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ABSTRACT
In many areas of data mining, data is collected from humans beings.
In this contribution, we ask the question of how people actually
respond to ordinal scales. �e main problem observed is that users
tend to be volatile in their choices, i.e. complex cognitions do not
always lead to the same decisions, but to distributions of possible
decision outputs. �is human uncertainty may sometimes have
quite an impact on common data mining approaches and thus, the
question of e�ective modelling this so called human uncertainty
emerges naturally.

Our contribution introduces two di�erent approaches for mod-
elling the human uncertainty of user responses. In doing so, we
develop techniques in order to measure this uncertainty at the level
of user inputs as well as the level of user cognition. With support
of comprehensive user experiments and large-scale simulations, we
systematically compare both methodologies along with their impli-
cations for personalisation approaches. Our �ndings demonstrate
that signi�cant amounts of users do submit something completely
di�erent (action) than they really have in mind (cognition). More-
over, we demonstrate that statistically sound evidence with respect
to algorithm assessment becomes quite hard to realise, especially
when explicit rankings shall be built.
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1 INTRODUCTION
A broad range of algorithms and approaches in data mining aim
at modelling and predicting aspects of human behaviour. �ese
e�orts are motivated by many practically relevant applications,
including various recommender systems, content personalisation,
targeted advertising, along with many others. �is involves implicit
or explicit knowledge about user behaviour, either by observing
user interactions or by asking users explicitly.

We take this as an opportunity to ask the question of how peo-
ple actually proceed when making decisions (e.g. creating ratings
or other forms of feedback) while interacting with information
systems. For example, many users may meet their decisions with
considerable uncertainty in many situations, i.e. they would not
exactly reproduce their decisions when asked twice or multiple
times. �is Human Uncertainty, as we understand it in this con-
tribution, appears to be a characteristic feature of the cognitive
process of decision making which in�uences its outcome, making
it circumstantial and temporally unstable; the outcome appears to
be more or less �uctuating randomly when repeating a decision
making. Consequently, we may assume that observed decisions
are drawn from individual distributions. Moreover, and even more
important, our knowledge about such distributions may be very
limited, due to natural limitations of known measurement method-
ologies. One of these methodologies, which has already been used
in recent research on data mining, is based on a frequentist ap-
proach and observes repeated user actions. Another approach, yet
insu�ciently discussed in this context, is based on a Bayesian ap-
proach and requires user perceptions. Both of these approaches
have so far not been discussed su�ciently in the �eld of user mod-
elling and personalisation. However, we will demonstrate that there
are far-reaching implications of such considerations, especially for
the statistical evidence of data mining results and the sometimes
associated monetary decisions (e.g. when opting for the be�er
recommender).

Motivating Example. As a motivating example, we consider the
task of rating prediction (common to recommender systems), along
with the Root Mean Square Error (RMSE) as a widely used metric
for prediction quality. In a systematic experiment with real users
(described in more detail in forthcoming sections), individuals rated
certain movie trailers multiple times. Figure 1a shows that only 35%
of all users show constant rating behaviour, whereas about 50% use
two di�erent answer categories and 15% of all users make use of
three or more categories. Based on these observations, we compute
the RMSE for three recommender systems (designed by de�nition of
their predictors π ) for each rating trial. Figure 1b depicts the RMSE
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(a) Frequency of the number of used answer cate-
gories
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(b) Distribution of RMSE outcomes for any rating
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Figure 1: Uncertain user ratings and impact on the RMSE

outcomes and their frequency. It becomes apparent at once that
the RMSE itself yields a particular degree of uncertainty, emerged
from uncertain user feedback. When ranking these recommender
systems, Figure 1b allows for three possible results

(R1 ≺ R2 ≺ R3) ∨ (R2 ≺ R1 ≺ R3) ∨ (R1 ≺ R3 ≺ R2) (1)

depending on the rating trial, where the relation ≺ denotes “be�er
than”. �is problem is most obvious for recommender R1 as it could
be both, the best or the worst recommender, although it operates
for same users rating the same items. In addition, it may be pos-
sible that further repetitions of ratings would lead to even more
ranking possibilities. �is naturally implies to esteem the RMSE as
a distribution rather than single scores. Consequently, the question
changes from “Is R1 be�er than R2?” to “How likely is it that R1
is be�er than R2?”. Changing this question can be considered as a
paradigm shi�, i.e. from point-paradigm to distribution-paradigm,
providing the possibility to detect and to visualise many interest-
ing but so far hidden e�ects within the �eld of user modelling,
personalisation and adaptation.

�e Problem. Grounded on real user experiments it can be shown
that there is o�en a signi�cant overlap in two metric’s distributions
when assessing competing data mining approaches. During our
analyses, we o�en encountered ranking error probabilities of 33% or
even more when evaluating by scores only. At this point, we must
emphasise that this problem is not immanent to this novel paradigm,
but has always been present implicitly in data records, provided

that these are based on human behaviour. In fact, the distribution-
paradigm is able to make some fundamental problems visible for
the �rst time. On these �ndings, it becomes imperative to explore
possible propagations of human uncertainty in order to maintain
statistically sound and adequate methods of data mining. However,
in addition to the analysis of human uncertainty itself, the question
of information quality in terms of reliability and validity also plays
a major role and must be considered as well. As we’re going to
show in forthcoming sections, one has to repeat a rating task on
the same item for a several hundred times in order to quantify the
human uncertainty with acceptable precision.

To restate our problems in short: We have to include human
uncertainty in our decisions on algorithm assessment to exclude
impacting errors, but with the most naive and simplest method to
perform, we cannot gather enough information to quantify this
uncertainty with necessary precision.

Research �estions. In this contribution, we introduce two dia-
metrically opposed approaches of gathering uncertainty informa-
tion. Due to the lack of su�ciently profound discussions in the
literature of computer science that addresses human uncertainty,
the compatibility of cognition and action, and the impact of these
topics on commonly accepted techniques in data mining, we want
to examine the relevance of this subjects in more detail. In this
spirit, we will focus on the following research questions:
Research�estion Q1: How do actual feedback responses di�er

from intended ones (in terms of probabilistic approaches)?

Research�estion Q2: What implications become apparent by
contrasting diverse uncertainty models (e.g. the impact on
evaluation metrics like the RMSE)?

�ese questions are examined on the basis of user experiments
that mimic the task of recommender systems. �e indications and
implications presented in this contribution are nevertheless not
limited to this �eld but do apply for most of common data mining
approaches that explicitly account for human feedback.

2 RELATEDWORK
In this paper, we exemplify our approach using recommender sys-
tems [15] and focus speci�cally on the validity of human uncer-
tainty measurements in rating scenarios.

�e relevance of our contribution arises from the fact that the
ubiquitous human uncertainty sometimes has a vast in�uence on
the evaluation of di�erent prediction algorithms. For this com-
parative assessment, di�erent metrics are used to determine the
prediction quality, such as the root mean squared error (RMSE),
the mean absolute error (MAE), the mean average precision (MAP)
and many others [1]. �ese and other quality-related quantities in
recommender assessment (e.g. user satisfaction, precision/recall,
etc.) are summarised in [9]. Although we exemplify the impact
of measurement validity on the RMSE, the main results of this
contribution can be easily adopted for alternative assessment met-
rics without substantial loss of generality, since they all share in
common the need for uncertain human input.

�e idea of uncertainty is not only related to predictive data
mining but also to measuring sciences such as metrology. Recently,
a paradigm shi� was initiated on the basis of a so far incomplete
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theory of error [7]. In consequence, measured properties are cur-
rently modelled by probability density functions and quantities
calculated therefrom are now assigned a distribution by means of a
convolution of these densities. �is model is described in [11]. A
feasible framework for computing these convolutions via Monte-
Carlo-simulation is given by [12]. We take this model as a basis for
our own modelling of uncertainty for addressing similar issues in
the �eld of computer science.

�e complexity of human perception and cognition can be ad-
dressed by means of latent distributions. �is idea is widely used
in cognitive science and in statistical models for ordinal data. For
example, so-called CUB models for ordinal data [10] assume the
Gaussian as a latent response model underlying the observations.
We adopt the idea of modelling user uncertainty by means of individ-
ual Gaussians following the argumentation in [10] for constructing
our individual response models.

�e impacts of human uncertainty for recommendation results
have been frequently discussed in recent work from di�erent per-
spectives. Observations presented in [3, 4] have shown that it can
signi�cantly in�uence results of recommender evaluation. �e
methodology applied there is based on repeating rating scenarios
for same users-items-pairs and represents the current standard in
latest research such as [2]. In this paper, the same methodology is
explored and compared to a new Bayesian method, which we have
derived from the from latest research on cognitions of uncertainty
in educational scenarios [8].

3 DATA MODELLING
3.1 �e Re-Rating Proceeding
One way of deriving a user’s rating-distribution is based on the
frequentist de�nition of probability, i.e. the probability of an
event to occur is equal to its relative frequency for in�nite trials. De-
duced from this de�nition we receive a probability density function
(PDF) by simply asking users to re-rate the same item several times
and computing Maximum-Likelihood-Parameters for a given data
model. We will refer to this scenario as the re-rating-proceeding.

In mathematical terms: Let U ⊆ N be a �nite set of Users and
I ⊆ N a �nite set of items to be rated. Let S = {1, 2, 3, 4, 5} denote
the set of possible ratings on the commonly used �ve-star ordinal
scale, then the tensor ru,i,t ∈ S represents the t th rating from user
u ∈ U for item i ∈ I where t = 1, . . . ,N . By forcing user u to rate
the same item i multiple times, we obtain the sample

ru,i,• := {ru,i,t | t = 1, . . . ,N } (2)

representing t draws from the random variable Ru,i . �e corre-
sponding rating-distribution represented by the PDF fR : Ŝ → R
can be generated by performing the ML-algorithm for a chosen
data model (e.g. Gaussians, CUB-Models, etc.), assuming a con-
tinuous scale Ŝ as well as a non-vanishing variance of ru,i,•. We
then denote the standard deviation σu,i :=

√
Var(Ru,i ) as the op-

erationalised human uncertainty of user u on item i where µu,i
is the location-parameter. For this uncertainty have to regard two
facts:

• A single user rates multiple items with unequal precision
and thus produces a user-speci�c distribution with draws
{σu,i | i ∈ I } which we call the user-speci�c noise Σ(u).

• A single item is rated by multiple users having unequal pre-
cision, emerging an item-speci�c distribution with draws
{σu,i |u ∈ U } which we call the item-speci�c noise Σ(i).

From this point of view, the human uncertainty for a speci�c user
and item can be seen as a realisation of the joint PDF of Σ(u) and
Σ(i). �e biggest advantage of the re-rating-proceeding is that the
users can, on the one hand, stick to the usual procedure but repeat
several times. �is procedure therefore seems to be very feasible,
although it might be assumed that repetitions of a certain rating
task are limited. However, the data obtained is easy to process. �e
disadvantages arise when we leave the view of probability theory
and take the view of statistics, for then we are not able to know the
parameters accurately, since we only calculate them on samples
rather than the population. As a result, the parameters itself are
subject to a so-called measurement uncertainty. In other words, we
cannot measure the human precision in su�cient quality, but only
locate it within con�dence intervals. �is measurement uncertainty
becomes an important factor since it propagates in every quantity
derived from these rating-distributions.

3.2 �e PDF-Rating Proceeding
An alternative approach of accessing human precision is based
on the Bayesian de�nition of probability, i.e. the probability of
an event to occur is the degree of one’s personal con�dence in
this occurrence. Under this assumption, one can obtain a rating-
distribution directly from requiring a user’s personal con�dence of
the appropriateness for each possible rating that a scale provides.
We will denote this procedure as the pdf-rating-proceeding.

In mathematical terms: Having a 5-Star-Scale S = {1, . . . , 5}, a
user associates to each possible rating s ∈ S a degree of personal
con�dence about the appropriateness of s concerning the item to
be rated. �e personal con�dence is entered by a second Scale
SC = {1, . . . , 5}. Hence, a given rating

ru,i = {(1,n1), (2,n2), (3,n3), (4,n4), (5,n5)} (3)

is given by a family of two-dimensional vectors in SL×SC where the
values for ones personal belief are considered as speci�c weights
for each of the associated ratings. In order to retrieve the rating-
distribution, this rating is converted into its frequentist equivalent
by use of the transformation

τ : ru,i 7→ (1, . . . , 1︸  ︷︷  ︸
n1-times

, 2, . . . , 2︸  ︷︷  ︸
n2-times

, . . . , 5, . . . , 5︸  ︷︷  ︸
n5-times

). (4)

since the absolute histogram of this frequentist translation will
exactly reproduce the data initially entered by the user. We then
perform a ML-Estimation on τ (ru,i ) to �nd the optimal parameters
for a chosen data model. �e great advantage of the pdf-rating is,
that all necessary data can be obtained by one rating only which
grants a be�er viability and saves valuable time for improving the
system, i.e. the machine-learning-process speeds up signi�cantly.
�e disadvantages might be that this new and yet unusual method
is not immediately accepted by users.

3.3 Composed�antities
�e RMSE, as a metric for model-based prediction quality, is a
suitable example to demonstrate the impact of human uncertainty
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as well as the limited precision of its measurement on composed
quantities. Composed �antities, in this contribution, are quantities
that compute as a function of large amounts of uncertain arguments.
So, a composed quantity becomes a random variable itself whose
density function emerges as a convolution of the density functions
of its arguments.

For further considerations, we assume all ratings to be nor-
mally distributed random variables Ru,i ∼ N(µu,i ,σu,i ) (rationally,
it exhibits maximum entropy along all distributions with �nite
mean/variance and support on R). Accordingly, the RMSE

RMSE =

√√√ ∑
(u,i) ∈ U×I

(πu,i − Ru,i )2
n

(5)

materialises as a composition of continuous maps of random vari-
ables and thus becomes a random variable itself. Its distribution
emerges as a convolution of n ≤ U · I density functions and com-
putations can be easily done via Monte-Carlo-Simulation [12].

In case of exactly known rating-distributions, we get a clear
distribution for the RMSE. However, since each dataset represents
only one sample rather than the entire population, point estimators
are inappropriate here. Instead, con�dence intervals have to be
speci�ed [14]. In that sense, we cannot simply determine a single
rating-distribution for each user-item-pair, but have to compute
a variety of distributions with the associated parameters drawn
from corresponding con�dence intervals. In consequence, even
for large-scale computations, the resulting RMSE does not possess
a stable density function. However, there exist borderline cases
which reveal the maximum range in which we can expect results
for the density function of the RMSE.

4 METHODOLOGY AND EXPERIMENTS
4.1 �e Experiment
Our experiment is set up with Unipark’s1 survey engine whilst
our participants were commi�ed by the crowdsourcing platform
Clickworker2. During the experiment, participants watched theatri-
cal trailers of popular movies and television shows and provided
ratings using the re-rating-proceeding and pdf-ratings-proceeding
respectively3. �e submi�ed ratings have been recorded for �ve out
of ten �xed trailers so that the remaining trailers act as distractors
triggering the misinformation e�ect, i.e. memory is becoming less
accurate because of interference from post-event information.

4.2 Evaluation Methodology
Research �estion Q1: Here, we examine the di�erence between

actual and intended ratings as obtained by the re-rating and pdf-
rating respectively. To this end, we compare the rating distributions
as well as the distributions of the variances (userspeci�c and item-
speci�c noise) resulting from the di�erent measurement methods.

Equality of distributions: To compare the distributions in-
duced by actions as well as cognitions, we consider point-estimation
parameters and go on three factors: On the one hand, we compare
the distribution type by means of a two-sample-KS-test. Even if
1h�p://www.unipark.com/de/
2h�ps://www.clickworker.de/
3A full description can be found on h�ps://jasbergk.wixsite.com/research

the equality of two PDFs has to be rejected, the available rating-
distributions may nevertheless possess the same expectation or
variance that could be assigned to a user within a recommender
system for a future rating. �erefore we perform Welch’s t-test
to compare the expected values as well as Levene’s test to investi-
gate homoscedasticity. It will turn out that all item-speci�c-noise
distributions retrieved from the PDF-rating-procedure share a con-
spicuous common feature: �e equality of expectations throughout
all items. �is hypothesis is explored by Welch’s t-test as well. All
testing is performed with a signi�cance level of α = 0.05.

Validity of distributions: We will also focus on validity of
the distributions, that is the precision with which the relevant
parameters can be localised. For all rating-distributions this can be
done easily by comparing the length of the parameters’ con�dence
intervals, due to an explicitly given parametric data-model. For the
Noise-Distributions we do not have these parametric data-models.
Instead, a Monte-Carlo-Simulation is used in which we sample the
variances from their con�dence intervals. For every resulting noise-
distribution we then compute the percentiles q ∈ [0, 1], so that re-
sampling will result into a distribution for each of this percentiles.
In doing so, the standard deviation σ (q) of q becomes a measure
for the precision with which the noise-distribution can be obtained.
�us, we simply compare the quantiles’ standard deviations when
deduced from the re-rating and pdf-rating.

Research �estion Q2. Here, we examine implications of human
uncertainty and their visualisation by a given measurement method.
For this purpose, we will focus on evaluation metrics and discuss
the possible implications for the RMSE as an example. In particu-
lar, we will investigate the in�uence of measuring precision and
the distinguishability of two RMSE-distributions. Due to the fact
that it is quite di�cult to specify a closed form for the RMSE’s
density function [6], we will perform a Monte-Carlo-Simulation
as described in [12]. In our simulations, we observe six di�erent
recommender systems, designed by de�ning their predictors via

πk(u,i) :=
{

mean within all rating trials k = 1
(k − 1)th rating k = 2, . . . , 6

(6)

where k denotes the k-th recommender system.

Equality of distributions: Since the MC-simulation is an arti-
�cial generation of draws, hypothesis testing can not be executed
directly on this data set in order to validate whether both measure-
ment methods produce the same RMSE or not. �is is because a
simple increase in the MC-trials can be used to signi�cantly detect
any e�ect, even if this is not possible from the underlying data set.
For this reason, we freeze the parameters of the incoming variables
to the corresponding point estimators and indirectly simulate the
hypothesis tests. To this end, we reduce the number of MC-trials
to the actual sample size of the collected data and carry out the
hypothesis test on these reduced samples. However, we repeat this
106 times and consider the relative frequency h of the rejection of
equality. If h > α − 1 holds, a possible e�ect can be considered to
be proven with signi�cance level α .

Validity/Reliability of distributions: In case of the RMSE,
validity is closely linked to reliability as the inaccurate location
of the rating-distributions’ parameters (validity) induces diverse
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outcomes for any re-sampling (reliability). �e validity in terms
of precision is observed by sampling the percentile’s distributions
again and compare their standard deviations when sampled from
the re-rating-proceeding as well as the pdf-rating-proceeding. �e
e�ect size of reliability will be demonstrated by considering border-
line cases of the RMSE which reveal the maximum span in which
we can expect results for its density function.

Distinguishability: Our analyses will reveal that two recom-
mender systems R1 and R2 may not only have di�erent PDFs fR1(x)
and fR2(x) for the RMSE, but also do these PDFs overlap very o�en.
�us each ranking R1 ≺ R2 is always subject to an error

Pε := P(R1 > R2) =
∫ ∞
−∞

fR2(x)
(
1 − FR1(x)

)
dx (7)

where FR1(x) denotes the cumulative distribution function of the
RMSE-distribution ofR1. In this context, we investigate how strongly
one recommender must deviate from another, so that this can be
signi�cantly recognised by the RMSE, i.e. the probability of rank-
ing error diminishes to less than �ve percent. To this end, we
assume to have perfectly known rating-distributions and compute
the RMSE for two recommender systems with adjustable prediction
quality. �eoretically, the arithmetic mean x̄u,i of ratings through-
out all rating trials appears to be the optimal predictor, because
this is the value which is obtained on average in the case of an
in�nite repetition and thus produces the smallest sum of squared
deviations. Hence, we de�ne the optimal recommender by se�ing
πu,i := x̄u,i . To this optimum we additionally create a copy which
we distort by arti�cial noise generated from re-sampling its predic-
tors πnew ∈ [(1 − p)πold ; (1 + p)πold]. In this case, a noise fraction
of p means that those new predictors deviate from the originals by
(100 · p)%. �e RMSE thereby receives a shi� on the x-axis so that
it’s possible to calculate a declining error probability Pε (p) for a
given ranking. In this process, we observe the amount of noise that
is necessary to ful�l the distinguishability-condition Pε < 0.05.

4.3 Results
Altogether 67 people from Germany, Austria and Switzerland par-
ticipated in this experiment. �is group can be parted into 57%
females and 43% males whose ages range from 20 to 60 years whilst
over 60% of our participants where aged between 20 and 40. �is
group also includes a good average of lower, medium and higher
educational levels. �e rating frequency habits range from rarely
to o�en in uniform distribution. According to this data we can
assume to have gathered a cross-sectional data, generally re�ecting
the German speaking population from these three countries.

Research �estion Q1. �e comparison of rating-distributions
deduced from actions and cognitions in terms of the KS-test shows
that descriptive deviations are not signi�cant in 207 of 301 cases
(≈ 98%). �e comparison of expectations by means of Welch’s t-test
reveals that these do not di�er signi�cantly from one another in 175
of 211 cases (≈ 83%). Similarly, Levene’s test shows that a deviation
from homoscedacity was only signi�cant in 175 of 211 cases (≈ 82%).
A more detailed breakdown by items is given in Table 1. Overall,
the probabilistic ratings may indeed possess descriptive deviations,
but all are within the range of random �uctuations.

KS-Test Welch’s t-Test Levene-Test
n. rejected rejected n. rejected rejected n. rejected rejected

Item 1 59 (1.00) 0 (0.00) 52 (0.88) 7 (0.12) 52 (0.88) 7 (0.12)
Item 2 39 (0.98) 1 (0.02) 34 (0.85) 6 (0.15) 33 (0.82) 7 (0.17)
Item 3 31 (0.94) 2 (0.06) 23 (0.70) 10 (0.30) 26 (0.79) 7 (0.21)
Item 4 45 (1.00) 0 (0.00) 38 (0.84) 7 (0.16) 37 (0.82) 8 (0.18)
Item 5 33 (0.97) 1 (0.03) 28 (0.82) 6 (0.18) 26 (0.76) 8 (0.24)
Table 1: Hypothesis testing on the rating-distributions – ab-
solute counts �rst, fractions in brackets

KS-Test Welch’s t-Test Levene-Test
n. rejected rejected n. rejected rejected n. rejected rejected

ISN 0 (0.00) 5 (1.00) 0 (0.00) 5 (1.00) 1 (0.20) 4 (0.80)
USN 0 (0.00) 67 (1.00) 33 (0.49) 34 (0.51) 55 (0.82) 12 (0.18)
Table 2: Hypothesis testing on the noise-distributions – ab-
solute counts �rst, fractions in brackets

Unfortunately, any of the investigated distributions is ambigu-
ous, since its parameters can only be located within con�dence
intervals. For the assessment of mean value precision, we consider
this quantity for each rating distribution obtained from re-rating
(µr ) as well as pdf-rating (µp ) together with the 95%-intervals and
compare their length with aid of the auxiliary variable

∆µ := `(I95(µr )) − `(I95(µp )). (8)
If ∆µ > 0, then the length `(I95(µr )) of the re-rating-interval is
greater than the length `(I95(µp )) of the pdf-rating-interval, i.e. the
pdf-rating appears to be more precise in locating the mean value.
�e analysis of the standard deviation is done analogously. Figure
2 depicts the distribution of these length di�erences. It can be seen
that the mass-ratio of improvements and deteriorations is very
balanced. At the same time, it can be seen that the strength of
these deteriorations are small in comparison to the strength of the
improvements. �e expectations show that on the average, the pdf-
rating will produce a slight increase of overall precision. However,
this analysis is merely based on descriptive considerations so far.
For both of the parameters µ and σ , hypothesis testing reveals that
more than 80% of all correspondences do not di�er signi�cantly.
�is certainly does not mean that equality can be accepted in all
these cases, but this is a possibility that can’t be rejected. In Figure
2c, we gradually allow this possibility, beginning with the smallest
di�erences. It turns out that the precision of the pdf-rating gains
very quickly when the fraction of equalities for the non-signi�cant
deviations increases.

A comparison of noise distributions leads to a contrary result (see
Table 2). For the item-speci�c noise as well as the user-speci�c noise,
the corresponding distributions can be regarded as signi�cantly
di�erent with respect to the di�erent measurement methods. �ese
�ndings are substantiated by the approximation of underlying data-
models. In any case, the item-speci�c noise (ISN) is following power-
law-distributions when measured via re-rating and respectively
following Gaussians when measured via pdf-rating. �ese highly
signi�cant deviations indicate that the perceived noise di�ers form
the observable noise. �e power-law-distribution would claim
that many people are quite certain whereas larger uncertainty
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Figure 2: Analysis of the rating-distributions’ precision depending on the applied method of gathering uncertainty

only manifests for a few people. �is doesn’t perfectly match the
everyday experience and may emerge due to the limitations of the
conventional rating instrument, i.e. customers are forced to choose
precisely one discrete rating option. But unfortunately this “all or
nothing” does not match human cognitions when making decisions.
�is interpretation is supported by the fact that an outstanding
majority had chosen more than one answer category. �us by
forcing a user to rate on discrete scales, the user will always select
the mode of his “inner distribution” or perhaps some value nearby,
depending on external in�uences. In contrast, the Gaussian data-
model indicates, that many people possess the more or less the
same uncertainty and that deviations in both directions are equally
likely whereas large deviations are less likely than small deviations.
In our experiments we located this common uncertainty to be 1.3
stars. Welch’s t-test indicates that only 10% of all ISN distributions
possess a signi�cantly di�erent expectation when using the pdf-
proceeding. �is is a strong indication for a latent cognition that is
present for the majority of observed users.

For our investigations of the validity in terms of measurement
precision, we compute the percentile distributions for each corre-
sponding ISN and USN by re-sampling. In doing so, the standard
deviations of these percentile distributions naturally become a mea-
sure of noise precision. �e auxiliary quantity δq := σr (q) − σp (q)
is positive for σp (q) < σr (q) indicating superiority of the pdf-rating.
A counting proves the invariance of the precision under measure-
ment methodologies for lower percentiles as well as the superiority
of the pdf-rating for higher percentiles.

�e exploration of the USN validity must be considered more
carefully. When computing sca�er plots for δq against q, there are
three always repeating archetypes to be spo�ed, which are mono-
tonic behaviour (homogeneity), at least two clusters (clustered), and
high dispersion with no visible relationship (irregularity). Having
these descriptions in mind, all sca�er plots were independently as-
signed to a category by two analysts (inter-rater reliability ϱ = 0.99).
�e quantitative extent of these archetypes within our data records
summarises as follows: 28% of all users can be considered homoge-
neous, 27% can be considered irregular and 45% of all users tend
to be clustered. Representatives of these archetypes can be seen in
Figure 3. Homogeneous users (3a) either show no signi�cant e�ect
(constant line) or a functional relationship, so that the uncertainty
by action can be converted into uncertainty by cognition and vice

versa. Cognition and action are closely linked for these users, i.e.
they make their decisions very thoughtfully and possibly not based
on feelings. For the cluster archetype it can be seen, that those users
allow for options in the pdf-rating which they would otherwise
never have considered. Action and perception are not in harmony,
i.e. these users probably use mainly their gut feeling for making
decisions. �e irregular archetype does not show any relationship
between action and cognition. Probably, those users have not rated
seriously and just clicked through the online survey.

Research �estion Q2. Evaluation of the hypothesis testing in-
dicates that the RMSE-distributions from both rating proceedings
are fundamentally di�erent for any of the simulated recommender
systems. In particular, this is caused by a signi�cant shi� of the dis-
tributions’ expectations, whereas the standard deviations does not
di�er signi�cantly in any case. Accordingly, it can be concluded that
the measurement uncertainty mainly a�ects the location-parameter
of the RMSE and that its spread can thus only be impacted signif-
icantly by the human uncertainty. �is σ -invariance under mea-
surement proceeding is consistent with our �ndings from research
question Q1, i.e. that the rating-distributions (containing the human
uncertainty information) are more or less equivalent.

Nevertheless, the pdf-rating provides an information gain that
might result into precision enhancement or reliability growth. When
plo�ing the auxiliary variable δq against the sampled percentiles
q of the RMSE-distributions, the pdf-rating outperforms the re-
rating in any case. �is precision even increases monotonically for
higher percentiles. �us, the pdf-rating is theoretically supposed
to limit the number of possible outcomes for any re-sampling of
the RMSE-distribution.

Figure 4 reveals the tremendous impact of both, human uncer-
tainty and measurement uncertainty, on composed quantities. �e
ambiguity of the rating-distributions also lead to an ambiguity of
the RMSE with a large range of possibilities. Whilst we can recog-
nise a good resolution for a few RMSEs in the best case, this is
virtually no longer possible for the worst case. �e higher pre-
cision of the pdf-rating can also been observed here: Within the
worst case, a density function is shi�ing to the right, so that the
error probability decreases. Within the best case, the densities are
moving closer to the expected distributions. Hence, the range of
possible RMSEs is just a smaller subinterval of the range yielded by
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(c) irregular

Figure 3: Examples of user archetypes revealing ranges where cognition is more precise than action

re-ratings. However, the fundamental problem can not be solved
even with the pdf-rating, since very large overlaps are still possible.
�e obvious way of reducing the measurement uncertainty is to
reduce the length of con�dence intervals that scale with 1/

√
N .

�us, the larger our sample, the smaller the intervals and the bor-
derline cases of the RMSE will converge into a stationary state. By
freezing the point estimators of all rating-distributions while arti�-
cially increasing the sample size, we may estimate the necessary
amount of ratings to enforce convergence, so we can speak of the
true RMSE of a recommender system. When opting for the intersec-
tion area of the minimum and maximum RMSE as a measure of this
convergence, we may show the necessity of 1000-2000 ratings in
order to gain intersections of more than 90%, i.e. the minimum and
maximum RMSE become mostly equivalent. �is means that every
user in a real rating scenario would have to re-evaluate the same
item at least 1000 times to locate the RMSE-distribution accurately.
However, when using the pdf-rating proceeding, a particular user
would yet still have to repeat the rating task at least 40 times.

So far we have only considered the e�ects of measurement uncer-
tainty on a single RMSE-distribution. However, human uncertainty
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Figure 4: Borderline cases for the RSME of di�erent recom-
mender systems using re-rating and pdf-rating.

(associated to the width of the RMSE-distribution) leads to a much
more fundamental problem, which is invariant under change of
methods, namely the distinguishability of di�erent recommender
systems. Figure 5 shows the curve of the error probability for the
ranking Xopt < Xnoise where Xopt is the optimal recommender
and Xnoise its noise-distorted copy, whose prediction quality is
worse by design. We can see that the error probability for the
re-rating drops below the 5% mark much earlier than the error
probability for the pdf-rating. Only a�er passing this mark, dis-
tinctions to the optimum can be considered to be signi�cant. It is
apparent that by means of the re-rating, smaller di�erences can be
detected signi�cantly in contrast to the pdf-rating.

5 DISCUSSION AND CONCLUSIONS
Discussion. Within our experiments, the normal distribution

appears to be a good data model, for it is easy to handle, widely
used in cognitive science for description of human properties and
can not be rejected in more than 98% of our data records.

When it comes to a comparison of the re-rating against the pdf-
rating, a careful analysis of the individual distribution parameters
show that the respective di�erences are only signi�cant for less
than 20% of the data. Overall, the rating-distributions may have
descriptive deviations, but all lie within the range of random �uc-
tuations. Unfortunately, each distribution is not unique, since we
can only assign the parameters within con�dence intervals due to
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Figure 5: Error Probabilities for the ranking Xopt < Xnoise
using the re-rating and pdf-rating
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a �nite sample size (precision) and simulations on this basis would
have to sample those parameters from their intervals (leading to
reliability concerns). �e comparison of con�dence intervals shows
that both measument approaches, model more precisely about half
of the data set. �e improvements of the pdf-rating for one half of
this data is very large compared to the deterioration of the other
half. So, on average a slight gain in overall precision occurs when
using the pdf-rating. However, there are hardly any signi�cant
di�erences between the two methods for the rating-distributions.

�e picture changes, when we consider the distributions of the
variances. �e actual ratings here lead to power-law-distributions,
i.e. only a few people got a high extent of uncertainty while many
people have very li�le uncertainty. �is is contrary to our every-
day experience and might be an artefact of the rating instrument
in which users are forced to make a discrete decision and don’t
have the possibility to allow other options to a certain degree. On
the other hand, the distributions obtained by the pdf-rating, are
normally distributed and always possess the same expectation for
the ISN. Accordingly, all users show a common uncertainty on
average while each individual is sca�ering more or less. �is es-
sentially points to an immanent cognition, which has o�en been
addressed speci�cally in our experimental se�ing. In case of relia-
bility testing, the pdf-rating also leads to a higher precision, which
increases sharply for higher percentiles. Overall, there is a strong
deviation of the results of both measurement methods within the
noise distributions. �is indicates that the perceived uncertainty
as an operationalisation for cognitive uncertainty is tremendously
di�erent from the uncertainty that is actually measurable through
actions. �is suggests that users are not able to tell us what is really
going on in their minds by answering on commonly used scales.

Concerning the RMSE, both measurement approaches will lead
to signi�cant chances of the density location whereas the den-
sity spread retains. �is invariance of spread under measurement
approaches indicates, that the impact of human uncertainty on
composed quantities can be addressed separately from the measure-
ment method. But nevertheless, the measurement uncertainty leads
to an ambiguity of the RMSE-distribution. �e range of possibilities
in our example range from a total overlapping (no distinguishing at
all) to very good distinguishability. �e superiority of the pdf-rating
in terms of precision can be observed in the range of possible out-
comes. �is range is just a smaller subinterval of the range yielded
from re-ratings. Anyway, the fundamental problem of identifying
the true distribution remains unsolved, since there are still very
large intersections in the worst case. �is is because the precision
is set up by a frequentist translation of the entered user con�dence
and thus we can only reach a maximum sample size of N = 25.
Although this is �ve times larger than the underlying sample size of
the re-rating-proceeding, it is still far from the barrier of N = 1000
for which the RMSE converges into a stationary state.

Our analysis of distinguishing between the RMSE of an optimal
recommender and the those of a distorted copy reveals that by
re-rating, lower di�erences can be detected signi�cantly. In this
case, the precision of the pdf-rating cannot impact this simulation
because the expected distributions (stationary states) were assumed.
However, both approaches have in common that the fundamental
problem of distinctness still exists. �is means that a recommender
can only be distinguished from a supposedly be�er one to a certain

limit, i.e. there is a natural barrier from which beyond there is only
one equivalence class at good recommenders and rankings are no
longer possible. �is is the �rst statistically sound proof for the so
far only as a theoretical quantity existing Magic Barrier [17].

It is striking that the approach which provides a location of the
true state more accurately, will lead to signi�cant distinctions only
in the case of larger di�erences. On the other hand, the approach
which detects signi�cant distances for smaller deviations, does not
allow the true RMSE to be located at all. However, both properties
- (1) limiting the possibilities for the true state of two RMSEs and
(2) distinguishing them - are important in real applications. Ac-
cordingly, none of the presented methods can solve both meshing
problems simultaneously.

In the end, there is still the question of which speci�c measure-
ment approach �ts to a speci�c situation. It has been shown that the
distinguishability problem of a composed quantity is invariant un-
der the measuring method and the gain in precision only marginally
limits the possible states of its density. �us, the choice of a spe-
ci�c approach does not ma�er. Likewise, the rating-distributions
retrieved from both methodologies do not di�er signi�cantly. �ere-
fore, if analyses are carried out directly on the rating-distributions
(e.g. when clustering in collaborative �ltering is operated on the
basis of density intersection as a measure for the similarity of two
ratings), then the selection of a speci�c measurement method is
also irrelevant. Blatant deviations do arise in the consideration of
variances. Hence, if an explicit consideration of the uncertainty is
in the focus of analysis (e.g. providing additional products, search
results, etc. which the user might like), then the selection of ade-
quate measuring method is crucial. Here, the actual choice for a
particular approach depends on whether human actions or human
decisions shall be used for the analysis.

Conclusion. What are the consequences for user modelling and
predictive data mining in general? �e essence of our contribution
is the revelation of the following problems:

(1) People are not able to tell us what they really mean.
(2) Human uncertainty a�ects the evidence of data analysis.
(3) Human uncertainty can not be measured exactly.

At this point it must be said that these problems are not grounded in
this new perspective presented here, but have always been present
in data analysis. �e approaches used in this contribution are just
able to make these problems visible for the �rst time. Furthermore,
these problems do not only occur in this special example, but have
also been proven by us in other situations of user feedback before.
�ese problems are therefore likely to a�ect any area of computer
science where user feedback has to be worked on. In particular, the
�eld of user modelling, personalisation and adaptation is strongly
impacted. For this reason, it becomes crucial to examine the extent
of impact of human uncertainty and measurement uncertainty in
other situations within this �eld of research. It is also necessary
to �nd proper solutions for these problems in order to keep our
systems optimally adapted to human beings, i.e. not to a priori
exclude appropriate possibilities and making decisions on the basis
of perhaps inadequate statistical analyses. We will continue to
address these issues in further research.
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