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ABSTRACT
�is paper addresses the problem of balanced, redundant indexing
of media information. Our goal is to partition and distribute the
search index, taking advantage of the distributed systems proper-
ties: balanced load across nodes, redundancy on node down and
e�cient node usage under concurrent querying. We follow an in-
formation compression approach to solve this problem and propose
to represent data with overcomplete codebooks, where each doc-
ument is represented by only a few codewords and an indexing
node is responsible for several codewords. �antization algorithms
are designed to �t the original data as best as possible, leading to
bias towards codewords that �t the principal directions of data. In
this paper, we propose the balanced KSVD (B-KSVD) algorithm,
that distributes the allocation of data across a balanced number of
codewords, according to the global distribution of data. Indexing
experiments showed that B-KSVD can achieve 38% 1-recall by in-
specting only 1% of the full index, distributed over 10 partitions.
Traditional methods based on k-means need to either use larger
codebooks or to inspect a larger portion of the index to achieve the
same retrieval performance.

KEYWORDS
Search space partitioning; Distributed search; High-dimensional in-
dexing; Dictionary design; Clustering; Approximate nearest neigh-
bor search

1 INTRODUCTION
�e goals of index partitioning algorithms are to distribute doc-
uments across nodes based on document similarity, to facilitate
the e�cient selection of retrieval resources, such that documents
relevant to a query are concentrated across a few shards [22]. �ere
are two main index partitioning strategies [9]:

• horizontal partition or sharding: divide documents across
nodes;

• vertical or term-based partition: divide document fea-
tures across multiple nodes.

In addition to dealing with high-dimensional data and its unknown
underlying structure, these algorithms have the opportunity to take
advantage of the characteristics of new distributed systems (e.g.
cloud environments), parallel processing, hardware redundancy
(i.e. index documents on more than one node), and ability to de-
ploy additional nodes on-demand. Existing multimedia document
distribution do not explore these characteristics, as document al-
location policies are either random, e.g. [29], or based on existing
partitions of single node algorithms, e.g. [6]. One of the works that

goes towards our partitioning goals is by Ji et al. [20]. �ey tested
global and local indexing partitioning techniques (horizontal and
vertical partition respectively), based on Vocabulary Tree model
quantization, and showed that vertical partitioning o�ers the best
temporal performance on a distributed se�ing, without an increase
in load imbalance.

Our goal in this paper is to study the impact of overcomplete
data representations on the load balancing and retrieval perfor-
mance of distributed indexes. Codebooks for overcomplete data
representations are composed of a large number of codewords,
each one corresponding to a partition of the search space. �e
overcomplete property of the codebook, means that the number of
partitions/codewords is much higher than the original data dimen-
sionality. Indexing is achieved by encoding each media vector as a
linear combination of just a few codewords.

�e main contribution of this paper is the balanced-KSVD al-
gorithm (B-KSVD) that distributes the allocation of data across a
balanced number of codewords. B-KSVD is a distributed indexing
algorithm that computes a codebook with an overcomplete set of
codewords that addresses a number of challenges. �e �rst one, is
the even distribution of data across codewords to achieve be�er
load-balancing when allocating data to nodes. �e second, is that
documents should be assigned to partitions with documents that
are also close in the original space. And third, because a vector
is encoded with multiple codewords, each one corresponding to
a space partition, data will be stored redundantly across multiple
nodes (each node has the capacity to serve multiple codewords).

�e proposed approach o�ers several advantages. An overcom-
plete balanced index means that concurrent queries will be an-
swered by di�erent subsets of nodes, reducing the bo�leneck of
having all nodes answering all queries. (e.g. Figure 1 (b)). Fur-
thermore, these properties mean that distributed indexes can still
operate with good performance when a node fails. In other words,
failure to inspect a partition (e.g. as a consequence of a node failure)
will result in a performance decrease, instead of no results returned.

�is paper is organized as follows: Section 2 details the related
work in distributed media search and space partitioning. Section 3
details the formalization of overcomplete redundant partitioning
and proposed solutions. Section 4 describes the experiments and
section 5, we discuss our conclusions.

2 RELATEDWORK
�e bulk of distributed multimodal retrieval comes from combining
Map Reduce [13] with single node algorithms or from distributing
the feature spaces across nodes [28]. When applied to CBMI [27,
29, 38], Map Reduce can be used to partition indexes horizontally.
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As Map Reduce requires Map and Reduce nodes to be data agnostic,
indexes must either query all nodes for all queries [29], which does
not meet our e�ciency goal, or have all nodes have access to the
full index [27], which is limited by the time it takes to fetch the
relevant index subset. Moise et al. [27] experiments also show that
the overhead behind the Map and Reduce operations is considerable
(e.g. copying data to Hadoop Distributed File Systems), as it is only
optimized for massive batches of queries. Distributed tree-based
systems have also been studied for horizontal index partitioning for
CBMI Aly et al. [2], Batko et al. [6], but the e�ectiveness of sub-tree
based index partitioning is reduced when the dimensionality of the
vectors to index increases [36], meaning that more nodes need to
be queried.

E�ective partitioning of the search space is a key part of approx-
imate nearest neighbour algorithms. It enables faster search by
inspecting the subset of the index where there is an higher den-
sity of nearest neighbours. Recent algorithms in this area rely on
Hamming embeddings or on codebooks learned from data.

Hamming embeddings. Binary hash techniques such as LSH
(Locality Sensitive Hashing) [3], partition search space in a data
independent way, according to a set of randomly generated hy-
perplanes. Each hash bit represents an hyperplane in the original
feature space that divides it in two, assigning a value of zero or
one related to the side in which the document is. Hash codes are
generated by concatenating multiple of the values of these func-
tions. �e search space is partitioned horizontally, according to
the document’s hash: documents with similar hash code that have
high probability of being similar in the original space are stored on
the same buckets. LSH spawn multiple techniques [11, 12, 32] that
explore alternatives to hyperplane partitioning by applying other
families of functions with di�erent structures (e.g. grid).

Other works have focused on creating be�er hash functions, by
exploring the structure of the data in original space. By leveraging
on the distribution of documents in the original search space, data
dependent hash functions [16, 24, 35, 37] can create be�er partitions
for similarity search. Grauman and Fergus [15] authored a review
of data dependent hash techniques.

Regression and codebook design. Sparse hashes are gener-
ated in a very high dimensional overcomplete space, Documents
with more non-zero coe�cients on the same hash positions have
higher degrees of similarity than documents with no common non-
zero coe�cients. E�ective partitioning is achieved by having only
a very small subset of hashes with non-zero values. Lewicki and
Sejnowski [23] show that the transformation of dense feature repre-
sentations into a sparse high-dimensional representations achieves
a high degree of compression, while preserving locality structure
on the non-null coe�cients.

Multiple techniques were developed to generate high dimen-
sional sparse hashes. �ese techniques di�er by the type of regu-
lation applied to the hashes: l0 penalty (e.g. OMP [31]), l1 penalty
(e.g. Lasso [34]), l2 penalty (e.g. Ridge [17]) or a combination of the
l1 and l2 penalties (e.g. Elasticnet [39]). OMP controls sparsity by
greedily selecting the most correlated coe�cient at each iteration
with the current residual (l0 pseudo-norm penalty). Lasso does
sparse selection by applying the l1 penalty, Ridge limits the coe�-
cient magnitude by applying the l2 penalty Elasticnet’s penalty is
a mixture of Lasso’s l1 penalties with Ridges l2 penalties, having

both the sparsity properties of l1 penalty and the limited coe�cient
magnitude of the l2 penalty.

Regression techniques use a codebook (or dictionary) as the basis
of the transformation into the new space. Codebook computation
algorithms such as K-SVD, select codewords that minimize recon-
struction error. K-SVD [1] alternatively updates a codebook and
the coe�cients. Stochastic gradient descent techniques (e.g. [30])
update each example per iteration, to minimize reconstruction er-
ror. Cherian et al. [10] presented an index based on hashes created
using l1 regression and the Newton Descent for codebook learn-
ing. Borges et al. [8] presented an indexes based on sparse hashes
created using l0 regression and a codebook learned through K-SVD.

�antization through clustering. Clustering techniques are
one of the most used space partitioning techniques, with applica-
tions that range from image retrieval [26] to image indexing [18].
�e search space is partitioned by generating a set of centroids, and
vectors are assigned to the closest centroid according to a metric (e.g.
euclidean distance). k-means, a popular clustering technique, aims
to �nd the set of centroids that minimizes sum of squares within-
cluster distances. Lloyd [25] proposed a local search solution that is
still widely applied today. On the original formulations, the initial
seed centroids are selected randomly from the training data, which
may greatly increase the convergence time. k-means++ [4] is a cen-
troid selection technique that estimates a good set of seed centroids,
by analysing the distribution of the seed centroids and the train-
ing data distribution. Fuzzy c-means clustering/so� clustering [7]
techniques extends the assigning of documents to multiple clusters,
by keeping membership information for documents to clusters (e.g.
ratio of the distance to the centroids). Clustering techniques such
as DBSCAN [14], do not set the number of centroids as a parameter,
focusing instead on the cluster density and points per cluster.

Clustering techniques are behind some of the best performing
nearest neighbour search algorithms. Jégou et al. [18] proposed an
index that divides the space into a set of Voronoi cells through k-
means based vector quantization. Further works improve candidate
distance computation [19], descriptor quantization [21] and more
e�ective centroid evaluation [5]. Tavenard et al. [33] proposed a
technique for balancing k-means cluster size, by shi�ing cluster
boundaries into parallel boundaries. �ey experiments showed less
variability in the number of candidates retrieved per query.

3 SPACE PARTITIONING CODEBOOKS
On the previous section, we described how indexing partitioning
techniques are applied to distributed search. Figure 1 illustrates the
assignment of queries to partitions for existing index partitioning
techniques and for our proposed technique. Figure 1 (a) shows a
single assignment technique, where each document is assigned to a
single partition (e.g. [6]). Figure 1 (b) shows a random assignment
technique, where documents are assigned to a single partition ran-
domly, and queries are assigned to all partitions. �is technique is
applied on some Map-Reduce systems (e.g. [29]). Figure 1 (c) shows
our proposal: a similarity-based, multiple assignment technique.
Under this partitioning paradigm, each document is assigned to
multiple partitions, based on similarity in the original feature space.
Inspecting multiple partitions will result on a incremental increases
in retrieval performance. Conversely, node failures will also result
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Figure 1: Examples of the querying process of multiple document partitioning policies: (a) single node indexing, (b) random
indexing, (c) redundant overcomplete indexing

on incremental losses in retrieval performance, instead of return-
ing no results (Figure 1 (a)). To create representations that �t this
partitioning paradigm, partition methods must have the following
properties:

• �xing overcompleteness of the codewords as a parameter,
i.e. sparsity factor;

• give partition membership information (e.g. distance
to centroid, reconstruction weight) to allow candidate se-
lection inside partitions;

• partitions should group similar documents in the orig-
inal space;

• generate evenly sized partitions.
Formally, consider the original vector y ∈ Rn , a codeword x ∈

Rk and a sparsity coe�cient s .

y ∈ Rn → x ∈ Rk

where ‖x ‖0 = s and s � n � k .
(1)

Forcing sparsity to be equal to the sparsity factor s , instead of
the general constraint of smaller or equal, ensures that each docu-
ment will be placed exactly on s partitions. S For a set of vectors
ya ,yb ,yc ∈ Y ∈ R

m,n and corresponding codewords xa ,xb ,xc ∈
X ∈ Rm,k , our goal is to generate codewords that respect the
following property:



ya − yb

2 <


ya − yc 

2 →



xa + xb

0 < ‖xa + xc ‖0 (2)

In other words, vectors that are close in the original space have
non-zero coe�cients on similar positions in the codeword space
than vectors that are further apart. �ese codewords are the basis
to generate a set of partitions P , p ∈ P ⊂ Y . Our balancing goal is to
minimize the di�erences on partition sizes: ��pa �� − ��pb �� ,∀pa ,pb ∈ P .

A�er studding the properties of the space partitioning in the
literature, we arrived at two families of methods that have the po-
tential to meet the desired properties: sparse hashes and clustering.
Sparse coding techniques are designed to generate overcomplete
representations of the search space: our reasoning is that code-
book atoms can act as the basis of the partitions. For clustering
techniques, centroids and distance to centroids act as codebook
and codewords respectively, using so� clustering for redundant
partitioning. �e following sections, we’ll detail further how we
applied these families of methods.

3.1 Codebooks by Sparse Coding
Sparse codewords can be computed as sparse high-dimensional
hashes. Sparse hashes o�er a number of advantages over binary
hashes for search space partitioning: sparse coding techniques are
designed to be overcomplete, o�er real-valued membership (e.g.
representative hash values) and o�er control over the sparsity of
the solution and thus, redundancy. �e steps for generating sparse
hashes are:

• compute the dictionary/codebok D from training data;
• use D to create an hash/codework with s non-zero coe�-

cients and assigned them to the corresponding partitions;
• for search, inspect the s partitions with have non-zero

coe�cients.
�e process for the generation of sparse hashes that follow Eq.1

goals, is to solve the following optimization problem:

arg minx ‖Dx − y‖2

subject to

‖x ‖0 ≤ s,

(3)

where D ∈ Rn×k is a dictionary, learned from the data, y ∈
Rn is the the original vector, x ∈ Rk is the sparse hash and s is
the sparsity coe�cient. Eq. 3 generates an hash with the desired
properties, using a previously computed dictionary. Techniques for
dictionary computation include K-SVD [1] and Stochastic Gradient
Descent techniques. On this paper, we’ll focus on K-SVD, and on
an adaptation that takes number of documents per bucket into
account.

3.1.1 KSVD and OMP.
Dictionary computation requires solving the following optimization
problem:

arg minD,X ‖DX − Y ‖2

subject to

‖x ‖0 ≤ s,

for x ∈ X

(4)

where D ∈ Rn×k is a dictionary, learned from the data, Y ∈ Rm×n

is the the original doc. vector, X ∈ Rm×k is the sparse hash and s is
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the sparsity coe�cient. Solving for bothD andX is computationally
hard. KSVD alternatively optimizes the solution for D andX . KSVD
updates each dictionary atom iteratively (represented by i), while
�xing other atoms j[0,k] , i .

arg minDi , (xi )I ‖Di (xi )I + (Ei )I − Y ‖
2
F

Ei =
∑

j[0,k ],i
‖D jx j − Y ‖

2
F

(5)

where ‖...‖F is the Frobenius norm. Sparsity is enforced by using
only the atoms with non-zero coe�cients: I is the set of all index
with non-zero coe�cients that use atom i for reconstruction.

By �xing j atoms, the value for atom Di can be computed by
�nding a rank-1 matrix approximation of Ei , Êi , and factorizing
the result into Di and xi .

Êi = G
1∑
VT (6)

�is decomposition will yield Di as the �rst column of G and xi as
the �rst column of V ×

∑1.

3.1.2 Balanced KSVD with OMP.
KSVD enforces the creation of sparse representations that group
similar vectors in the original space on non-zero coe�cients. When
generating multiple codewords, KSVD will inherently create unbal-
anced representations, as the dictionary atoms are biased towards
the principal directions of the data on the original space. As our
goal is to minimize the di�erences between the number of elements
per partition Pj and the mean number of documents per partition
P̄ , we adapted KSVD to reduce the magnitude of dictionary atoms
assigned with more documents. �e KSVD alternate optimization
process is similar to Eq.5; Our adaptation is applied to Eq.6 E de-
composition; a�er the rank-1 approximation, we multiply the G
matrix by the penalization factor B:

balanced Êi = B ×G
1∑
VT

B =
1(���Pj ∈[0,k]

��� + r
)e (7)

where ���Pj ∈[0,k]
��� contains the number of documents assigned to par-

titions j, computed using the previous iteration of the dictionary.
e is the parameter to control the magnitude of the penalty and r
is a regularization factor to avoid division by zero for partitions
with zero documents. �is penalty distorts the generated dictio-
nary atoms, creating non-orthogonal balanced representations. �e
regularization parameters r and s control the magnitude of this
distortion.

3.1.3 Random dictionary with OMP.
We can also measure the impact of dictionary learning on the com-
putation of sparse hashes, by testing OMP with a dictionary gener-
ated from the Gaussian distribution with zero mean and unit std.
deviation.

D ∈ Rn×k ⊂ N (0, 1) (8)

Random dictionaries show how OMP will cluster data without prior
search space information from dictionary computation.

3.2 Codebooks by So��antization
Our quantization process can be seen as a type of so� clustering,
where the cluster membership is controlled by a �xed s sparsity
factor. Our focus is to measure how well these clusters can represent
neighbour data in a balanced way, and how using multiple clusters
a�ects these process in an high dimensional feature space. Our
clusteing process is the following:

• �nd the centroids
• project the documents to s , redundant clusters
• search the matching cluster posting lists

Consider a set of cluster centroids C ∈ Rn×k . Our clustering
process �nds the set of closest centroids c ∈ Rn×s ⊂ C , and assigns
the Euclidean distances to those centroids as the hash values:

arg minc (

ci − y

2), for ci ∈[0,k] ∈ C ,with |c | = s

xi ∈[0,k] =





ci − y

2 , for ci ∈ c

0, otherwise

(9)

To �nd the set of centroids that best represent the feature space,
we have selected three techniques, random sampling, k-means and
fuzzy c-means. Alternative clustering techniques such as DBSCAN
do not allow se�ing the number of clusters and thus, does not meet
our desired properties.

Fuzzy c-means clustering [7] techniques extends the assigning
of documents to clusters, by keeping membership information to
multiple clusters (e.g. ratio of the distance to the centroids). It
optimizes the intra-cluster objective function of k-means, combined
with membership information, which allows documents to be in
more than one clusters. In our preliminary experiments, fuzzy
c-means produced very unbalanced clusters: all documents were
assigned to only 20 clusters, irregardless of the total generated
centroids (512, 1024, 2048, 4096, 8192). Due to this extreme balance,
we did not pursue further experiments using fuzzy c-means.

3.2.1 k-means centroids.
k-means is one the most most widely applied clustering functions
in nearest neighbour search. It tries to �nd the set of centroids
C ∈ Rn×k that minimizes the distances of the points to the centroids
of their clusters. k-means tends to produce similarly sized clusters,
which is a desirable property for our balanced partition goal (i.e.
higher focus on balancing cluster size for be�er partitioning). �e
k-means clustering process minimizes the following expression:

arg minC
∑
ci ∈C

∑
yj ∈Pi




ci − yj



2 (10)

where C ∈ Rn×k is the set of cluster centroids, Pi , i ∈ [0,k] is
the set of documents yj ∈ P that are assigned to centroid Ci . �e
k-means initialization requires the selection of a set of points as the
initial centroids. We selected k-means++ [4] centroid initialization,
as it selects points that give a good representation of the search
space and lead to faster convergence, on a large set of experiments
and datasets.

3.2.2 Random centroids.
We tested a random sampling technique that selects a random set
of points C from the training data Y :

C ∈ Rn×k ⊂ Y (11)
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As with the random dictionary with OMP regression, this technique
is a baseline to measure the impact of centroid selection for the
creation of evenly balanced partitions.

4 EXPERIMENTS
We’ve described how we can create over-complete codebooks that
generate sparse, high dimensional codewords. To measure how well
the proposed methods meet our partitioning and retrieval goals,
we’ll evaluate them from three prospectives:

• Balanced partitioning: measure how the tested methods
manage to balance the size of the partitions;

• Inter-partition retrieval: measure the cumulative im-
pact of searching on more than one partition;

• Intra-partition retrieval: measure whether the parti-
tions capture the original space nearest neighbours;

Dataset: We tested the index partitioning methods on the
Billion Vectors dataset [18, 19]. It contains 1 million descriptors
from two feature types: GIST (960 dimensions) and SIFT features
(128 dimensions). �e datasets were split into a training, validation
and test subsets 1. We extracted 1000 queries per feature type from
the test set. Having two types of features allows us to measure
the partitioning impact of multiple dimensionalities and feature
distributions.

Metrics: In addition to load balancing quality metrics, which
are number of documents per partition p and standard deviation
σ of partition size versus the mean, we evaluated the following
retrieval quality metrics, averaged over 1000 queries:

• 1-recall@r : average rate of queries for which the 1-nearest
neighbor was returned. r changes with the number of
candidates inspected.

• %kNN: average percentage of true k nearest neighbours
retrieved.

Parameters: Based on preliminary experiments, we found that
se�ing the exponent of the penalty to c = 2 and regularization
factor to r = 0.001 o�ered the best balance between similarity and
even balancing. We set the sparsity coe�cient to s = 10 for all
algorithms, and varied the codeword size k and thus, number of
partitions, (512, 1024, 2048, 4096, 8192).

4.1 Balanced partitioning
We de�ned balanced partition as the minimization of the di�erences
in the number of documents per partition p (i.e. standard deviation
of the partition size distribution). For distributed retrieval, balanced
partitions minimize the di�erences in the expected load on the
nodes with the matching partitions (i.e. non-zero coe�cients), at
indexing and query time, as illustrated in Figure 1 (c). �us, the
goal of this experiment is to measure how the selected techniques
distribute the documents across partitions, for multiple numbers of
partitions and feature types. To create the partitions, documents
were assigned to the partitions with corresponding non-zero code-
word positions, for each partition method, feature type and number
of partitions. �is experiment shows the resulting partition sizes.

Figure 2 shows the the behaviour of the partitioning algorithms
for the GIST and SIFT features (di�erent columns) and number of

1h�p://corpus-texmex.irisa.fr/
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Figure 2: Sorted bucket distribution for multiple feature
types and number of partitions. �e smaller, inner chart
shows the top 20 partition sizes, and the larger chart shows
the remaining partition sizes.

partitions (di�erent rows). For readability, each chart is divided in
two: the smaller chart shows the occupation of the top 20 partitions,
where the variation in scale of number of documents is higher. �e
larger chart shows the variation for the remaining partitions (20 to
number of partitions k). �e X-axis represents the partitions, sorted
in descending order of number of indexed documents (i.e. partitions
with more documents are to the le�). �e Y-axis represents the
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Table 1: Partition balancing results: Max. is the size of the largest partition (bold values: lowest is best), Med is the size of
the median partitions, partition size / 2 (bold values: closest to mean is best), and σ is the standard deviation of the partition
sizes (bold values: lowest is best). �e Mean value is the same for all methods for a set partition size, as all methods produce
solutions with similar sparsity s. Max, Mean Med and σ values are on base 103.

Partitions: 512 1024 2048 4096 8192
Mean: 19.5 9.8 4.9 2.4 1.2

Algorithm Features Max Med σ Max Med σ Max Med σ Max Med σ Max Med σ

Random OMP

GIST

60.4 17.6 ±9.7 46.2 8.2 ±6.0 45.6 3.8 ±3.9 31.4 1.8 ±2.2 21.2 0.8 ±1.3
KSVD OMP 245.9 16.7 ±16.4 115.1 8.4 ±7.6 148.0 4.3 ±4.8 85.1 2.1 ±2.6 176.2 0.9 ±2.4
B-KSVD OMP 33.0 20.1 ±4.2 21.5 9.9 ±2.4 11.5 4.9 ±1.3 8.1 2.4 ±0.9 4.5 1.1 ±0.7
Sample clust. 160.9 8.9 ±27.0 94.3 4.3 ±13.7 91.4 2.1 ±7.6 50.2 1.0 ±3.9 28.8 0.5 ±2.1
k-means clust. 104.4 16.2 ±14.9 66.2 8.0 ±8.9 43.8 3.5 ±5.3 37.6 1.0 ±3.4 29.6 0.0 ±2.3

Random OMP

SIFT

101.4 13.7 ±15.9 106.0 6.7 ±10.3 97.6 3.1 ±6.0 71.5 1.4 ±3.6 67.6 0.7 ±2.1
KSVD OMP 105.4 14.9 ±16.0 91.9 6.5 ±9.9 64.5 3.5 ±4.8 31.6 1.8 ±2.4 78.2 1.0 ±1.5
B-KSVD OMP 46.4 18.5 ±4.8 31.8 9.1 ±3.0 16.5 4.6 ±1.4 11.8 2.3 ±0.8 8.3 1.1 ±0.5
Sample clust. 116.6 13.0 ±18.2 68.8 6.5 ±9.7 36.6 3.3 ±4.8 18.7 1.7 ±2.4 11.6 0.8 ±1.2
k-means clust. 55.3 18.4 ±8.4 30.0 9.0 ±4.4 18.1 4.4 ±2.4 11.6 2.2 ±1.5 8.6 1.0 ±1.0

Table 2: Intra-node, cumulative retrieval results for 1% and 10% global search limits (1 × 103 and 10 × 103 candidates per parti-
tion, respectively)

Partitions: 512 1024 2048 4096 8192

Algorithm Features %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall %50NN 1-recall

1% limit

Random OMP

GIST

0.16 0.27 0.16 0.26 0.13 0.20 0.14 0.22 0.16 0.28
KSVD OMP 0.13 0.21 0.13 0.20 0.12 0.21 0.10 0.15 0.11 0.19
B-KSVD OMP 0.19 0.30 0.20 0.29 0.18 0.27 0.16 0.26 0.13 0.23
Sample clust. 0.09 0.15 0.16 0.25 0.05 0.09 0.02 0.03 0.03 0.05
k-means clust. 0.02 0.03 0.03 0.05 0.06 0.10 0.09 0.13 0.04 0.06

Random OMP

SIFT

0.14 0.20 0.21 0.30 0.16 0.23 0.21 0.36 0.19 0.27
KSVD OMP 0.21 0.33 0.19 0.33 0.16 0.24 0.23 0.37 0.23 0.37
B-KSVD OMP 0.25 0.40 0.23 0.38 0.17 0.24 0.19 0.27 0.22 0.34
Sample clust. 0.44 0.59 0.25 0.37 0.13 0.19 0.07 0.11 0.03 0.05
k-means clust 0.03 0.05 0.06 0.10 0.11 0.16 0.25 0.35 0.46 0.59

10% limit

Random OMP

GIST

0.34 0.44 0.42 0.56 0.49 0.60 0.53 0.62 0.28 0.41
KSVD OMP 0.26 0.35 0.29 0.39 0.33 0.47 0.38 0.51 0.41 0.50
B-KSVD OMP 0.22 0.33 0.28 0.39 0.36 0.50 0.47 0.60 0.57 0.69
Sample clust. 0.54 0.65 0.68 0.78 0.72 0.82 0.37 0.46 0.21 0.28
k-means clust. 0.80 0.89 0.44 0.53 0.21 0.27 0.76 0.85 0.66 0.74

Random OMP

SIFT

0.43 0.54 0.63 0.75 0.61 0.72 0.56 0.67 0.50 0.66
KSVD OMP 0.56 0.69 0.62 0.75 0.65 0.77 0.41 0.52 0.50 0.62
B-KSVD OMP 0.44 0.58 0.51 0.64 0.60 0.69 0.67 0.78 0.63 0.74
Sample clust. 0.92 0.98 0.95 0.98 0.89 0.95 0.69 0.79 0.43 0.51
k-means clust. 0.93 0.99 0.46 0.56 0.84 0.90 0.96 0.99 0.95 0.99

number of documents on that partition. Note that, as the goal is
to show the relative di�erences between partitioning methods, the
Y-axis scale is di�erent across charts. Note that the sum of the sizes
of the partitions is the same for all partitioning methods (index size
m×s). Table 1 shows the detailed std. deviation (σ ), larger partition
(Max), and median (Med) partition size (k/2).

KSVD learns a dictionary with the most prevalent directions of
the data in the original space. Combined with OMP greedy atom

selection, KSVD sparse representations are highly biased towards
principal directions, which is clear on the top 20 charts. B-KSVD’s
bias managed to counteract KSVD’s greediness and generated the
most balanced solutions (σ columns on Table 1) �e e�ect is more
clear at the edge partitions (i.e. the ones with more documents
and the ones with fewer documents): on the top 20 positions, B-
KSVD is less a�ected than KSVD, by the most popular directions
of the data; the occupation of the partition at median value is also
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Figure 3: Inter-node partition %50-NN for individual parti-
tions, for multiple feature types and number of partitions

consistently closer to the expected value (mean) that other methods,
meaning the decrease in number of documents is much slower and
gradual than the other retrieval methods tested. B-KSVD is also the
most stable solution, o�ering the best balancing properties for all
partition sizes and feature types.

k-means performance is greatly a�ected by feature type. For SIFT
features, k-means partitioning balancing is in line with B-KSVD
for the top 20 positions, with a faster decay in number of docu-
ments on the smaller partitions. For GIST features, the unbalanced
distribution is more visible, and appears earlier (top 20).

On this experiment, we also measured the impact of the codebook
computation, versus random and sampling techniques. Random
dictionary OMP balancing varied greatly for the type of features
used: for GIST, it is in line with k-means; for SIFT it has the most
unbalanced distribution of all tested methods (e.g. partitions with
over 1/8 of the total indexed documents). Sample clustering also
shows large unbalances, where larger partitions clustered most of
the documents. �e large balancing variations for these methods
shows that adjusting your dictionary to the data has a large impact
on balancing partitions.

In addition to the type of features, the number of partitions
impact is clearly visible. �e tested partitioning methods are not
designed to handle an higher number of partitions, and generates
a large number of very small or empty partitions (visible on the
le� side of X-axis of Figure 2 charts). �e exception is B-KSVD,

that managed to keep even partitions, regardless of the number of
partitions.

�ese experiment showed how di�erent partitioning methods
distribute documents across partitions. B-KSVD countered the
greedy nature of regular KSVD and o�ered the most uniform par-
titions. On the following sections, we’ll show how it a�ects the
retrieval performance.

4.2 Searching redundant codewords
On this section, we’ll measure the retrieval impact of searching on
over-complete partitions. An advantage of real-valued codewords
over binary indexes is that codeword values represent document-
partition membership. By having a measure of membership of the
documents and queries to partitions, one can prioritize candidate
selection at two levels:

Inter-partition search: Table 2 shows the aggregated results
for the search process. From each partition, we selected 0.1% and 1%
of total index size, for a combined limit of 1% and 10%, respectively.

�e advantages of KSVD based methods are clear on the limited
search conditions (e.g. inspecting 1% of the index). When using
smaller search limits, the reconstruction coe�cient represents sim-
ilarity in the original space be�er than distance to cluster centroids.
For larger limits (10%) and more partitions, k-means and sample
clustering methods are able to retrieve a larger set of candidates.
Examining Table 2 and other experiments omi�ed due to space con-
straints, we concluded that 1-recall results follow the same pa�ern
as %50NN. �is means that both method families are able to index
the �rst nearest neighbour at higher rates than the remaining 49
nearest neighbours.

Intra-partition search: On this experiment, we measure the
retrieval performance of individual partitions, Figure 3. For each
query, we selected 1000 candidates (i.e. 0.1% of total index size) for
each corresponding partition, for a combined limit of 1%.

B-KSVD o�ers the best results on the �rst partition (i.e. higher
membership) for GIST partitions (14% of 50 nearest neighbours,
examining, 1000 documents, i.e. 0.1% of the index) �e number of
nearest neighbours decreases for lower membership partitions. �e
impact of the remaining partitioning methods is in the order of 2%
of the 50 nearest neighbours, which is still an impressive value for
0.1% partition search limit.

For SIFT, the partition results show a di�erent pa�ern. KSVD
and B-KSVD also retrieve the most results on the top membership
positions, for all but the 8192 partitions experiments. For larger
numbers of partitions, clustering-based solutions o�er be�er results.
We reckon that the smaller partitions will mean that the remaining
candidates will have an higher probability of being the nearest
neighbours.

5 CONCLUSION
On this paper, we proposed balanced over-complete partitioning
representations for distributed retrieval. We formalized the re-
quirements to create overcomplete representations, to redundant
document indexing, where partitions contain overlapping subsets
of data. Parallel processing and redundancy are achieved searching
the overcomplete partitions. We proposed representations based
on sparse hashing and clustering models, and an adaption to the



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
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KSVD algorithm, balanced KSVD (B-KSVD), that distributes hash
values across positions, according to the global distribution.

We showed that computing codebooks that penalise larger parti-
tions, creates more balanced partitions, and a corresponding posi-
tive retrieval impact. B-KSVD achieves 38% 1-recall by inspecting
only 1% of the full index, distributed over 10 partitions. Clustering
methods based on k-means performed be�er with more partitions
with higher search limits. In addition, combining these techniques
with e�ective single node retrieval techniques that can use the
cluster membership value as an heuristic for search, can improve
�exibility and performance of large scale distributed indexes.
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