
Supporting Automatic Recovery in Offloaded Distributed
Programming Models Through MPI-3 Techniques

Antonio J. Peña
Vicenç Beltran

(antonio.pena,vbeltran)@bsc.es
Barcelona Supercomputing Center (BSC)

Carsten Clauss
Thomas Moschny

(clauss,moschny)@par-tec.com
ParTec Cluster Competence Center GmbH

ABSTRACT
In this paper we describe the design of fault tolerance ca-
pabilities for general-purpose offload semantics, based on
the OmpSs programming model. Using ParaStation MPI, a
production MPI-3.1 implementation, we explore the features
that, being standard compliant, an MPI stack must support
to provide the necessary fault tolerance guarantees, based on
MPI’s dynamic process management. Our results, including
synthetic benchmarks and applications, reveal low runtime
overhead and efficient recovery, demonstrating that the exist-
ing MPI standard provided us with sufficient mechanisms to
implement an effective and efficient fault-tolerant solution.
ACM Reference format:
Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas
Moschny. 2017. Supporting Automatic Recovery in Offloaded
Distributed Programming Models Through MPI-3 Techniques. In
Proceedings of ICS ’17, Chicago, IL, USA, June 14-16, 2017,
10 pages.
DOI: http://dx.doi.org/10.1145/3079079.3079093

1 INTRODUCTION
OmpSs is a popular programming model (PM) for high-
performance computing (HPC) based on compiler directives
and task decomposition. It incorporates functionality to ease
the programmer’s management of resources efficiently, hence
greatly fostering programming productivity and maintenance.
Recently, collective offload extensions have been proposed
for their incorporation in this PM. Apart from mapping
greatly to some algorithms, these ease the efficient use of
heterogeneous compute nodes by enabling the offload of tasks
to compute nodes featuring the most suitable architecture.

The nature of the distributed offload semantics makes
them especially vulnerable to a variety of local failures that
may well propagate to the entire application causing its ab-
normal termination. Our proposal is focused in protecting
from fail-stop failures ultimately causing a process to lose
communication with its peers, such as process abortions or
hardware failures. Traditional approaches based on check-
point/restart (C/R) may be used to mitigate this situation

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS ’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-5020-4/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3079079.3079093

and prevent having to restart the execution entirely. The
specific semantics of this PM, however, lead us to investi-
gate on more efficient fault tolerance capabilities. By basing
our (partial) restarting techniques in PM semantics instead
of user-specified or periodic checkpoints, we provide lower
runtime overhead and efficient recovery. Although we use
OmpSs offload to showcase our idea, our approach should be
applicable to other similar offload PMs such as [8].

The Message Passing Interface (MPI) is a de facto stan-
dard in HPC communication. Offering a common application
programming interface (API), the different hardware ven-
dors provide highly-optimized MPI implementations for their
platforms, making MPI a good choice to leverage efficient
portable communication. The OmpSs collective offload fea-
ture has been designed to interoperate with MPI applications;
internally, it relies on the MPI process spawning capabilities.

In spite of the efforts of the community, the MPI Forum has
not yet incorporated specific fault-tolerance capabilities into
the MPI Standard. The few references to error detection and
reporting in the latest release (version 3.1) are often ambigu-
ous, but also optional to adopt by the MPI implementors.
Hence, users requiring fault-tolerance capabilities in MPI
applications are often forced to either implement application-
dependent resilience mechanisms or to use non-standard MPI
features offered by some implementations.

Instead, in order to obtain the base MPI resilience capa-
bilities that our solution demands, and following the original
MPI philosophy which leaves fault tolerance as “a property of
an MPI program coupled with an MPI implementation” [23],
we have opted for incorporating error detection, reporting,
and handling features into the ParaStation MPI implementa-
tion that fully comply with the MPI standard. At the OmpSs
runtime level, we leverage these features to implement the
detection of a failure in a remotely offloaded task and re-
execute the appropriate dependent tasks on a new set of
sane compute nodes in cooperation with the global resource
manager. This is handled completely transparently to the
user, thereby preventing application developers from having
to implement complex failure handling code.

In this work, (1) we introduce MPI-3 standard compliant
techniques to be adopted by MPI implementations to enable
runtimes leverage resilient distributed offload semantics; (2)
built on top of these, we present the design and implementa-
tion details of efficient and transparent resilience support for
the OmpSs offload semantics in the Nanos++ runtime; and
(3) we provide an in-depth performance evaluation of the
runtime overhead and recovery efficiency of our proposal. To

ICS ’17, June 14-16, 2017, Chicago, IL, USA Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas Moschny

the best of our knowledge, this is the first time the suggestion
of [23, Section 5.2] to use MPI dynamic process management
for fault-tolerance purposes is explored (1) showing an ap-
plication domain on which this approach is practical and
manageable and (2) devising the required support from the
MPI implementation. Our evaluations, involving both bench-
marks and applications, reveal that this proposal introduces
low runtime overhead and provides efficient error recovery.
In times in which the existing MPI fault-tolerance support is
highly debated, we provide a use case in which the current
specifications already incorporate sufficient mechanisms to
implement an efficient and effective fault tolerant solution.

2 BACKGROUND
OmpSs is a directive-based PM that enables parallelism in
a data-flow way. The developer is in charge of decomposing
the code into tasks and identifying their data dependencies.
This information is used by the source–to–source Mercurium
compiler to generate the corresponding calls to the Nanos++
runtime API. Nanos++ is responsible for scheduling and
executing the annotated tasks, preserving the implied task
dependency constraints. Further general information can be
found at http://pm.bsc.es.

The dynamic offload functionality recently incorporated
into OmpSs [10] enables the execution of tasks in remote
compute nodes. Apart from providing enhanced support
for node heterogeneity (tasks may be offloaded to those
compute nodes featuring the most suitable architecture), the
offload semantics map greatly to some algorithms, yielding
programmability benefits. Unlike other offload-based PMs,
OmpSs is designed to offload full general-purpose tasks. This
model introduces in OmpSs the concept of master and booster
nodes/processes, where the former execute the main dataflow
and the latter the offloaded tasks. A booster process may
only execute a task instance at a time, but users may allocate
an arbitrary number of boosters per host. The OmpSs offload
extensions allow recursivity, enabling booster nodes act as
masters of their offloaded tasks. Data transfers are handled
implicitly from the task data dependency information.

The offload extensions consist of booster allocator and re-
leaser functions plus a new clause for task offloading. The allo-
cator (deep booster alloc) internally calls MPI Comm spawn-
multiple, returning the created intercommunicator that

master processes may use to interact with their booster pro-
cesses. It also gets an intracommunicator to specify the set
of spawning processes. Figure 1 depicts an example of 4 MPI
master processes allocating 2 boosters on the MPI COMM WORLD
communicator which in turn allocate 3 booster processes each
(i.e., using the MPI COMM SELF communicator). The new onto
clause is used in combination with the task clause to offload
a particular task to a given booster process identified by its
intercommunicator and MPI rank number.

3 RELATED WORK
This section reviews prior work on the topics related with the
specific contributions of this paper. A discussion about how

Rank 0

Rank 1

Rank 2

Rank 3

Rank 0

Rank 1

Rank 0

Rank 1

Rank 2

Rank 0

Rank 1

Rank 2

Intercomm A

MPI_COMM_WORLD A MPI_COMM_WORLD B

M
P

I_
C

O
M

M

_W
O

R
LD

 C

M
P

I_C
O

M
M

_W

O
R

LD
 D

 deep_booster_alloc(MPI_COMM_WORLD, 2, …)

deep_booster_alloc(MPI_COMM_SELF, 3, …)

Figure 1: OmpSs offload sample process structure.

the OmpSs offload mode is related with other PMs featur-
ing offload semantics (such as Intel Offload [8], CUDA [25],
OpenCL [24], OpenACC [26], or OpenMP 4.0 [27]) or tar-
geting cluster-level heterogeneity (VCL [1], rCUDA [4, 28],
MPI spawn) can be found in [10].

3.1 Checkpointing
The traditional mechanism to protect application data has
been C/R: data is saved regularly so that it can be restored
upon failure. For instance, FTI [16] and SCR [5] are popular
checkpointing libraries. In contrast, our proposal ensures that
remotely offloaded tasks finalize properly in spite of eventual
connection lost events, preventing from the need to restart
the entire application from a past state. Both solutions are
fully compatible and complementary to each other and their
combination should decrease checkpoint frequency.

3.2 MPI Resilience
Up to the current version of the MPI Standard (3.1), there
is no specific support for fault tolerance capabilities. Al-
though it contemplates the possibility that MPI functions
do not cause a program abortion upon a failure by setting
arbitrary error handlers, continuing a program in which an
MPI call failed is not guaranteed to be possible. MPI imple-
mentations, however, are not forbidden to support program
continuation after properly handled errors at their will. For
instance, the Hydra process manager of MPICH features a
command-line option (--disable-auto-cleanup) to prevent
killing all the processes upon any abortion [3]; however, this
leaves live processes with broken communicators. We develop
novel standard-compliant fault tolerance capabilities into
the ParaStation MPI implementation [30] to control process
cleanup and provide the required error reporting.

The MPI community has been working on providing spe-
cific support for enabling communication among live pro-
cesses after one or several processes of a communicator failed.
User-Level Failure Mitigation (ULFM) [22] is the proposal
currently being discussed and iteratively refined at the MPI
Forum. Although we can find implementations supporting
it experimentally, it cannot be considered MPI compliant,
and its contents are likely to change before its possible final
incorporation into a future version of the Standard. Several

http://pm.bsc.es

Supporting Automatic Recovery in Offloaded Distributed PMs Through MPI-3 ICS ’17, June 14-16, 2017, Chicago, IL, USA

other works have proposed extensions to the MPI API for
incorporating a variety of fault tolerance capabilities, but no
one has been accepted into the MPI standard so far. Au-
tomatic and semiautomatic fault tolerance within the MPI
implementation (i.e, without user intervention) have been
studied, but proven to pose high overhead at scale [11, 17].

3.3 Resilience in Task-Based PMs
Prior to the incorporation of the OmpSs offload functional-
ity, “smart” C/R was introduced in the Nanos++ runtime
to provide efficient fault-tolerance capabilities by benefiting
from the PM semantics (leveraging the task data dependen-
cies) [19]. This protected from memory faults reported by the
OS. Our proposal is complementary to this solution, targeting
specifically the recently-introduced offload semantics.

The NABBIT task graph scheduling framework was added
fault tolerance capabilities in [18]. This and other previ-
ous works leveraged local task reexecution as a response
to transient errors. Recovering from soft errors supporting
distributed task graphs was considered within the PaRSEC
task-based runtime framework [7], not including offloaded
semantics—posing high storage overheads and possibly a
long list of predecessors to be reexecuted to recover damaged
data—nor connection lost events. Our work, however, focuses
specifically on adding automatic fault tolerance capabilities
to distributed offloading semantics, covering from the MPI-
level error detection and recovery to the upper-level runtime
implementation and associated PM semantics.

The CIEL execution engine for cloud environments pro-
vided fault-tolerance to a conceptually similar task-based PM
involving masters and workers [9]. CIEL does not use MPI
underneath nor considers collaborative offloaded tasks and
hence limits its approach to heartbeat monitoring and sane
worker reexecution. In fact, that paper mentions application
C/R as the only possibility to attain resiliency in similar
HPC environments leveraging MPI. Our work demonstrates
that a more efficient approach is possible.

3.4 Resilience for Offload-Based PMs
The most popular offload-based PMs are those targeting ac-
celerators. Resilience has been provided leveraging redundant
computations [14]. Hauberk [15] is able to restart a GPU
application from a checkpoint upon a failure detected by
automatically-inserted silent data corruption detectors.

CheCUDA [12] and CheCL [13] are C/R solutions for
CUDA and OpenCL applications, respectively. Snapify pro-
vides C/R, migration, and swapping services for Intel® Xeon
Phi™ coprocessors [6]. These do not target specifically co-
processor failures nor integrate fault detection mechanisms.

VOCL-FT [29] benefits from OpenCL’s offload semantics
to provide a transparent and more efficient microcheckpoint-
ing and partial restart mechanism inside the OpenCL imple-
mentation. Although the proposed optimization techniques
are not OpenCL specific, these are meant to be efficient for
offload-based PMs with fine-grained, iterative kernel offloads
(with their corresponding data movements between host and

accelerator memories). Since the OmpSs offloading mode
targets remote general-purpose processing platforms, it is
expected to leverage coarse-grained tasks, hence minimizing
the data transfer overhead across a network. Therefore, our
work does not propose using a checkpoint-based recovery
of the offloaded processor’s memory space, hence reducing
runtime overhead.

4 SUPPORT FROM THE MPI STACK
We have developed additional capabilities compliant with
the MPI 3.1 standard into ParaStation MPI for providing
the features needed by the upper-level distributed runtimes.
ParaStation MPI is an open-source MPI library developed
and supported by ParTec GmbH together with the Jülich
Supercomputing Centre (JSC). ParaStation MPI, which is
in turn based on MPICH, is fully MPI 3.1 compatible and
offers support for a multitude of HPC-related networks.

4.1 Process Manager
The process management framework of ParaStation MPI
(called psmgmt) is implemented in the form of an efficient
and robust network of control daemons. One instance of such
a daemon (called psid) is running on each node of the system
and all the distributed daemons are then linked together by
means of a highly-scalable communication subsystem. This
subsystem is based on a Reliable Datagram Protocol (RDP)
that is used for inter-daemon signaling as well as for I/O and
signal forwarding with respect to the actual MPI processes [2].

Each node-local daemon instance is also responsible for
creating the local processes belonging to a distributed MPI
session. After forking, the psids keep control over the MPI
processes and constantly monitor their existence as well as
the responsiveness of the other psids in the network. If an
MPI process should fail, then the local psid detects this event
and notifies all the other daemons for cleaning the whole MPI
session belonging to the failed process. In addition, if a whole
node along with its local psid should fail, the daemon network
detects the absence of corresponding heartbeat messages of
the deceased psid and can react accordingly. That way, a
proper cleaning and release of all resources still allocated by
the failed session is guaranteed.

For the handling of larger systems, psmgmt may be com-
bined with an outer and more generic resource manager
featuring a batch queuing system together with a job sched-
uler like TORQUE/MAUI or SLURM. In doing so, psmgmt
follows a strict single-daemon concept where the native mon-
itoring daemons of the resource managers are replaced by
special plugins for the psids. That way, the psids can directly
interact with the outer resource manager and report a failed
MPI session, e.g., for aborting the whole related job.

However, for providing fault tolerance, less radical but
more sophisticated measures have to be taken in order to
keep healthy process groups alive for eventually recovering
the faulty session parts. Specifically, the process manager had
to be extended with the ability to differentiate between the
processes sharing the same MPI COMM WORLD communicator

ICS ’17, June 14-16, 2017, Chicago, IL, USA Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas Moschny

and those not belonging to the same process group but to the
same session. That way, the psids are now able to clean, e.g.,
a group of failed booster processes while keeping the master
processes alive, which may then strive for a respawn in a
sane set of nodes for recovering the failed offloaded tasks.

The logic for this process group awareness is naturally
rooted in the MPI Comm spawn(multiple) call. When a pro-
gram enters this function, a dialog between the respective
MPI process and the local psid is conducted via the Process
Management Interface (PMI) [20]. During this dialog, the
needed information for creating and interconnecting to the
newly spawned process group is exchanged.

By utilizing the MPI Info object, as it is to be passed as an
argument of the spawn function, the master processes can tell
the psids if they explicitly want to be treated independently
from the child processes forming the booster group. For doing
so, the root process of the master group calling the spawn
function has to add a (key="parricide", value="disable")
pair to the info object. As a result, a process fault in the
child group triggers a cleaning of the booster processes only,
whereas the masters are kept alive and running. However,
this behavior is consciously implemented asymmetrically: a
process fault in the parent group still results in a cleaning of
all processes belonging to the affected session.

4.2 Communication Layer
The lower-level communication layer of ParaStation MPI
(called pscom) is specially designed for its employment in
HPC systems. As such, a variety of interconnects and in-
terfaces commonly used in this specific application field is
supported by pscom. For doing so, the library exhibits a
flexible architecture featuring plugins for all the different
interfaces and protocols. Such plugins are loaded and se-
lected at library runtime by means of a priority/fallback
scheme, which means that plugins promising faster communi-
cation than others are preferred while slower but more robust
counterparts may still be used in case of an unsuccessful
initialization of the former.

As the lowest common denominator, socket-based com-
munication via the TCP/IP protocol serves as a sort of
pseudo-plugin, which provides a scalable on-demand connec-
tion establishment by delaying the actual connection setup
to the first send request posted for the respective peer. That
means that all needed connections are initially made via
TCP/IP and that other plugins may then use these socket
channels for exchanging further information like keys, queue
pair numbers, and other identifiers as needed, for instance,
for establishing InfiniBand-based communication.

Usually, these initial socket connections are directly closed
after the initialization of a higher prioritized plugin. However,
for providing fault tolerance, these may also be kept inten-
tionally open in order to enable an OS-assisted detection of
broken links. In doing so, the still open socket connections are
handed over to dedicated connection guard threads waiting
in select calls for detecting TCP events, whereas the regular
MPI communication among the processes is then normally

conducted via the connections of a higher prioritized plugin
like one of those for InfiniBand or Extoll.

Such TCP events could either be the arrival of an end of
file message, indicating the proper shutdown of a connection,
or the occurrence of an error, for example, triggered by the
absence of a TCP keep alive message (i.e., a TCP timeout).
By queuing and forwarding such events from the connection
guard threads to the main threads of the MPI processes, the
latter can eventually analyze and transform the events into
appropriate error codes for the application layer. Since the
connection guard threads commonly block most of the time
within the select function, their impact onto the regular MPI
communication performance should practically be negligible.

4.3 Discussion on Standardization
As mentioned in Section 1, we follow the original MPI fault-
tolerance philosophy. In case we would like such a solution
to operate on any MPI implementation, the MPI Standard
should (1) incorporate a new reserved MPI Info key as de-
scribed in Section 4.1; (2) require implementations honor
reserved keys; and (3) enforce reporting broken connections
as returned error codes in MPI calls (see Section 4.2).

On the other hand, the MPI Forum is currently dis-
cussing several minor modifications to the Standard affecting
fault behavior, like limiting the effect of failures to process
groups leveraging involved communicators or distinguishing
catastrophic error codes (see issues #1, #3, and #28 on
http://github.com/mpi-forum/mpi-issues/issues). Our solu-
tion would benefit from these proposals being standardized,
preventing the use of a custom info key.

5 OMPSS RESILIENT OFFLOAD
In this section we first discuss the high-level design of our
approach in terms of functionality and semantic constraints.
Next, we provide insight on implementation details.

5.1 Functionality
Our main goal is to provide automatic resilient OmpSs offload
functionality, so that the failure handling burden is removed
from the application level. For example, the snippet of code
shown in Figure 2 would allocate ppn booster processes in
each of n hosts, offload a task to each booster, and wait for
their execution finalization, relying on the Nanos++ runtime
for the proper execution of the offloaded tasks in case of
an eventual failure ultimately leading to the interruption of
interprocess communication. If root master node failures
were a concern, these could well be addressed additionally
leveraging C/R. Since the resiliency feature involves semantic
side effects as explained in Section 5.2 and it may pose some
performance impact, we require users to specify the new
recover clause to leverage this functionality.

The OmpSs offload primitives are designed to interoperate
with MPI applications and internally use the MPI infrastruc-
ture to spawn booster processes. By default, MPI process
managers terminate all processes upon the abortion of any of
them, as depicted in Figure 3a. Since this action is performed

http://github.com/mpi-forum/mpi-issues/issues

Supporting Automatic Recovery in Offloaded Distributed PMs Through MPI-3 ICS ’17, June 14-16, 2017, Chicago, IL, USA

// Allocates 'ppn ' processes in each of 'n' hosts
deep_booster_alloc (MPI_COMM_WORLD , n, ppn , & worker);
f o r (i n t i=0; i<n*ppn; i++) {

pragma omp task onto(worker , i) recover
offloaded_task ();

}
#pragma omp taskwait
deep_booster_free (worker);

Figure 2: Sample offloaded application pseudocode.

Rank 0

Rank 1

Rank 0

Rank 1

MASTERS
BOOSTERS

Rank 2
1

1
2

2
3

3

(a) Default process cleanup.

Rank 0

Rank 1

Rank 0

Rank 1

Rank 2

MASTERS

Rank 0

Rank 1

Rank 2

BOOSTERS

1
1

2

2

3

(b) Smart cleanup+recovery.

Figure 3: Process cleanup upon failure with OmpSs offload.
Failure originated at booster rank 1. Numbers indicate pos-
sible failure propagation order.

at process manager level, MPI error handlers are not involved
and hence cannot prevent process termination. Our desired
behavior, however, is that the MPI process manager would
limit the process cleanup upon failure to those processes
sharing the same MPI COMM WORLD communicator of the failed
process. As shown in Figure 3b, our idea is to replace the
failed booster processes with a freshly spawned set of them.

With the support from the MPI environment discussed
in Section 4, the Nanos++ runtime will be able to detect
a failed group of boosters, provide a replacement for these,
allocating a new set of booster processes in sane nodes (we
implement the integration with the resource manager to
incorporate new resources described in [21]), and restart the
required operations. Nothing prevents recoverable offloaded
tasks from containing further subtasks; a failure in a booster
process would trigger the termination and replacement of all
sibling and descending booster processes.

Heterogeneous hardware, either in form coprocessors (i.e.,
GPUs) or heterogeneous compute nodes, is fully supported.
Data copies present in the failed booster node at the begin-
ning of the task (including those in accelerator memories) are
invalidated in the master ’s Nanos++ runtime upon failure.
Copies of the input data are already stored by design by the
Nanos++ runtime of the master processes and sent as part
of restarting the task.

5.2 Semantic Constraints
The original semantics of the OmpSs offload capabilities en-
able master processes to communicate directly with their
boosters performing MPI calls by employing the intercommu-
nicator provided by the deep booster alloc call. An internal

#pragma omp task \\
 onto(BOOSTER,X) recover

#pragma omp task \\
 onto(BOOSTER,Y) recover

#pragma omp task

BOOSTER X BOOSTER Y

#pragma omp task

Figure 4: Subtasking to define a recover domain.

replacement of the original intercommunicator upon failure
and recovery, however, would initially prevent this feature.
The MPI profiling interface could be used to intercept MPI
calls and perform the proper communicator mapping. Since
we have not found any use case for this feature, however, we
chose to disallow this practice for tasks with recovery capabil-
ities, considering the value returned by the booster allocation
call an opaque handler to identify the set of boosters. In the
end, data transfers between masters and boosters should be
expressed leveraging the OmpSs semantics by means of data
dependencies and performed internally by the runtime.

Since tasks offloaded to the same set of boosters may com-
municate using MPI operations assuming the corresponding
peers to be present, we need to identify which tasks to restart
upon the failure of one of them. For instance, some tasks
presenting communication dependencies among themselves
may have already finished properly when a failure is noticed
in one of their peer tasks. On the other hand, a big task may
be designed to communicate with several smaller sequential
tasks executed on a different booster. In order to guaran-
tee that the appropriate tasks are restarted, we (1) prevent
boosters from executing new tasks until all other boosters
finished properly (in a “waiting for clearance” status1); and
(2) upon failure, we restart all currently executing tasks and
those waiting for clearance. If a task presenting a commu-
nication dependence is not yet in execution when a failure
is found in another task featuring the same communication
dependence, it will start on the new set of sane boosters,
meeting the communication dependence. If several sequential
tasks are designed to meet a communication dependence with
a single task running on a different booster, these must be
grouped as subtasks under a single recover task, as depicted
in Figure 4. Hence, we leverage implicit recover domains by
preserving the occurrence order of recover tasks and their
natural synchronization mechanisms.

Defining explicit recover domains is also allowed to enable
meeting the previous constraints where implicit synchroniza-
tion mechanisms would not guarantee the proper automatic
differentiation. Figure 5 shows an example of offloaded tasks,
where those within the different for loops belong to differ-
ent recover domains. The first two offloaded tasks will not
release their corresponding executing booster until ensuring
that their peer finished successfully. Specifying explicitly a
1Output transfers to inout buffers are delayed, avoiding the need of
maintaining separate backup copies (checkpointing).

ICS ’17, June 14-16, 2017, Chicago, IL, USA Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas Moschny

// Allocates 3 processes in different hosts
deep_booster_alloc (MPI_COMM_WORLD , 3, 1, & worker);
f o r (i n t i=0; i <2; i++) {

pragma omp task onto(worker , i) recover (a)
offloaded_task ();

}
f o r (i n t i=0; i <3; i++) {

pragma omp task onto(worker , i) recover (b)
offloaded_task ();

}
deep_booster_free (worker);

Figure 5: Code defining two recover domains.

recover domain is required if the task executing on booster 2
has communication dependencies with other tasks launched
as part of the same loop. Otherwise, if explicit recover do-
mains are not specified and the task starts execution before
those belonging to the first domain finished, these would wait
for their third peer to finish properly while the latter may
be waiting for communication with its peers from domain b,
causing a deadlock. Nevertheless, this situation is unlikely
and usually the natural synchronization mechanisms will
separate the different recover domains, so users are rarely
required to manually specify recover domains. For example,
the code shown in Figure 5 would likely require a taskwait
separating both loops to prevent communication interference,
or issuing both set of tasks on a different allocation of boosters,
removing the need to manually specify the recover domains.

Last, the full or partial reexecution of a recover task should
not pose undesired side effects.

5.3 Implementation Details
The OmpSs Nanos++ runtime leverages an idle loop during
which the finalization of offloaded tasks is queried. Depending
on the configuration of the runtime, this may be performed
by a dedicated thread. The original task finalization query
implementation consisted in calls to MPI Iprobe to detect
the arrival of finalization messages (identified by a specific
MPI tag) from boosters. We replaced these MPI calls by
calls to MPI Testany. The required array of MPI request
handlers is previously returned by MPI Irecv calls matching
the appropriate finalization tag and origin in every booster,
initially populated during the deep booster alloc call, and
reissued after every request completion. This new approach
lets us determine process finalization more efficiently by
avoiding the use of the unexpected message queue of the MPI
implementation, but also to assess whether a booster process
failed: in case a booster process is no longer connected, the
improved MPI implementation will issue the corresponding
request completion and error return.

This mechanism allows every master process notice the ab-
normal termination of any booster regardless of whether or not
it had offloaded any task to the failed booster. However, when
booster processes are allocated in collective communicators
(i.e., not MPI COMM SELF), a master may notice the correct
finalization of an offloaded task before another task belonging
to the same domain fails. Hence, we implement a failure con-
sensus mechanism consisting of MPI Allreduce calls, placing

properly finalized tasks on a “waiting for clearance” status
until the MPI collective communication is finished and the
execution is either globally cleared or determined to have
failed. This failure consensus mechanism is also implemented
as part of the deep booster free call to make master pro-
cesses not currently involved in task offload execution aware
of possible failures and have them participate in the collective
MPI spawning call to generate a sane set of booster processes.
Although this procedure poses tighter synchronization con-
straints than the original nonresilient implementation, since
offloaded tasks should be coarse grained, we do not expect
high overheads. The failure consensus mechanism is not ac-
tivated for tasks offloaded to boosters allocated within the
MPI COMM SELF communicator. Output data is flushed back
to the master at the end of every task to ensure the most
recent copy is available for a potential restore.

In the event of an error detection, the following response
steps are performed to recover from the failure and resume the
normal execution of the application: (1) clean data structures
pointing to failed resources; (2) perform an MPI spawn and
set MPI ERRORS RETURN as the error handler on the new inter-
communicator; (3) map old to new communicators to properly
interpret subsequent onto clauses / deep booster free calls;
(4) reset the failed work descriptor (a Nanos++ internal
structure representing a task instance) and associated re-
sources to their initial state; and (5) launch the failed work
descriptor on the new booster.

Note that we set the MPI ERRORS RETURN error handler on
intercommunicators with the booster processes in order to
prevent masters from being terminated by the MPI process
manager upon a failure involving that communicator.

The overall failure detection and recovery implementation
is summarized in pseudocode in Figure 6.

6 EVALUATION
In this section we provide an in-depth evaluation of our so-
lution. We analyze our results based on benchmarks and
applications. Unless otherwise stated, we present the average
wallclock time of five repetitions of the experiment. Follow-
ing the approach in [29], to provide a worst-case scenario,
failures are injected hard-coding abort system calls right
before the end of the indicated task. Although this implies
a FIN packet is sent immediately by the operating system
(OS), favoring failure detection time, relatively-frequent TCP
keep alive messages are advised to reduce response time in
case of an OS/hardware failure, yielding similar runtime
overhead and recovery performance. Also, following the ap-
proach described in [10], all compute resources to be used by
dynamically-created processes are available in a set of system-
wide spare nodes. In the plots, Original refers to pragmas
not employing the recover clause, disabling the resilience
feature. The rest of the configurations do use the recover
clause. Error-Free refers to executions not impacted by a
fault. Error configurations state that an error was injected.

We perform our experiments in a 128-node homogeneous
cluster (note that leveraging a heterogeneous platform would

Supporting Automatic Recovery in Offloaded Distributed PMs Through MPI-3 ICS ’17, June 14-16, 2017, Chicago, IL, USA

recover () {
deep_booster_free (old_comm , respawn =true)
new_comm = respawn ()
map(old_comm , new_comm)
f o r (i=0; i<size; i++)

wd[i]. reset ()
offload (wd[i])

}

testFinished () {
res = MPI_Testany (taskEndMpiReqs , & completed)
i f (completed && currWD . isRecoverable ())

finished ++
failure = failure || res != MPI_SUCCESS
i f (finished == running)

finished = 0
i f (shared)

MPI_Allreduce (& failure , MPI_MAX)
i f (failure == 1)

failure = 0
recover ()

e l s e f o r (i=0; i<size; i++)
finish (wd[i])

// else task is waiting for clearance
}

deep_booster_free () {
...
i f (! respawn)

failure = -1
MPI_Allreduce (& failure , MPI_MAX)
// -1 means everybody is here
w h i l e (failure != -1)

i f (failure == 1) respawn ()
failure = -1
MPI_Allreduce (& failure , MPI_MAX)

...
}

Figure 6: Nanos++ failure detection/recovery.

Table 1: Connection Guard benchmarking. Max. STD: 0.04s.

Configuration Benchmark

Guard Error Handler PingPong PingPing(MPI ERRORS)
Disabled ARE FATAL 1.455 µs 1.425 µs
Enabled ARE FATAL 1.444 µs 1.425 µs
Enabled RETURN 1.452 µs 1.426 µs

only impact the execution efficiency of the offloaded tasks).
Each node is equipped with two 8-core Intel® Xeon® ES-2680
CPUs running at 2.7 GHz and 32 GB of RAM. The intercon-
nection network is an InfiniBand QDR. We implemented our
functionality on top of ParaStation MPI 5 and OmpSs v15.
All the code is compiled using the GNU C 5.3 compiler.

6.1 MPI Connection Guard
To assess the impact of the pscom connection guard feature,
we used the PingPong and PingPing benchmarks from the
Intel® MPI Benchmarks suite version 4.1 with their default
setting for latency measurements: 1000 repetitions and zero-
byte messages. Each of both benchmarks was run 10 times
for each of the following scenarios: connection guard disabled,
connection guard enabled, and connection guard enabled plus
MPI ERRORS RETURN as the error handler. The results, shown
in Table 1, confirm that the connection guard feature does
not pose any noticeable performance impact.

deep_booster_alloc (MPI_COMM_WORLD , sz , 1, & boosters);
#pragma omp task onto(boosters , rank) recover

puts("Hello , world !");
#pragma omp taskwait

Figure 7: Nanos++ offload resilience benchmark code.

Table 2: Nanos++ offload resilience benchmarking results.

of Nodes Original Error-Free Error
2 0.001 s 0.035 s 0.036 s
4 0.001 s 0.013 s 1.397 s
8 0.001 s 0.055 s 1.431 s

16 0.001 s 0.061 s 2.370 s

6.2 OmpSs Offload Microbenchmarking
We performed microbenchmarking (see Figure 7) in order
to provide an initial assessment of the performance impact
of our fault-tolerant OmpSs offload implementation. In a
set of 1–8 masters leveraging the same number of boosters,
we measured the execution time of an offloaded task using
the Original, Error-Free, and Error configurations. The
recover clause in Figure 7 is not included in Original. Our
results, featuring a maximum relative standard deviation
(RSD) of 27%, are shown in Table 2. These reveal up to
61 ms overhead for the Error-Free case—which should be
negligible for coarse-grained tasks—mainly led by the failure
consensus mechanism. The Error case poses up to 2.4 s
overhead, mainly caused by the MPI spawning call (see [10]).

6.3 N-Body Benchmark
N-Body simulates the movement of a group of “bodies” (may
be from particles to planets) given the forces driving their
physical interaction. The dataset is usually distributed among
compute nodes due to its size. At each time step, each process
first calculates the interactions among its own bodies. Next,
the bodies are exchanged in a ring fashion using a temporary
buffer. Then, the interactions including the new bodies are
computed again. This process is repeated until all bodies
have visited all processes, what concludes a time step.

We note that the code developed for this benchmark is not
intended to be an efficient N-Body implementation. Instead,
the purpose of this benchmark is to showcase the behavior
of the resilient offload capabilities both in favorable and un-
favorable cases (a test case using a production application is
analyzed in Section 6.4). Figure 8 shows an OmpSs imple-
mentation in which all major tasks are offloaded to a booster
within a single global task. We refer to this implementation
as global. On the other hand, Figure 9 describes an implemen-
tation in which the different tasks are offloaded separately.
We refer to this implementation as partial. While the for-
mer constitutes a good case for the resilient offload feature
because of minimizing synchronization among boosters, the
latter does the opposite, posing a bad-case scenario: booster
processes have to exchange more often failure information,
delaying the finalization of more tasks, and multiplying the

ICS ’17, June 14-16, 2017, Chicago, IL, USA Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas Moschny

vo id solve_nbody (...) {
...
deep_booster_alloc (MPI_COMM_WORLD , n, 1, & boosters);
pragma omp task onto(boosters , my_rank) ...
f o r (timestep =0; timestep < ntimesteps ; timestep ++) {

remote = local ;
f o r (rank =0; rank <n; rank ++) {

pragma omp task ...
calculate_forces (...);
pragma omp task ...
exchange_particles (...);
remote = tmp;

}
pragma omp task ...
update_particles (...);

}
pragma omp taskwait
deep_booster_free (boosters);

}

Figure 8: Offloaded N-Body—global version.

vo id solve_nbody (...) {
...
deep_booster_alloc (MPI_COMM_WORLD , n, 1, & boosters);
f o r (timestep =0; timestep < ntimesteps ; timestep ++) {

remote = local ;
f o r (rank =0; rank <n; rank ++) {

pragma omp task onto(boosters , my_rank) ...
calculate_forces (...);
pragma omp task onto(boosters , my_rank) ...
exchange_particles (...);
remote = tmp;

}
pragma omp task onto(boosters , my_rank) ...
update_particles (...);

}
pragma omp taskwait
deep_booster_free (boosters);

}

Figure 9: Offloaded N-Body—partial version.

output data flushes to their master processes. As introduced
earlier, due to the inherent overhead of task offloading, the
OmpSs offload feature is intended to be used along with
coarse grain task decomposition. Hence, the N-Body global
offload implementation would be the preferred method to
offload this computation to booster nodes, whereas the partial
offload implementation is artificially developed with the pur-
pose of presenting a bad-case scenario. In our experiments,
we execute 10 time steps of the N-Body simulation.

Figure 10 shows the execution time of different configura-
tions of the two N-Body implementations (maximum RSD:
0.9%). The interaction among 4 M particles is simulated
using a single booster. The number after the Error key in the
partial version states the task in which the error occurred,
according to the order in which they appear in Figure 9. We
follow the same naming convention in subsequent figures.

Figure 10 reveals that while in the Global case the protec-
tion mechanisms enabled by the use of the recover clause
do not pose a noticeable performance impact, in Partial it
introduces a 3.9% overhead. The Error cases include the
overhead of MPI process respawning and data restoration, as
well as that of the task reexecution. For example, Error #1
includes the reexecution of the most computationally inten-
sive task plus the overhead of using the recovery clause in

40

42

44

46

48

50

52

54

O
ri

gi
n

al

Er
ro

r-
Fr

ee

Er
ro

r

O
ri

gi
n

al

Er
ro

r-
Fr

ee

Er
ro

r
#

1

Er
ro

r
#2

Er
ro

r
#3

Global Partial

T
im

e
 (

s)

Figure 10: N-Body using one booster (4 M particles).

1

10

100

1000

2 4 8 16 32 64 2 4 8 16 32 64

Weak Scaling Strong Scaling

Ti
m

e
(s

)

Number of Nodes

Original Error-Free Error

Figure 11: N-Body global scaling. Particles: weak–1 M/node;
strong–4 M total.

this implementation (i.e., it is roughly Partial Error-Free
plus Global Error minus Global Error-Free).

We next present a performance evaluation including both
weak and strong scaling on up to 32 master plus 32 booster
nodes. Figure 11 shows our results for the global imple-
mentation (maximum RSD: 2.2%). As we can see in the
figure, the resilient offload feature does not impact scalability
on this test case. We find the highest Error-Free overhead
(2.5%) at the largest number of nodes in the strong scaling
case. The recovery time varies between 11% and 39%, being
higher for the large node counts in strong scaling due to the
relative impact of the recovery overhead with respect to the
computational load.

Experiencing more than a single fault in the less than
10 minutes these executions last is unlikely. If these faults
occur at different points within the same group of offloaded
tasks, the recovery process is the same as if a single failure
happened. If, on the other hand, these are encountered
during successive task executions, the application execution
time may be easily inferred from the recovery times of the
single-failure cases. Due to space constraints, we limit to
present a study involving multiple successive failures for the
FWI application in Section 6.4.

The scaling results for the partial implementation are
depicted in Figure 12 (maximum RSD: 14.3%). As the fig-
ure shows, the overhead introduced by the offload fault-
tolerance feature in this artificial test case is considerable,
because of the reasons explained earlier in this section. While

Supporting Automatic Recovery in Offloaded Distributed PMs Through MPI-3 ICS ’17, June 14-16, 2017, Chicago, IL, USA

1

10

100

1000

10000

2 4 8 16 32 64 2 4 8 16 32 64

Weak Scaling Strong Scaling

Ti
m

e
 (

s)

Number of Nodes

Original Error-Free Error #1 Error #2 Error #3

Figure 12: N-Body partial scaling. Particles: weak–1 M/n-
ode; strong–4 M total.

Master

Slave 0

Slave n

Worker 0

Worker 1

Worker n

Worker 0

Worker 1

Worker n

Figure 13: FWI offloaded structure.

Error-Free executions pose an overhead under 4% up to 8
nodes, this reaches almost 20% on 16 nodes, and over 400%
for higher node counts. The recovery times are similar to
those of the global case. As we mentioned earlier, this is a
purposely-designed bad-case scenario and the OmpSs offload
feature is not intended to execute fine-grained tasks.

6.4 Full Wave Inversion (FWI) Application
The Full Wave Inversion application analyzes the physical
properties of the subsoil from seismic measurements. The
area to be analyzed is divided in “shots”, which are usually
processed in a distributed fashion due to their size. Its struc-
ture using OmpSs offload semantics is depicted in Figure 13
and its implementation listed in pseudocode in Figure 14. An
initial master process iterates over the different frequencies to
explore. For each gradient, a number of shots are processed
by a kernel function. Each of these is offloaded to a slave
process. The slaves, after performing some preprocessing,
split the computation of the kernel into several offloaded
tasks (workers) and perform the required post-processing af-
ter waiting for their finalization. Several test post-processing
kernel executions are required per shot after this process.

We configure our experiments to use 4 workers per slave,
processing up to 1 GB of data each. We vary the number
of shots from 2 to 16, using up to 80 boosters in different
hosts. A single frequency, two gradients, and two tests are
executed, leading to 6 kernel offloads to each slave during
the execution. Nanos++ leverages the intranode parallelism
using the 16 CPU cores of the compute nodes.

vo id kernel (...) {
deep_booster_alloc (MPI_COMM_SELF , nw , 1, & workers);
... // Preprocessing
f o r (worker =0; worker <nw; worker ++) {

...
pragma omp task onto(workers , worker) ...
{ ... }

}
pragma omp taskwait
... // Post - processing
deep_booster_free (workers);

}

i n t main(vo id) {
f o r (freq =0; freq < nfreqs ; freq ++) { // Frequencies

... // freqs require different number of shots
deep_booster_alloc (MPI_COMM_WORLD , n, 1, & slaves);
f o r (grad =0; grad < ngrads ; grad ++) { // Gradients

f o r (shot =0; shot <n; shot ++) {
pragma omp task onto(slaves , shot) ...
{

...
kernel (...);

}
}
pragma omp taskwait
f o r (test =0; test < ntest ; test ++) {

f o r (shot =0; shot <n; shot ++) {
pragma omp task onto(slaves , shot) ...
{

...
kernel (...);

}
}
pragma omp taskwait

}
}
deep_booster_free (slaves);

}
}

Figure 14: FWI pseudocode.

Figure 15 shows the execution time of FWI in four different
cases (the maximum RSD is 1.5%). In Error Worker, a
failure appears in a worker process, whereas in Error Slave,
it occurs in a slave. As we can see in the figure, the recovery
feature does not noticeably impact the run time, being the
maximum overhead a mere 0.56% (negative overheads just
reflect variability and are indicative of the low performance
impact). When a failure is detected, the task is reexecuted.
The added execution time corresponds to the respawning
procedure plus the reexecution of the tasks involved in the
failure, including the necessary data restoring movements.
Figure 16 represents an extrapolation of the execution time
for different number of errors in the 64-worker case. A failure
in a worker increases the execution time 18.3%, whereas if the
failing process is a slave, the execution time is increased 20.3%.
In the unlikely case of experiencing 5 process disconnection
failures in the roughly 2.2 hours of execution, the run time
would be approximately doubled.

7 CONCLUSION
Our experiments show no impact on the scalability properties
of our test cases, revealing low runtime overhead and efficient
recovery for coarse-grained tasks. The runtime overhead
in our approach involves the synchronization of all sibling
masters at the end of their offloaded tasks only in case these
are collaborating (e.g., if they were not created using the

ICS ’17, June 14-16, 2017, Chicago, IL, USA Antonio J. Peña, Vicenç Beltran, Carsten Clauss, and Thomas Moschny

-0
.6

5
%

-0
.0

3
%

0
.5

6
%

0
.0

4
%

-0
.4

9
%

0

1000

2000

3000

4000

5000

6000

4 / 5 8 / 10 16 / 20 32 / 40 64 / 80

Ti
m

e
(s

)

Number of Workers / Boosters

Original Error-Free Error Worker Error Slave

Figure 15: FWI execution time in 4 configurations.

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

0 1 2 3 4 5

Ti
m

e
 (

s)

Number of Errors

Error Worker Error Slave

Figure 16: FWI execution time extrapolation (64 workers).

MPI COMM SELF communicator). In that case, one would any-
way expect some sort of user-level synchronization as well
among the workers during the execution of their task, usually
at least before finalization. Hence, targeting coarse-grained
tasks [10], the runtime overhead introduced by our method-
ology should not be noticeable even in a larger number of
nodes. In the event of a failure, the recovery time is basically
dominated by the respawning latency, which should in any
case improve upon restarting the entire application.

We hence have provided a use case demonstrating the
viability of implementing effective and efficient fault toler-
ance using MPI-3 compliant techniques. Although we use
OmpSs offload to showcase our idea, this approach should
be applicable to other similar offload PMs such as [8].

ACKNOWLEDGMENTS
This research received funding from the European Commu-
nity’s 7th Framework Programme via the DEEP-ER project
under Grant Agreement no. 610476. This work has also been
supported by the Spanish Ministry of Science and Innovation
(contract TIN2012-34557) and by Generalitat de Catalunya
(contracts 2014-SGR-1051 and 2014-SGR-1272). Antonio J.
Peña is cofinanced by the Spanish Ministry of Economy and
Competitiveness under Juan de la Cierva fellowship number
IJCI-2015-23266. The authors thank Jorge Bellón, from BSC,
for his technical support with the Nanos++ internals.

REFERENCES
[1] A. Barak and A. Shiloh. 2011. The MOSIX virtual OpenCL (VCL)

cluster platform. In Intel European Research and Innovation.

[2] C. Clauss, T. Moschny, and N. Eicker. 2016. Dynamic process
management with allocation-internal co-scheduling towards inter-
active supercomputing. In Co-Scheduling of HPC Applications.

[3] A. Amer et al. 2015. MPICH User’s Guide Version 3.2. Argonne
National Laboratory.

[4] A. J. Peña et al. 2014. A complete and efficient CUDA-sharing
solution for HPC clusters. Parallel Comput. 40, 10 (2014).

[5] A. Moody et al. 2010. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In Int. Conf. for High
Perf. Computing, Networking, Storage and Analysis (SC).

[6] A. Rezaei et al. 2014. Snapify: Capturing snapshots of offload
applications on Xeon Phi manycore processors. In Int. Symposium
on High-Performance Parallel and Distributed Computing.

[7] C. Cao et al. 2015. Design for a soft error resilient dynamic
task-based runtime. In International Parallel and Distributed
Processing Symposium (IPDPS).

[8] C. J. Newburn et al. 2013. Offload compiler runtime for the Intel®
Xeon Phi coprocessor. In International Parallel and Distributed
Processing Symposium (IPDPS) Workshops.

[9] D. G. Murray et al. 2011. CIEL: A universal execution engine for
distributed data-flow computing. In Symposium on Networked
Systems Design and Implementation (NSDI). 113–126.

[10] F. Sainz et al. 2015. Collective offload for heterogeneous clusters.
In Int. Conference on High Performance Computing (HiPC).

[11] G. Bosilca et al. 2014. Unified model for assessing checkpoint-
ing protocols at extreme-scale. Concurrency and Computation:
Practice and Experience 26, 17 (2014), 2772–2791.

[12] H. Takizawa et al. 2009. CheCUDA: A checkpoint/restart tool
for CUDA applications. In Parallel and Distributed Computing,
Applications and Technologies.

[13] H. Takizawa et al. 2011. CheCL: Transparent checkpointing
and process migration of OpenCL applications. In International
Parallel & Distributed Processing Symposium (IPDPS).

[14] J. Wadden et al. 2014. Real-world design and evaluation of
compiler-managed GPU redundant multithreading. In Interna-
tional Symposium on Computer Architecture (ISCA).

[15] K. S. Yim et al. 2011. Hauberk: Lightweight silent data corruption
error detector for GPGPU. In Int. Conference on Parallel and
Distributed Computing, Applications and Technologies.

[16] L. Bautista-Gomez et al. 2011. FTI: High performance fault
tolerance interface for hybrid systems. In Int. Conference for
High Perf. Computing, Networking, Storage and Analysis (SC).

[17] M. Bougeret et al. 2014. Using group replication for resilience on
exascale systems. International Journal of High Performance
Computing Applications 28, 2 (2014), 210–224.

[18] M. C. Kurt et al. 2014. Fault-tolerant dynamic task graph sched-
uling. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC).

[19] O. Subasi et al. 2015. NanoCheckpoints: A task-based asynchro-
nous dataflow framework for efficient and scalable checkpoint/
restart. In Parallel, Distributed and Network-Based Processing.

[20] P. Balaji et al. 2010. PMI: A scalable parallel process-management
interface for extreme-scale systems. In EuroMPI.

[21] S. Prabhakaran et al. 2015. A batch system with efficient adaptive
scheduling for malleable and evolving applications. In Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

[22] W. Bland et al. 2013. Post-failure recovery of MPI communication
capability: Design and rationale. International Journal of High
Performance Computing Applications 27, 3 (2013), 244–254.

[23] W. Gropp and E. Lusk. 2004. Fault tolerance in message passing
interface programs. International Journal on High Performance
Computing Applications 18, 3 (2004), 363–372.

[24] L. Howes (Ed.). 2015. The OpenCL Specification, Version 2.1.
Khronos OpenCL Working Group.

[25] NVIDIA 2016. CUDA C Programming Guide 8.0. NVIDIA.
[26] OpenACC-Standard.org. 2015. The OpenACC© Application Pro-

gramming Interface, Version 2.5.
[27] OpenMP Architecture Review Board. 2015. OpenMP Application

Programming Interface (4.5 ed.).
[28] A. J. Peña. 2013. Virtualization of Accelerators in High Perfor-

mance Clusters. Ph.D. Dissertation. Universitat Jaume I.
[29] A. J. Peña, W. Bland, and P. Balaji. 2015. VOCL-FT: Introducing

techniques for efficient soft error coprocessor recovery. In The
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE/ACM.

[30] T. Warschko, J. M. Blum, and W. F. Tichy. 1998. ParaStation:
Efficient parallel computing by clustering workstations. Journal
of Systems Architecture 44, 3 (1998), 241–260.

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Checkpointing
	3.2 MPI Resilience
	3.3 Resilience in Task-Based PMs
	3.4 Resilience for Offload-Based PMs

	4 Support from the MPI Stack
	4.1 Process Manager
	4.2 Communication Layer
	4.3 Discussion on Standardization

	5 OmpSs Resilient Offload
	5.1 Functionality
	5.2 Semantic Constraints
	5.3 Implementation Details

	6 Evaluation
	6.1 MPI Connection Guard
	6.2 OmpSs Offload Microbenchmarking
	6.3 N-Body Benchmark
	6.4 Full Wave Inversion (FWI) Application

	7 Conclusion
	Acknowledgments
	References

