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ABSTRACT
Although scarce, previous work on the application of machine learn-
ing and data mining techniques on large corpora of astronomical
data has produced promising results. For example, on the task
of detecting so-called Kepler objects of interest (KOIs), a range of
di�erent ‘o� the shelf’ classi�ers has demonstrated outstanding
performance. �ese rather preliminary research e�orts motivate
further exploration of this data domain. In the present work we
focus on the analysis of threshold crossing events (TCEs) extracted
from photometric data acquired by the Kepler spacecra�. We show
that the task of classifying TCEs as being e�ected by actual plane-
tary transits as opposed to confounding astrophysical phenomena
is signi�cantly more challenging than that of KOI detection, with
di�erent classi�ers exhibiting vastly di�erent performances. Nev-
ertheless, the best performing classi�er type, the random forest,
achieved excellent accuracy, correctly predicting in approximately
96% of the cases. Our results and analysis should illuminate fur-
ther e�orts into the development of more sophisticated, automatic
techniques, and encourage additional work in the area.
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1 INTRODUCTION
Technological advances seen in recent years have had a profound
e�ect on the shape of applied computing. Owing to improvements
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in hardware and the possibility to acquire [14], store [32], and trans-
mit [20] large amounts of information cheaply, there has been a
dramatic increase in the availability of highly heterogeneous data.
Acting as a part of a positive feedback loop, the broad �eld of ar-
ti�cial intelligence has seen major breakthroughs and conceptual
leaps. Machine learning, pa�ern recognition, data science, and data
mining are just some of the sub-disciplines of arti�cial intelligence
which have come into prominence in the age of so-called Big Data
[33]. �e wealth of available data is an opportunity for the develop-
ment of data driven (and hence evidence driven) algorithms relying
on minimal hand-cra�ing, which have the potential to perform in a
manner free of various forms of bias that humans are prone to [10].

Unsurprisingly, much of the applied research a�ention has fo-
cused on domains which have tangible commercial bene�t or which
emotionally engage the general public. Personalized product rec-
ommendations [1] typify the former. A range of applications which
fall under the broad umbrella of ‘social administration’, have also
a�racted signi�cant e�orts e.g. the use of social media to track
and learn about di�erent types of emergencies [15]. Public health
monitoring is also an area of great interest both to governments
and individuals [7, 26].

A major application domain of interest to modern arti�cial in-
telligence and computing in general is that of scienti�c research.
Indeed, a great and increasing amount of science now relies on the
analysis of large quantities of data [2, 6, 35]. Signi�cant e�orts in
the realm of personalized medicine, for example in the analysis of
large scale electronic health records [3, 30, 37] have already demon-
strated highly promising results.. �e highly multi-modal nature of
such data [5] which may consist of ‘conventional’ or infrared im-
ages, depth information, physical measurements of di�erent types,
demographic information, and numerous other forms, as well as
the domain speci�c semantic gap interlaced with the interpretation
of the aforementioned information, all also present major research
challenges. Notwithstanding the breadth of e�orts touched upon
above, there are many scienti�c areas in which the use of state of
the art arti�cial intelligence remains li�le explored, arguably in
no small part because they are (o�en incorrectly) seen as having
limited practical relevance. Yet these disciplines o�en stand to gain
enormously from the use of data science. Astronomy is but one of
them. Indeed, astronomy has over time increasingly become driven
by the analysis of vast amounts of data. Data collection e�orts
in the form of sky surveys and others, routinely collect astonish-
ing amounts of data. At the very least for practical reasons this
collection has to be accompanied with the development of sophis-
ticated machine learning based algorithms capable of discarding
irrelevant information, automatically searching (data mining) for
new information, detecting data of interest etc. To date, e�orts
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towards this goal have been limited and only the most elementary
techniques evaluated in pilot style experiments [16, 25, 28, 31]. Our
goal in the present paper is twofold: (i) to verify independently the
results reported in the existing literature, and (ii) to contribute to
the understanding of the problem by comparing a greater number
of classi�ers than previous work.

2 TECHNICAL DETAIL
In this section we explain the types of features extracted from
raw data collected by the Kepler mission, and the classi�cation
methodologies pursued in the experiments described in the present
paper.

2.1 Background context
�e Kepler mission was conceived by NASA to detect Earth like
planets orbiting Sun like stars in the Milky Way galaxy [11]. One of
the main goals of the mission is to �nd and determine the frequency
of planets outside of the solar system (so-called exoplanets) in the
habitable zone of their host stars. Such exoplanets would have
temperatures that would allow liquid water to exist on their surface,
which is one of the key necessary elements for making them suitable
for life as we know it.

�e Kepler spacecra� was launched in 2009 in an Earth-trailing
heliocentric orbit. �e single instrument carried by Kepler is a pho-
tometer which measures the brightness of the stars in its 115 deg2

�eld-of-view [19]. Observations were sent to Earth on a monthly
basis and grouped by quarters. Kepler observed a patch of the sky
in the constellations of Cygnus and Lyra from May 2009 to May
2013. A�er losing a second reaction wheel in 2013, the spacecra�
was re-purposed for the K2 mission [22].

�e Kepler mission uses transit photometry to �nd exoplanets.
As illustrated conceptually in Figure 1(a), when a planet transits
in front of its host star, it blocks some of the light emi�ed by the
star in the direction of the observer. �is dip in brightness can
be measured, and a periodicity in the observed dips serves as an
indication of the existence of an exoplanet.

2.2 Input data and its pre-processing
As already noted in the previous section, the sole instrument on-
board Kepler is a photometer – a camera, in e�ect – which directly
senses incoming light brightness [23]. �is raw data is then pro-
cessed through a series of steps in order to extract features used in
our experiments. Each of the steps in the pipeline will be described
in more detail in Section 2.2.1. In broad terms, following the calibra-
tion of measurements a series of so-called light curves is created for
each targeted star. Succinctly put, a light curve is a temporal char-
acteristic variation in the brightness of a star. From light curves, an
exoplanet can be detected by �nding the associated periodic dips of
brightness which correspond to the exoplanet’s transit in front of
the star from the point of view of Kepler’s photometer. Sequences
of transit like signals in the light curve are readily identi�ed using
multi-scale wavelet analysis and are referred to as threshold crossing
events (TCEs). �e pipeline is described in more detail next.

2.2.1 Data processing pipeline. Starting from raw photometric
data sensed by charge-coupled device (CCD) detectors, the �rst step
in the data processing pipeline involves pixel level calibration, as

(a)

(b)

(c)

Figure 1: (a) Conceptual illustration of the extracted light
curve distortion e�ected by a passing exoplanet. (b,c) Raw
and statistically robust photometric measurements, and
smooth, �tted light curves corresponding to transits of two
Earth like exoplanets, Kepler-20e and Kepler-20f respec-
tively. �e horizontal axis shows time in hours relative to
the time of mid-transit, and the vertical the relative �ux.
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shown in Figure 2. �is step corrects for the e�ects of cosmic rays
and variations in pixel sensitivity, and is performed in a standard
manner for calibrating CCD data, performing corrections for bias,
dark current, gain etc. Calibrated pixels are then used for photomet-
ric analysis which produces raw light curves, see Figure 1(b,c). �is
step too involves commonly used techniques from signal process-
ing, such as background subtraction based on temporal averages,
and robust estimation through the use of �ux weighted centroids.
Transiting planet detection is done next, resulting in the detection
of threshold crossing events. As noted earlier, this is achieved by
identifying kinks in raw light curves which also show periodicity
across time. �e last step in the pipeline involves what is commonly
termed data validation. �is is a model driven stage which results
in the estimates of the relative radius of the planet, the associated
period, epoch, orbit parameters, star density etc. �e estimates are
made by optimizing their values in a manner that �ts a physical
planet model.

As explained in the next section, each of the steps in the described
pipeline is used for the extraction of possibly salient input features
we used for KOI classi�cation.

2.3 Extracted input features
Features used as input to the classi�cation algorithms used in our
experiments comprise the four sets used for KOI classi�cation [31]
(namely, transit �t parameters, threshold crossing event informa-
tion, stellar parameters, and pixel based KOI ve�ing statistics – see
Figure 2), TCE speci�c statistics, and an additional, derived feature.
�e derived feature was inspired by the work of McCauli� et al.
[28] and it captures the similarity of a host star’s TCEs . Its value
was computed as the minimum absolute di�erence between periods
of TCEs.

Gathering all features described above resulted in a feature set
comprising 64 features in total. Two strategies were used to reduce
the number of features: removing features with low variance and
redundant features (showing high correlation with another feature).
An empirical threshold of 1% of the mean value was used to prune
features with low variance, resulting in the removal of 12 features.
To measure the correlation between pairs of variables, we used
the well known Pearson correlation coe�cient, with values of 1
and -1 indicating perfect correlation and 0 no correlation at all.
�e threshold of 0.9 was adopted and the less signi�cant feature
of the pair, quanti�ed by performing the analysis of variance, was
removed. �is process resulted in the �nal, reduced number of
features of 44.

2.4 Classi�cation methodologies
For our experiments we adopted the use of �ve di�erent classi�ca-
tion approaches. �ese were primarily selected on the basis of their
widespread use, well understood behaviour, and promising perfor-
mance in a variety of other classi�cation tasks. Our goal was also
to compare classi�ers which are based on di�erent assumptions
on the relationship between di�erent features, as well as classi-
�ers which di�er in terms of the functional forms of classi�cation
boundaries they can learn. �e �ve compared classi�ers are naı̈ve

Bayes [24], logistic regression [8], support vector machine [4], k-
nearest neighbours [27], and random forest [13]. For completeness
we summarize the key aspects of each next.

2.4.1 Naı̈ve Bayes classification. Naı̈ve Bayes classi�cation ap-
plies the Bayes theorem by making the ‘naı̈ve’ assumption of feature
independence. Formally, given a set of n features x1, . . . ,xn , the
associated pa�ern is deemed as belonging to the class y which
satis�es the following condition:

y = arg max
j

P(Cj )

n∏
i=1

p(xi |Cj ) (1)

where P(Cj ) is the prior probability of the class Cj , and p(xi |Cj )

the conditional probability of the feature xi given class Cj (readily
estimated from data using a supervised learning framework) [9].

2.4.2 Logistic regression. In logistic regression, the conditional
probability of the dependent variable (class) y is modelled as a logit-
transformed multiple linear regression of the explanatory variables
(input features) x1, . . . ,xn :

PLR (y = ±1|x,w) = 1
1 + e−ywT x

. (2)

�e model is trained (i.e. the weight parameter w learnt) by maxi-
mizing the likelihood of the model on the training data set, given
by:

2∏
i=1

Pr (yi |xi ,w) =
2∏
i=1

1
1 + e−yiwT xi

, (3)

penalized by the complexity of the model:
1

σ
√

2π
e
− 1

2σ 2 w
Tw
, (4)

which can be restated as the minimization of the following regular-
ized negative log-likelihood:

L = C
2∑
i=1

log
(
1 + e−yiw

T xi
)
+wTw. (5)

A coordinate descent approach described by Yu et al. [38] was used
to minimize L.

2.4.3 Support vector machines. Support vector machines per-
form classi�cation by constructing a series of class separating hy-
perplanes in a high dimensional (potentially in�nitely dimensional)
space into which the original input data is mapped [34]. For com-
prehensive detail of this regression technique the reader is referred
to the original work by Vapnik [36]; herein we present a summary
of the key ideas relevant to the present work.

In the context of support vector machines, the seemingly in-
tractable task of mapping data into a very high dimensional space
is achieved e�ciently by performing the aforesaid mapping implic-
itly, rather than explicitly. �is is done by employing the so-called
kernel trick which ensures that dot products in the high dimensional
space are readily computed using the variables in the original space.
Given labelled training data (input vectors and the associated labels)
in the form {(x1,y1), . . . , (xn ,yn )}, a support vector machine aims
to �nd a mapping which minimizes the number of misclassi�ed
training instances, in a regularized fashion. As mentioned earlier,
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Figure 2: Feature extraction pipeline. Di�erent sets of features, namely (1) transit �t parameters, (2) threshold crossing event
information, (3) stellar parameters, and (4) pixel based KOI vetting statistics, are extracted at di�erent stages in the pipeline.

an implicit mapping of input data x → Φ(x) is performed by em-
ploying a Mercer-admissible kernel [29] k(xi ,x j ) which allows for
the dot products between mapped data to be computed in the input
space: Φ(xi ) · Φ(x j ) = k(xi ,x j ). �e classi�cation vector in the
transformed, high dimensional space of the form

w =
n∑
i=1

ciyiΦ(xi ) (6)

is sought by minimizing
n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

yicik(xi ,x j )yjc j (7)

subject to the constraints
∑n
i=1 ciyi = 0 and 0 ≤ ci ≤ 1/(2nλ). �e

regularizing parameter λ penalizes prediction errors.

2.4.4 k-nearest neighbours. �e k-nearest neighbour classi�er
classi�es a novel pa�ern comprising features x1, . . . ,xn to the class
dominant in the set of k nearest neighbours to the input pa�ern (in
the feature space) amongst the training pa�erns with known class
memberships [17]. �e usual distance metric used is the Euclidean
distance which is adopted in the present paper too.

2.4.5 Random forests. Random forest classi�ers fall under the
broad umbrella of ensemble based learning methods [13]. �ey
are simple to implement, fast in operation, and have proven to
be extremely successful in a variety of domains [18, 21]. �e key
principle underlying the random forest approach comprises the
construction of many “simple” decision trees in the training stage
and the majority vote (mode) across them in the classi�cation stage.
Amongst other bene�ts, this voting strategy has the e�ect of cor-
recting for the undesirable property of decision trees to over�t
training data [39]. In the training stage random forests apply the
general technique known as bagging [12] to individual trees in
the ensemble. Bagging repeatedly selects a random sample with
replacement from the training set and �ts trees to these samples.
Each tree is grown without any pruning. �e number of trees in the
ensemble is a free parameter which is readily learnt automatically
using the so-called out-of-bag error [13]; this approach is adopted
in the present work as well.

3 EXPERIMENTS
In this section we describe the experiments we conducted to evalu-
ate the e�ectiveness of the classi�cation approaches described in
the previous section. We examine both the e�ect of each classi�ca-
tion algorithm as well as that of di�erent features extracted from
raw data.

3.1 Source data
In our experiments we adopted the same training data set used by
McCauli� et al. [28]. TCEs are labelled as corresponding to one of
three classes, namely: (i) planet candidates (PCs), (ii) , astrophysical
false positives (AFPs), and (iii) non-transiting phenomena (NTP).
�is training set was created by matching TCEs and KOIs of the
�rst 12 quarters of the mission, which were manually ve�ed by the
TCERT. Detailed information is available in the DR24 catalog. In
summary, the training set contains 15737 TCEs of which 3600 are
PCs, 9596 AFPs, and 2541 NTPs.

3.2 Results and discussion
We started our analysis by comparing the average classi�cation
accuracies achieved by di�erent classi�cation approaches. �e
average accuracy of naı̈ve Bayes, logistic regression, SVM, and k-
nearest neighbours approaches was computed using 10-fold cross-
validation. �e performance of the random forest based classi�er
was calculated using the widely used and so-called out-of-bag error
[13].

A summary of our results is shown in Table 1. As the table
readily shows, the two arguably simplest approaches, namely the
the naı̈ve Bayes and logistic regression based classi�ers, performed
very poorly indeed, making the correct classi�cation decision in
only about 25% of the cases. �e support vector machine based
approach performed signi�cantly be�er, achieving a respectable
accuracy of 72%. �e k-nearest neighbour based classi�er improved
on this yet further, reaching the realm of practically useful and
misclassifying in only 16% of the cases (it should be noted that for
k-nearest neighbour classi�cation we optimized for the value of
k on the training set and the reported results are for the learnt
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Table 1: �e average accuracy achieved by each of the �ve
classi�er types adopted in our experiments.

Classi�cation methodology Average accuracy (%)

Naı̈ve Bayes 24.8

Logistic regression 25.1

Support vector machine 72.0

k-nearest neighbours 83.8

Random forest 95.7

Feature importance rank
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Figure 3: Relative importance of the top 10 most signi�cant
features in the context of the best performing classi�er type:
the random forest (see Table 1). Observe the stark domi-
nance of the highest ranked feature, the minimum period
di�erence.

optimum of k = 4). However, by far the best performance, and one
very impressive in its own right, is that of the random forest based
method which erred in only approximately 4% of the cases.

We also sought novel insight into the relative importances of
di�erent input features. Given the superior performance of the
random forest based classi�er we focused on this approach. A
summary of our results is shown in Table 2. As the table shows,
by far the most important feature was found to be the minimum
period di�erence. It accounted for nearly 17% of the total impor-
tance, far exceeding the importance of the second most important
feature (importance less than 7%). �is feature importance distri-
bution, illustrated further in Figure 3, is somewhat di�erent from
that previously reported on the task of KOI detection which was
characterized by multiple signi�cant features [31]. Another di�er-
ence can be observed by comparing the importances of di�erent
feature types (i.e. sets), summarized in Section 2.3. While for KOI
detection various transit properties accounted for half of the ten
most important features, on the present task the transit, TCE, and
pixel based feature sets were found to be equally represented by

number in the top 10 signi�cant features. In both cases the only top
10 ranked stellar parameter was the associated KOI count, albeit
higher ranked in importance herein.

4 SUMMARY AND CONCLUSIONS
Motivated by promising results of previous research on the automa-
tion of laborious tasks in the processing of astronomical data, the
present paper sought to assess the performance of several well-
known classi�er types in the classi�cation of threshold crossing
events detected from photometric data collected by the Kepler space-
cra�. In particular, we were interested in distinguishing between
events which are actually caused by planetary transits and those
which are artefacts of confounding phenomena, using input features
extracted from raw photometric data (images) using a multi-stage
processing pipeline. Unlike on the problem of KOI classi�cation,
we found that di�erent types of classi�ers exhibited vastly di�er-
ent behaviours, their accuracies ranging from very low (25% for
naı̈ve Bayes) to outstandingly good (96% for random forests). �is
�nding and our analysis should serve to encourage further work
in this area. �e primary focus of our future work will be on the
use of raw Kepler images which would eliminate the need for the
hand-cra�ed data pre-processing pipeline currently used to extract
classi�er input features.
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[27] R. Martin and O. Arandjelović. Multiple-object tracking in clu�ered and crowded
public spaces. In Proc. International Symposium on Visual Computing, 3:89–98,

2010.
[28] S. D. McCauli�, J. M. Jenkins, J. Catanzarite, C. J. Burke, J. L. Coughlin, J. D.

Twicken, P. Tenenbaum, S. Seader, J. Li, and M. Cote. Automatic classi�cation of
Kepler planetary transit candidates. �e Astrophysical Journal, 806(1):6, 2015.

[29] J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society A,
209:415–446, 1909.

[30] P. M. Nadkarni. Drug safety surveillance using de-identi�ed EMR and claims
data: issues and challenges. J Am Med Inform Assoc, 17(6):671–674, 2010.
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