ

Datalog Framework for Modeling ReBAC Policies 9

(10) M, s,д |= πϕ iffM, s ′,д |= ϕ for some (s, s ′) ∈ Rπ , where Rπ is inductively defined as follows:

(a) Rϵ = ∅

(b) R ⟨i ⟩ = Ri

(c) R ⟨−i ⟩ = R−1

i
(d) Rπ1π2

= Rπ1
◦ Rπ2

, where ◦ denotes relation composition.

(e) Rπ + = trans(Rπ), the transitive closure of Rπ .

Items 1-6, 10b and 10c are standard in modal logics. Items 7-9 are the hybrid operators. Informally speaking, @t jumps

to the node named by t , i.e. @tϕ holds if ϕ holds at the node identified by t . In the case of Fig. 1, @alicesenior_advisor

holds because after jumping to node alice , it holds that alice ∈ V (senior_advisor).

The term ↓ X binds the variable X to the current node, i.e., M, s,д |=↓ Xϕ holds if ϕ holds at s but with the

valuation д now interpreting X as s (д is replaced with д[X 7→ s]). In the case of Fig. 1, @bob ⟨f riend⟩ ↓Xϕ, jumps

to node bob, then through the relation f riend arrives to node carl , therefore the variable X is bound to carl and,

thus, if X occurs in the sub-formula ϕ, it refers to carl . For another example, let us consider under Fig. 1 the formula

@bob ⟨contact⟩ ↓X1⟨contact⟩ ↓X2⟨contact⟩ ↓X3ϕ. The evaluation starts at the node bob and it holds if there exists a

chain of contacts of length 3 and the sub-formula ϕ holds with variables X1,X2 and X3 bound to the nodes in the chain:

mary,will and rose are examples of such nodes. The usual notions of free and bound variables in a formula are defined

based on the bindings produced by ↓. Item 3.2.10e corresponds to the notion of closure for regular expressions.

As in ReBAC Datalog, policies are evaluated in the context of a concrete model M (corresponding to a protection

state), and a request (u, r).

Definition 3.3. A policy is an EHL formula that may have at most Res and Req as free variables and is a Boolean

combination of formulas of the form @Resϕ1 or @Reqϕ2.

Definition 3.4. Given a policy ϕ, a permission request (u, r) is granted in a modelM iff

M, s,д[Req 7→ u,Res 7→ r] |= ϕ

for some s ∈ S and valuation д.

Since Res and Req are the only variables that can occur free in ϕ, s and д are irrelevant for granting the permission.

Thus, from the rest of the paper we will writeM, [X1 7→ s1, . . . ,Xm 7→ sm] |= ϕ, when the only free variables in ϕ are

X1, . . . ,Xm . In the presentation of the logic in [4], the owner of the resource and not the resource itself is used in the

policies since M is presented as a “social graph”, nodes are restricted to be principals, and policies are assumed to be

associated to a particular resource for which the owner is known. However, the authors recognize that more general

settings can be defined and refer to the general case described here as heterogeneous protection states. Having an action

in the request is also common but we will discuss this later in the paper.

Some examples of EHL policies adapted from [4] are:

@Res ⟨−pro f ile⟩⟨contact⟩Req (2)

that grants access to any contact of the owner of the resource.

@Res ⟨−pro f ile⟩⟨contact⟩(Req ∨ ⟨contact⟩Req) (3)

10 Edelmira Pasarella and Jorge Lobo

that grants access to a contact or a contact of a contact of the owner of the resource.

@Res ⟨−pro f ile⟩⟨contact⟩(Req ∧ senior_advisor) (4)

that grants access to a contact of the owner if he or she is a senior advisor.

@Res ⟨−pro f ile⟩⟨contact⟩(Req ∧ ¬Bob) (5)

that grants access to a contact of the owner who can’t be Bob.

@Res ⟨−pro f ile⟩(⟨f riend⟩Req ∧ ¬⟨f riend⟩¬Req) (6)

that grants access to a friend of the owner if he or she is the only friend.

A salient feature of the original HL language (and thus, of EHL and ReBAC Datalog) is the ability to express graded

modalities. Given a positive integer k , one can write ⟨i⟩kϕ as a shorthand for:

↓X ⟨i⟩ ↓Y1(ϕ ∧ @X ⟨i⟩ ↓Y2(¬Y1 ∧ ϕ∧

· · ·@X ⟨i⟩ ↓Yk (¬Y1 ∧ ¬Yk−1
∧ ϕ) . . .)

which informally says that the formula holds in a node s iff there are at least k Ri -successors of s at which ϕ holds. For

example, a formula granting access to a requester that has at least three contacts in common with the profile’s owner is:

@Res ⟨−pro f ile⟩⟨contact⟩3(⟨contact⟩Req) (7)

This essentially the same encoding of counting through inequalities done in Policy3.

The following policy is adapted from [8]:

@Res ⟨−pro f ile⟩(⟨member_o f ⟩⟨−supervise⟩)+Req (8)

that grants permission to any supervisor in the management chain to access profiles owned by members of the groups

under her management line.

4 FROM EHL TO REBAC DATALOG

Given an EHL policy defined over setsN ,V , I and P, an EHL modelM = (S, {Ri ⊆ S × S |i ∈ I},V), and a policy ϕ, we

want to find an equivalent ReBAC Datalog policy [ϕ] and protection state [M].

Without loss of generality, we assume that all bound variables in ϕ are named differently. We also assume that

the model has been fixed. Hence, when we refer to S , Ri or V in any of the definitions we are referring to the nodes,

relations and the function V of this model. The following equivalences of HL formulas are easy to verify:

(1) @t1
@t2

ϕ ≡ @t2
ϕ;

(2) ¬@tϕ ≡ @t¬ϕ;

(3) @t (ϕ1 ∨ ϕ2) ≡ (@tϕ1 ∨ @tϕ2); and

(4) ¬ ↓Xϕ ≡↓X¬ϕ,

for any t , t1 and t2 nominal symbols or variables. Using these equivalences and De Morgan’s laws we can normalize EHL

formulas by pushing all negations to be in front of nominal symbols, variables, propositional symbols or non-empty

path expressions, as well as removing multiple occurrences of @ in front of any formula. A formula is called normal

Datalog Framework for Modeling ReBAC Policies 11

conjunctive if it does not contain disjunctions, all the negations appear in front of nominal symbols, variables or non-

empty path expressions and there are no redundant @-operators. A formula is in disjunctive form if it is a disjunction of

normal conjunctive formulas. It easy to see that every formula has an equivalent formula in disjunctive form. For the

rest of the presentation we assume that all EHL formulas are in disjunctive form. Let the sets C = Cn ∪ Cp ∪ Cr, Var, P

of constant symbols, variables and predicate symbols be such that N ⊆ Cn, I ⊆ Cr, P ⊆ Cp andV ⊆ Var. Without

loss of generality, we assume that for any nominal symbol n, V (n) = {n}.3 In what follows, for the sake of readability,

we will use italics in EHL formulas and continue using math serif font for Datalog. Intuitively, each normal conjunctive

sub-formula occurring in a disjunctive formula representing a policy, can be seen as a partial definition of the policy.

This intuition gives us insights about how to proceed in order to translate an EHL policy into a ReBAC program. Given

an EHL formula ϕ, we define the program [ϕ] in three steps. Firstly, we provide a mechanism to translate each normal

conjunctive sub-formula of ϕ into pairs where the first component is a set of literals and the second component is a set

of ReBAC rules. Second, for each normal conjunctive formula in ϕ, we associate a definition of the binary predicate

grant using each individual translation. Finally, we join all these grant definitions with the translation of the EHL model

into a Datalog protection state to get the ReBAC policy and Input to evaluate queries. The next two definitions formalize

these steps.

Definition 4.1. Given a variable X ∈ Var, for any conjunctive normal EHL formula ϕ, [ϕ]X defines inductively a set B

of constraints and literals, and a set R of Datalog rules in a pair (B,R) as follows:

(1) [X ′]X = ({X′ = X}, ∅)

(2) [n]X = ({n = X}, ∅)

(3) [p]X = ({prop(X, p)}, ∅) iff p ∈ P

(4) [¬ϕ]X = ({X′ , X}, ∅), iff ϕ ≡ X ′
;

[¬ϕ]X = ({n , X}, ∅), iff ϕ ≡ n and V (n) = {n};

otherwise

[¬ϕ]X = ({¬ϕ̄(V,X)}, {B → ϕ̄(V,X)} ∪ R′) iff [ϕ]X = (B,R′), V are the free variables appearing in ϕ, and ¯ϕ is a

new global property predicate symbol of arity equal to the cardinality of V plus 1.

(5) [ϕ1 ∧ ϕ2]
X = (B1 ∪ B2,R1 ∪ R2) iff [ϕ1]

X = (B1,R1) and [ϕ2]
X = (B2,R2)

(6) [@nϕ]
X = ({n = Y} ∪ B,R) iff [ϕ]Y = (B,R), Y is a new fresh variable from Var

(7) [@X ′ϕ]X = (B ∪ {X′ = Z},R), Z is a new fresh variable from Var, and [ϕ]Z = (B,R)

(8) [↓X ′ϕ]X = ({X′ = X} ∪ B,R) iff [ϕ]X = (B,R)

(9) For [πϕ]X, when

(a) π ≡ ϵ , then [πϕ]X = [ϕ]X

(b) π ≡ ⟨i⟩, then [πϕ]X = ({rel(X, i,Y)} ∪ B,R) if and only if [ϕ]Y = (B,R) and Y is a new fresh variable from

Var

(c) π ≡ ⟨−i⟩, then [πϕ]X = ({rel(Y, i,X)} ∪ B,R) if and only if [ϕ]Y = (B,R) and Y is a new fresh variable from

Var

(d) π ≡ π1π2, then [πϕ]X = (Bπ1Y∪Bπ2ϕ ,Rπ1Y∪Rπ2ϕ), where

[π1Y]
X = (Bπ1Y ,Rπ1Y) and [π2ϕ]

Y = (Bπ2ϕ ,Rπ2ϕ)

(e) π ≡ π+
1
, then

[πϕ]X = ({pi+(X,Y)} ∪ Bϕ ,Rϕ∪Rπ1Y∪Rtc) if and only if

3
This is, the syntax of the constant in the language is the same as value in the model (Herbrand-like).

12 Edelmira Pasarella and Jorge Lobo

(i) [ϕ]Y = (Bϕ ,Rϕ), [π1Y]
X = (Bπ1Y ,Rπ1Y) and Y is a new fresh variable from Var

(ii) pi is a new derived relationship predicate symbol and pi+ its corresponding transitive closure

predicate, and

Rtc = {Bπ1Y → pi(X,Y),

pi(X,Y) → pi+(X,Y),

pi(X,Z), pi+(Z,Y) → pi+(X,Y)}

Definition 4.2. For any EHL policy ϕ = ϕ ′
1
∨ · · · ∨ ϕ ′m in disjunctive form and an EHL modelM . Let ϕ ′i = @Xiϕi and

[ϕi]
Xi = (Bi,Ri), i ∈ {1, . . . ,m}. [ϕ] and [M] define the following Datalog program and its input:

[ϕ] =∪m
i=1({Bi → grant(Res, Req)} ∪ Ri)

[M] ={prop(s, p) :p ∈ P, s ∈V (p)}∪ {rel(s, i, s′) : (s, s′) ∈ Ri }

As we see, we are considering the ∨ operator separately and use Def. 4.1 and Def. 4.2 to get the translations for

policies. Note that Xi is either Res or Req for every Xi in the definition. The next example illustrates several of the steps

in the translation.

Example 4.3. Let us consider a very simple EHL path expression formula that grants access to a profile to any direct

or indirect contact of the owner of the profile:

ϕ = @Res ⟨−pro f ile⟩⟨contact⟩
+Req

This policy is already in disjunctive form with a single conjunctive formula, ϕ1 = ⟨−pro f ile⟩⟨contact⟩+Req and

X1 = Res. Thus,

[ϕ1]
Res = [

π1︷ ︸︸ ︷
⟨−prof ile ⟩

π2︷ ︸︸ ︷
⟨contact ⟩+ Req]Res = (Bϕ1, Rϕ1)

(Bϕ1 ,Rϕ1)
Def. 4.1.9d

= (Bπ1Y ∪ Bπ2Req,Rπ1Y ∪ Rπ2Req) (9)

where (Bπ1Y,Rπ1Y) = [π1Y]
Res

and (Bπ2Req,Rπ2Req) = [π2Req]
Y

(Bπ1Y,Rπ1Y)
Def. 4.1.9c

= ({rel(Y1, profile,Res),Y = Y1}, ∅) (10)

since [Y]Y1 Def. 4.1.1

= ({Y = Y1}, ∅)

(Bπ2Req,Rπ2Req)
Def. 4.1.9e

= ({pi+(Y,Y2),Y2 = Req},Rπ2Y2 ∪ Rtc) (11)

since [Req]Y2 Def. 4.1.1

= ({Y2 = Req}, ∅). Additionally,

[π2Y2]
Y Def. 4.1.9b, Def. 4.1.1

= ({rel(Y, contact,Y3),Y3 = Y2}, ∅).

Hence

Rtc = {rel(Y, contact,Y3),Y3 = Y2 → pi(Y,Y2)

pi(Y,Y2) → pi+(Y,Y2)

pi(Y,Y3), pi+(Y3,Y2) → pi+(Y,Y2)} (12)

Datalog Framework for Modeling ReBAC Policies 13

and

(Bπ2Req,Rπ2Req) = ({pi+(Y,Y2),Y2 = Req},Rtc) (13)

From (10), (12) and (13) we obtain that the pair (Bϕ1 ,Rϕ1) in (9) can be rewritten as

({rel(Y1, profile,Res),Y = Y1, pi+(Y,Y2),Y2 = Req},

{rel(Y, contact,Y3),Y3 = Y2 → pi(Y,Y2)

pi(Y,Y2) → pi+(Y,Y2)

pi(Y,Y3), pi+(Y3,Y2) → pi+(Y,Y2)})

and finally, rewriting the pair above we have that (Bϕ1 ,Rϕ1) equals to

({rel(Y, profile,Res), pi+(Y,Req)},

{rel(Y, contact,Y2),→ pi(Y,Y2)

pi(Y,Y2) → pi+(Y,Y2)

pi(Y,Y3), pi+(Y3,Y2) → pi+(Y,Y2)})

Consequently, by Def.4.1 and Def.4.2 the ReBAC Datalog program associated to ϕ, [ϕ], is

{rel(Y, profile,Res), pi+(Y,Req) → grant(Req,Res),

rel(Y, contact,Y2),→ pi(Y,Y2)

pi(Y,Y2) → pi+(Y,Y2)

pi(Y,Y3), pi+(Y3,Y2) → pi+(Y,Y2)}

Given a protection state, a policy and a permission request, the next theorem establishes the relationship between

granting permissions in EHL and query answering in ReBAC Datalog programs.

Theorem 4.4. Given an EHL policy ϕ in disjunctive form, an EHL modelM and a permission request (u, r)

M, [Req 7→ u,Res 7→ r] |= ϕ iff [M] ∪ [ϕ] |=Dataloд grant(u, r)

Proof sketch: the proof is based on the following lemma:

Lemma 4.5. Let ϕ be a normal conjunctive EHL formula, M = (S, {Ri ⊆ S × S |i ∈ I},V) a model, s a node in S and

д : V → S an assignment such thatM, s,д |= ϕ. Let X ∈ Var be a fresh variable not appearing in ϕ. Then,

[M]∪{X = s,B → q(V,X)} ∪ R |=Datalog q(a,X),

where V is the set of free variables in ϕ, a is the assignment of V in д, q is a fresh predicate and [ϕ]X = (B,R)

This lemma works over general normal conjunctive formulas without the restriction imposed in policies by EHL over

free variables. Hence we are able to do an inductive proof based on the structure of ϕ. The case in which ϕ ≡ π+ϕ ′

requires a second induction to cover the transitive closure.

14 Edelmira Pasarella and Jorge Lobo

5 FROM REBAC DATALOG TO EHL

There are two types of ReBAC Datalog policies that cannot be expressed within EHL. An example of the first type of

policies is the following:

rel(X, i,Y), prop(Y, p1) → r(X,Y)

r(X,Y) → tr(X,Y)

r(X,Z), tr(Z,Y) → tr(X,Y)

tr(Req,Res) → grant(Req,Res)

In this policy, a property is checked on every object in the path between Res and Req. Such conditions cannot be

imposed in a path expression. To limit the expressibility of ReBAC Datalog to path expressions and avoid this type of

policies, we need simple definitions of derived relationships. We need to limit the literals that can appear in the body of

a derived relationship definition to be either positive rel literals or transitive closure relationship literals – no negation

and no basic or global property literals.

An example of the second type of policies is the following:

rel(X, i,Y) → grant(Req,Res) (14)

This says that access is granted if Ri in the protection state is not empty. To exclude this type of policies we need to

limit the variables that appear in any ReBAC Datalog rule as follows:

Definition 5.1. For a Datalog rule of the form (1) we say that:

(1) A variable that appears in a literal Lk, k ≤ m, is seeded iff it also appears either in A or in a literal Li, i < k.

(2) A negative literal is well-seeded iff all its variables are seeded.

(3) A positive literal is well-seeded iff at least one of its variables is seeded.

The rule is well-seeded iff the literals in its body can be re-arrange so that all of them become well-seeded and the

variables appearing in the constraints are seeded.

The rule in Eq.(14) is not well-seeded since neither of the variables, X or Y, appears in the head or in a predicate in

the body together with another well-seeded variable (or constant). Now we have the following proposition.

Proposition 5.2. A ReBAC Datalog policy that only uses simple derived relationship definitions and all its rules are

well-seeded can be translated to an EHL formula. Furthermore, if the policy does not use transitive closure relationships it

can be translated into an HL formula.

Proof sketch: the transformation starts from the grant rules and is more or less straightforward if it is done using a

well-seeded order traversal of the literals in the rule by binding a variable with ↓ the first time the variable is encountered

in the rule.

We skip the transformation due to space limitations. In addition, there is no equivalent EHL policies for most of the

extensions discussed in the following section.

6 EXTENSIONS

Permissions are usually granted not to simply access a resource but to do something with it. For example, Alice may

want access to a file to read and modify it. Hence the granularity of the permissions should be at the level of the

Datalog Framework for Modeling ReBAC Policies 15

operation. We can represent requests as a triple (u, r ,a), where u is the principal requesting access to the resource r and

a is the action the principal wants to apply to the resource. If the set of actions is part of S in the protection state, there

could be an “implements" relations over resources and actions and we can allow three free variables in an EHL policy ϕ:

Req,Res,A. A request (u, r ,a) is granted under the policy ϕ iff

M, [Req 7→ u,Res 7→ r ,A 7→ a] |= ϕ

and the grant Datalog rules will be of the form

B → grant(Req,Res,A)

For example, the policy that let any friend of the owner of a resource Res to copy Res is written as follows:

rel(Res, implements, copy),

rel(O, owns,Res), rel(O, friend,Req) → grant(Req,Res, copy)

Similar to permission granting rules, negative authorizations can be defined by a formula ϕ ′ such that access is denied

when:

M, [Req 7→ u,Res 7→ r ,A 7→ a] |= ϕ ′

The Datalog rule of a negative authorization will be of the form

B → deny(Req,Res,A)

Having negative authorizations introduces two problems. One is what to do if a request is neither granted nor denied.

The second is what to do with conflicting decisions. The first issue of policy coverage is a semantic issue. We could have

a meta-rule to cover the missing cases but this meta-rule may hide the gaps of what it could be an incomplete policy

otherwise. In addition, if meta-rules are used one needs to re-examine the need of complicating the policy specification

with negative and positive authorizations since one could, in principle, specify one type of policy and let the meta-rule

cover the other type (like in any request that is not granted is denied). A more practical problem is to discover policy

gaps. So far, we have used Datalog programs to answer ground queries (e.g., grant(u, r, a)). By typing the objects in

a protection state and adding them as part of the input, we can also ask existentially quantified queries and do gap

analysis with the rule:

prop(Req, principal), prop(Res, resource),

prop(A, action),

¬grant(Req,Res,A),¬deny(Req,Res,A) → gap(Req,Res,A)

and the query:

D |=Dataloд ∃Req∃Res∃A(gap(Req,Res,A))

For analysis, we are assuming that propositions exist in D typing the constants in the active domain.

There are three complexity characterizations for query evaluation in Datalog and logic programs. In one characteri-

zation, called data complexity, the complexity is characterized in terms of the input size (in our case, the protection

state) while the Datalog program (in our case the ReBAC policies) and the query are fixed. If, on the other hand, the

input is fixed and the program and the query size is what matters, the complexity of query evaluation is called program

complexity. If both the program and the input are considered part of the problem size the characterization is called

16 Edelmira Pasarella and Jorge Lobo

program+data complexity. Most of the time in database applications data complexity is considered sufficient since the

size of the data represented by the input is much larger than the size of the program. We will show in the next section

why this is also a reasonable assumption for ReBAC policies.

Efficient procedures (PTIME data complexity) exist not only to decide if the answer is yes or no, but also to obtain

values for the existentially quantified variables in a query like the one to check for gaps.

Conflicts can be an indication of policy errors. However, including policy conflict resolution rules in the semantics

of policy evaluation is a common practice since many times it facilities policy specification. A typical policy conflict

resolution rule is denies-override-allows. This can be easily incorporated into Datalog policies by rewriting each

granting access rule as follows:

B,¬deny(Req,Res,A) → grant(Req,Res,A)

There are many conflict resolution strategies that can be borrowed from other Datalog models – the interested reader

can find in [18] an extensive study of authorizations overrides meta-policies and how to express them in terms of logic

programs.

History-based Policies. It is common to find examples of access control policies that depend on the occurrence of past

events. In the context of ReBAC, motivated by access control policies found in community-based collaborations, Fong

et al [13] has extended HL with linear past temporal operators. Two examples from [13] are:

• A user who has been reported for using inappropriate language twice is suspended for further editing.

• A user who has already created two distinct objects that have since remained untouched by any member of the

community (including herself) is not allowed to further create new objects.

Handling history-based policies in the context of Datalog has been discussed in [22]. This is achieved by adding a

time argument to all the predicates and allowing a limited class of time constraints over time variables. To illustrate

how it works we will encode the second example above:

T1 ≤ T, T2 ≤ T,

rel(U, own,O1, T1),rel(U, own,O2, T2),

¬twoEd(O1,O2, T),O1 , O2 → deny(U,O, create, T)

T1 ≤ T, T2 ≤ T, rel(O1, edited,U1, T1),

rel(O2, edited,U2, T2) → twoEd(O1,O2, T)

The intuition behind the rules is that the Ti variables will be instantiated with time values, and events like creation of

objects, or modifications of objects will be incorporated into the protection state (these events can be captured each

time a request to execute these operations is granted/denied) and the state will evolve over time. Hence, given two

objects o1 and o2, and a fixed time t, twoEd(o1, o2, t) will hold if there are time points t1 and t2 before (or equals to) t

for which rel(u, edited, o1, t1) and rel(u, edited, o2, t2) are part of the corresponding states.

A time constraint C is any expression of the form T1 ⊕ T2 ± c, where T1 and T2 are different time variables, c is a

non-negative real number and ⊕ is one of {=, ≤, <}. These binary relations are interpreted under the standard order of

time. Several constraints can appear in a rule but all the time variables in the constraints must also appear either in the

head of the rule or in a literal in the body. In addition, if T is the time variable appearing in the head, and C1, . . . ,Cn all

the constraints appearing in the body, then for any variable Ti that appears in the constraints, it must be the case that

Datalog Framework for Modeling ReBAC Policies 17

C1, . . . ,Cn |=Dataloд Ti ≤ T. This ensures that policy evaluations do not depend on “future” states. In the non-temporal

case, policies were evaluated in a protection state. In the case of temporal policies, all the ground atoms belonging to

the same temporal protection state will be extended with an extra-argument which will be a time constant - the same

constant in all the atoms. Note that there is no way to specify absolute values for the Ti’s in the rules, all times are

relative to T which is also a variable. Similar to [13], policy compliance is defined in terms of traces. A trace T , is a

(possibly infinite) sequence of temporal states ⟨S0, S1, . . .⟩, such that constants ti, tj associated to the atoms in states

Si , Sj are such that ti ≤ tj if i ≤ j . Intuitively, T represents the history of the protection state evolution over time. How

the evolution happens over time is not relevant for our discussion. Given a set of temporal policy rules P and a trace T ,

a permission request (req, res, a) is granted at time t iff

P ∪ T |=Dataloд grant(req, res, a, t)

The crucial point here is that conditions in any rule refer to properties that must be true either at the same state where

the head of the rule is true or in an earlier state, and when a permission is requested it is assumed that the request

is to grant the permission at the current time, i.e., the time when the request is made. The results in [22] also show

how effective monitors that only keep the historical data required to evaluate the rules can be implemented instead of

having copies of multiple states. Each update step executed by the monitor takes time proportional to the size of the

update made to the protection state. This is in contrast to the results in [13] in which the steps take time proportional

to the size of the state. The same monitors from [22] can be used for historical ReBAC if the only time variable that

can appear in the rules representing path expressions is the variable that appears in the head (and thus there are not

temporal constraints in the recursive rules). In other words path expressions refers to paths in a single protection state.

7 DATALOG AS AN IMPLEMENTATION

In contrast to policy analysis where time is not so much an issue, the complexity of access control decisions must

consider the effect of the policy, i.e., the Datalog rules. Program complexity in Datalog is EXPTIME-complete [11]. In

terms of ReBAC Datalog that would mean that fixing a protection state, there is a policy that takes exponential time to

evaluate with respect to the size of the the policy itself + the fixed size of the protection state. This result applies even if

the Datalog rules are well-seeded and no transitive closure relationships are used. Therefore, the result also applies

to HL policies. The hardness part of the EXPTIME complexity proof depends on the fact that there are no limitations

in the arity of the predicate relations that can define the Datalog program - the standard proof uses an encoding of a

deterministic Turing machine that halts in less than 2
nk

steps and uses predicates of arity in the order of O(n). These

are very large programs. In ReBAC Datalog policies, all predicates of arity > 3 appear in global condition literals. If we

assume a constant k exists that limits the maximal arity of any predicate the complexity reduces to NP. The intractability

persists because of the inequalities. Inequalities permit to encode the Hamiltonian path problem [23]. The encoding of

the problem for a path of length n uses n different variables in the inequalities of a single rule. Again, this is a very

large program. If we can also assume that the number of different variables that appear in the inequalities of a single

rule does not exceed a constant k we obtain tractability. Furthermore, the result is tight.

Proposition 7.1. ReBAC Datalog programs with all predicates with arity ≤ k and rules with constraints that used ≤ k

variables is program+data complete for P.

This follows directly from the facts that (1) Datalog programs that are limited to use ≤ k variables per rule is

data+program complete for P [28], and (2) that using the result that Stratified Datalog with negation is data complete

18 Edelmira Pasarella and Jorge Lobo

for P and program complete for EXPTIME [1] together with the same techniques from [28], one can show that stratified

Datalog programs with negation that are limited to use ≤ k variables per rule are also data+program complete for P.

These proofs rest on the fact that any intermediate result needed to evaluate the rules is no more than polynomially

larger than the input size. In ReBAC Datalog programs, the size of any derived relation is a polynomial function on

the size of the protection state. More precisely, if the number of constants in the protection state ism, the size of a

derived relation can be bound to O(mk), assuming k to be the maximal predicate arity. Take, for example, grant(X,Y).

The maximum number of different values that X or Y can take ism. Hence, the number of ground atoms is bound by

m2
. The number of relations defined by policies (i.e., the number of different predicate names appearing in the head of

at least one rule is limited by the number l of program rules, therefore, an evaluation of the ReBAC program can be

done in O(lmk2

). The square is added as an upper bound of rule evaluation in case there are recursive rules. In practice,

this number is much smaller, and for a given request grant(u, r, a), l will be determined by how well we can index the

rules based on u, r, and a, to pull out the subset of rules that apply to the specific request. One could use the principal

matching rules concept from [8] or the user-to-user relationship-based access control model of [7] to organize policies

and create an indexing.

There is a syntactic characteristic of the program rules that is used to ensure that intermediate results are kept small:

we have already observed how the propagation of information through variable bindings happens in the rules. Take, for

example, the rule:

rel(Res, profile,O), rel(Req, contact,Z),

rel(Z, contact,O) → grant(Req,Res)

In terms of database operations, the evaluation of the rule requires two joins. We know that at the moment of evaluation,

values for the variables Req and Res will be fixed. Therefore, the evaluation of rel(Res, profile,O) will produce a

single value for O. The expected number of values for Z returned by the evaluation of rel(Req, contact,Z) can be

estimated by the typical values of contact list sizes given that Req is fixed. Similarly, the expected number of values

for Z in the evaluation rel(Z, contact,O) can be estimated. This is called the selectivity of the evaluation, the smaller

the expected number of values, the higher the selectivity. Given that the selection operations in databases can be

done much faster than the joins, modern database systems do query planning before query evaluation to find the

right order to evaluate the joins. If, for example, the order is first to do the join rel(Req, contact,Z), rel(Z, contact,O),

before doing the second join with rel(Res, profile,O) a projection over O is done in the relation obtained from the

join rel(Req, contact,Z), rel(Z, contact,O) and the joint relation can be discarded before doing the (semi) join with

rel(Res, profile,O). In this case there can never be a relation with more thanm2
tuples during the computation. In

contrast, creating the (Res,O,Req,Z) joint table could in principal generate a relation withm4
tuples. This dependency

of shared variables is known as a Sideway Information Passing (SIP) optimization and it is fundamental for the Magic Sets

optimization technique applied to recursive Datalog rules. Given that the evaluation of an access control decision in the

Datalog program is always answering a ground query this optimization will be very effective, essentially transforming

the query answering into a goal oriented procedure. This means that the search space will be very likely limited to

nodes in the graph that are reachable from the constants passed as arguments in the query which, in many cases, will

be much smaller thanm. Furthermore, SIPs are useful for implementing and maintaining view materialization - this is a

pre-computation of rule evaluations that generalizes the concept of catching suggested in [9].

Datalog Framework for Modeling ReBAC Policies 19

There are several Datalog systems available to test implementations. Nevertheless, we are not presenting experimental

evaluations since [21] already reports an evaluation and comparison of a few systems that includes experiments with

rule sets with exactly the characteristics of ReBAC Datalog policies. Instead what we will do is to present the relevant

results and put them in context with the experimental evaluation of a Java implementation of a subset of EHL policy

evaluator reported in [25].

Since the publication of [21] there have been several new releases of the systems and the results of the experiments

have been updated twice using the newer versions. The discussion below is based on the 2011 report [12]. The machine

where all the experiments were conducted was a dual core 3GHz Dell Optiplex 755 with 4 gigabytes of main memory. It

was running Ubuntu 7.10 with kernel 2.6.22. Although the experiments were ran using four different Datalog systems

and no a single one outperformed the others in all the evaluations, we will only report the results obtained using

Ontobroker [21] since it is the system that better performed in the majority of the tests. Ontobroker is also written in

Java. We start reviewing the results of evaluating the following set of rules:

b1(X,Z), b2(Z,Y) → a(X,Y)

c1(X,Z), c2(Z,Y) → b1(X,Y)

c3(X,Z), c4(Z,Y) → b2(X,Y)

d1(X,Z), d2(Z,Y) → c1(X,Y)

The base relations that would correspond to the protection state were c2, c3, c4, d1 and d2, representing atoms of the

form rel(X, c2,Y), rel(X, c3,Y), rel(X, c4,Y), rel(X, d1,Y), rel(X, d2,Y). We will discuss the results for experiments that

were conducted using 50K and 250K randomly generated arcs from a fixed set of 1000 nodes. For the query a(X,Y), in

which both variables were free, with 50K arcs the time to evaluate the query was 8.807sec. With 250K the evaluation

took 59.259sec. At first glance, these times do not look encouraging. Nevertheless, if in the query we bind the first

argument (e.g., a(1,Y)) the time to answer the query with 50K arcs reduces to 7msec. With 250K arcs the time reduces

to 21msec. Tests with the second argument bound (e.g., a(x, 2)) resulted in similar performance of 50K arcs, but only

5msec for 250K . This difference is explained by the fact that Ontobroker does query analysis and builds a cost model to

decide what optimizations to use including the order to do the joint operators, the algorithm to use for the execution

of each of the join operations as well as selectivity analysis. This improvement of at least three orders of magnitude

shows the effect of limiting the search to reachable objects. For ReBAC, we can take the best of the times since queries

grant(u, r), will have both arguments bound.

It is difficult to make a direct comparison to the results reported in [25] for several reasons. One is that the number

of arcs used in[25] is 2 orders of magnitude larger (30000K) than for the experiments in [12]. Furthermore, in [25] the

arcs were not randomly generated, and the machine was more powerful: it had 8 cores of faster CPUs and 4 times more

memory. They report having averages of 37msec for the policies most similar to the program above. These 37msec are

an average over policy evaluations that could require the executions of no joints at all and up to a maximum of three

joints. This is in contrast to the query a(.) that has four joins. Evaluations with larger data sets can be done but it is

worth noting that database sizes do not correlate directly with time to execute queries - not only the second argument

bound query evaluation ran faster for the 250K set than the 50K , but the time that took to run queries of the form

b2(X,Y) and b1(X,Y) with one of the arguments bound using the 50K set and the 250K set took about the same time in

each case, less than 4msec for b1 and less than 20msec for b2.

20 Edelmira Pasarella and Jorge Lobo

[12] also reports experiments over the evaluation of transitive closure rules:

par(X,Y) → tc(X,Y)

par(X,Z), tc(Z,Y) → tc(X,Y)

The results here are also remarkable. The largest input size consisted of 2000 nodes and 1M par arcs randomly generated.

Two types of input were generated, for graphs with and without cycles. For queries with no bindings (tc(X,Y)) the

times for evaluation were 87.3sec for data with no cycles and 200.9sec for data with cycles. Binding the first argument

made very little difference, 86.5sec and 197.17sec respectively. But if the second argument was bound the results were

25msec for no cycles and 16msec for data with cycles. This demonstrates the effects of the Magic set optimization that

re-writes the programs to take advantage of the bound arguments and the SIP derived from the rules syntax.

[25] does not have implementation for path expressions. The observation to make is that despite of the fact that the

system in [25] was specially developed for EHL its performance is not particularly better than using an off-the-shelf

Datalog system that also includes regular path evaluations, giving evidence of the excellent performance of Datalog

systems contrary to the belief that they are not suitable for high throughput access control implementations.

A final observation about implementations: there is a result in parallel complexity that may explain some of the

experimental results for the transitive closure above. A Datalog program is called linear if and only if each rule has

at most one occurrence of the predicate in the head appearing in the body. Recall that a decision problem is in the

NC complexity class if it can be solved in polylogarithmic time on a parallel computer with a polynomial number of

processors. It is known that the data complexity of linear Datalog is in NC [26] and amenable to parallelization. Note

that except for negation, ReBAC programs are linear. Among the optimization considered by Ontobroker is the use

multiple cores and threading to parallelize query evaluation.

8 FINAL REMARKS

Research on access control policy languages has been extensive and logic programming has been a popular modeling

choice [2, 3, 16, 18, 19]. But writing correct policies and developing correct and intuitive implementations of policy

management systems are not easy tasks [10]. The attention ReBAC has received in the access control research community

comes from the fact that it provides an expressive yet tractablemodel to intuitively capture themeaning of the “subjective”

policies people may have in mind. The goal of this paper has been to show the benefits of using Datalog as a developing

framework. Modeling ReBAC in Datalog is natural since Datalog is a good language to describe and talk about properties

of graphs which is the essence of ReBAC. From a practical point of view there are two good reasons for choosing

Datalog: Datalog specifications are easier to implement, and implementation techniques have been around for many

years. These are complemented by extensive results in computational complexity which we were able to use almost

directly to establish the expressibility and complexity results of ReBAC Datalog policies (and by Propositions 5.2 & 7.1,

the complexity of HL and EHL policy evaluation). This does not mean that Datalog must be the syntax the policy author

uses to write policies. ReBAC Datalog can be thought as target compilation language of a more user-friendly language

for authoring.

There is a striking similarity between the definitions of properties and relationships in HL and the definitions

of concepts and roles in Description Logics (DL). This has been our motivation for the “meta-relation” rel, as in

rel(O, friend,R), instead of friend(O,R). This is a typical domain-independent representation of DL roles in Datalog.

Since hash indexes can be built in relation columns, accessing the related items of a particular object can be done very

Datalog Framework for Modeling ReBAC Policies 21

efficiently. There is a lot of research in the DL community to develop fast deduction algorithms for very large data sets

(see, for example, [27]). Developing a ReBAC model based on one of the tractable DLs is an avenue of research worth

exploring. But what is more important to note is that many advances for high throughput Datalog systems have been

driven by the interest of the Semantic Web community of using Datalog-like languages for Ontology reasoning. Even

if a specialized ReBAC policy evaluator is developed all the experience gained developing high throughput Datalog

systems cannot be ignored and will be of tremendous impact.

ACKNOWLEDGMENTS

Edelmira Pasarella was partially supported by the SpanishMinistry for Economy and Competitiveness (MINECO) and the

European Union (FEDER funds) under Grant Ref.: TIN2013-46181-C2-1-R COMMAS. Jorge Lobo was partially supported

by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, the Maria de Maeztu Units of Excellence

Programme and the Spanish Ministry for Economy and Competitiveness (MINECO) under Grant Ref.: TIN2016-81032-P.

REFERENCES
[1] Krzysztof R Apt and Howard A Blair. 1990. Arithmetic classification of perfect models of stratified programs. Fundamenta Informaticae 13, 1 (1990),

1–17.

[2] Steve Barker. 2002. Protecting deductive databases from unauthorized retrieval and update requests. Data & Knowledge Engineering 43, 3 (2002),

293–315.

[3] Moritz Y Becker, Cédric Fournet, and Andrew D Gordon. 2010. SecPAL: Design and semantics of a decentralized authorization language. Journal of
Computer Security 18, 4 (2010), 619–665.

[4] Glenn Bruns, Philip WL Fong, Ida Siahaan, and Michael Huth. 2012. Relationship-based access control: its expression and enforcement through

hybrid logic. In Proceedings of the second ACM conference on Data and Application Security and Privacy. ACM, 117–124.

[5] Barbara Carminati, Elena Ferrari, and Andrea Perego. 2009. Enforcing access control in web-based social networks. ACM Transactions on Information
and System Security (TISSEC) 13, 1 (2009), 6.

[6] Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2012. Relationship-based access control for online social networks: Beyond user-to-user relationships.

In Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom).
IEEE, 646–655.

[7] Yuan Cheng, Jaehong Park, and Ravi S. Sandhu. 2016. An Access Control Model for Online Social Networks Using User-to-User Relationships. IEEE
Trans. Dependable Sec. Comput. 13, 4 (2016), 424–436. https://doi.org/10.1109/TDSC.2015.2406705

[8] Jason Crampton and James Sellwood. 2014. Path conditions and principal matching: a new approach to access control. In Proceedings of the 19th
ACM symposium on Access control models and technologies. ACM, 187–198.

[9] Jason Crampton and James Sellwood. 2015. Relationships, Paths and Principal Matching: A New Approach to Access Control. arXiv preprint
arXiv:1505.07945 (2015).

[10] Lorrie Faith Cranor and Simson Garfinkel. 2005. Security and usability: designing secure systems that people can use. " O’Reilly Media, Inc.".

[11] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and expressive power of logic programming. ACM
Computing Surveys (CSUR) 33, 3 (2001), 374–425.

[12] Paul Fodor, Senlin Liang, and Michael Kifer. 2011. OpenRuleBench: Report 2011. (2011).

[13] Philip WL Fong, Pooya Mehregan, and Ram Krishnan. 2013. Relational abstraction in community-based secure collaboration. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. ACM, 585–598.

[14] Philip WL Fong and Ida Siahaan. 2011. Relationship-based access control policies and their policy languages. In Proceedings of the 16th ACM
symposium on Access control models and technologies. ACM, 51–60.

[15] Carrie Gates. 2007. Access control requirements for web 2.0 security and privacy. IEEE Web 2, 0 (2007).
[16] Yuri Gurevich and Itay Neeman. 2008. DKAL: Distributed-knowledge authorization language. In Computer Security Foundations Symposium, 2008.

CSF’08. IEEE 21st. IEEE, 149–162.
[17] Hongxin Hu, Gail-Joon Ahn, and Jan Jorgensen. 2013. Multiparty access control for online social networks: model and mechanisms. Knowledge and

Data Engineering, IEEE Transactions on 25, 7 (2013), 1614–1627.

[18] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and VS Subrahmanian. 2001. Flexible support for multiple access control policies. ACM
Transactions on Database Systems (TODS) 26, 2 (2001), 214–260.

[19] Lalana Kagal, Tim Finin, and Anupam Joshi. 2003. A Policy Based Approach to Security for the Semantic Web. The Semantic Web-ISWC 2003 (2003),
402–418.

https://doi.org/10.1109/TDSC.2015.2406705

22 Edelmira Pasarella and Jorge Lobo

[20] Phokion G Kolaitis. 1991. The expressive power of stratified logic programs. Information and Computation 90, 1 (1991), 50–66.

[21] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. 2009. OpenRuleBench: an analysis of the performance of rule engines. In Proceedings of the
18th international conference on World wide web. ACM, 601–610.

[22] Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, Seraphin Calo, and Morris Sloman. 2011. Refinement of history-based policies. In Logic
programming, knowledge representation, and nonmonotonic reasoning. Springer, 280–299.

[23] Christos H Papadimitriou and Mihalis Yannakakis. 1997. On the complexity of database queries. In Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems. ACM, 12–19.

[24] Raymond Reiter. 1984. Towards a logical reconstruction of relational database theory. In On conceptual modelling. Springer, 191–238.
[25] Syed Zain R Rizvi, Philip WL Fong, Jason Crampton, and James Sellwood. 2015. Relationship-based access control for an open-source medical

records system. In Proceedings of the 20th ACM Symposium on Access Control Models and Technologies. ACM, 113–124.

[26] Jeffrey D Ullman and Allen Van Gelder. 1988. Parallel complexity of logical query programs. Algorithmica 3, 1-4 (1988), 5–42.
[27] Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. 2016. Column-Oriented Datalog Materialization for Large Knowledge Graphs. In Thirtieth AAAI

Conference on Artificial Intelligence. 258–264.
[28] Moshe Y Vardi. 1995. On the complexity of bounded-variable queries. In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems. ACM, 266–276.

	Abstract
	1 Introduction
	2 ReBAC Datalog policies
	3 EHL ReBAC Policies
	4 From EHL to ReBAC Datalog
	5 From ReBAC Datalog to EHL
	6 Extensions
	7 Datalog as an implementation
	8 Final remarks
	Acknowledgments
	References

