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ABSTRACT
Complex skill mastery requires not only acquiring individual basic
component skills, but also practicing integrating such basic skills.
However, traditional approaches to knowledge modeling, such as
Bayesian knowledge tracing, only trace knowledge of each decom-
posed basic component skill. This risks early assertion of mastery
or ine�ective remediation failing to address skill integration. We
introduce a novel integration-level approach to model learners’
knowledge and provide �ne-grained diagnosis: a Bayesian network
based on a new kind of knowledge graph with progressive integra-
tion skills. We assess the value of such a model from multifaceted
aspects: performance prediction, parameter plausibility, expected
instructional e�ectiveness, and real-world recommendation help-
fulness. Our experiments based on a Java programming tutor show
that proposed model signi�cantly improves two popular multiple-
skill knowledge tracing models on all these four aspects.

KEYWORDS
learner modeling; knowledge tracing; programming patterns; skill
integration; Bayesian network

1 INTRODUCTION
Complex skill mastery requires not only the acquisition of individ-
ual basic component skills, but also practice in integrating such com-
ponent skills with one another [1, 25]. Despite this recognized need,
learner models in modern intelligent tutoring systems [2, 34, 43]
have predominantly focused on teaching and assessing individual
basic component skills (following a prerequisite-outcome order-
ing), yet haven’t explicitly or systematically monitored the level of
knowledge that is present in integrating basic component skills. For
example, the most popular learner modeling approach, Bayesian
knowledge tracing (BKT) [10], is based on decomposing domain
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knowledge into individual basic component skills, and assuming
that each basic component skill takes full responsibility for overall
problem-solving performance. Even some more advanced learner
models [9, 14, 26, 47] that address the responsibility assignment in
a more sophisticated probabilistic method still decompose domain
knowledge into individual basic component skills, and continue
to ignore any possible integration or interactions among them.
De�ning and assessing skills without explicit and systematic spec-
i�cation of integration skills makes knowledge engineering and
modeling easier (since the integration or interaction space can be
much bigger), but it risks an early assertion of mastery by merely
observing student success in basic component skill practices.

Recent research on algebra has provided empirical evidence
to demonstrate that there is additional knowledge related to spe-
ci�c skill combinations; in other words, the knowledge about a
set of skills is greater than the “sum" of the knowledge of individ-
ual skills [17], some skills must be integrated with other skills to
produce behavior [25]. For example, students were found to be sig-
ni�cantly worse at translating two-step algebra story problems into
expressions (e.g., 800-40x) than they were at translating two closely
matched one-step problems (with answers 800-y and 40x) [17]. This
indicates that, at least in some domains, it is necessary to pay spe-
ci�c attention to skill integration in modeling student knowledge.
Computer programming is arguably one of these domains. Research
on computer science education and pedagogy has long argued that
knowledge of a programming language can’t be reduced to a sum
of knowledge about di�erent programming constructs, since there
are many stable combinations or patterns (also known as schemas
or plans) that must be taught and practiced [13, 41].

While the existence of integrating skills have been acknowledged
in both cognitive science and teaching practices, there’s almost no
existing work that explores modeling integration skills in learner
models. This involves changes in both parts of a learner model: its
underlying skill model (specifying the skills in the domain, skills
required by each problem and relationships among skills) and its
modeling approach given a skill model (specifying the use of either
a �at or a hierarchical structure in a Bayesian network). In this
work, we introduce a novel integration-level approach to model
learners’ knowledge and provide �ne-grained diagnosis: a Bayesian
network based on a new kind of knowledge graph with progressive
integration skills. We also introduce a novel multifaceted evaluation
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framework that includes assessments of performance prediction,
parameter plausibility, expected instructional e�ectiveness, and
real-world recommendation helpfulness. Following this framework,
we perform an extensive evaluation and demonstrate that our model
signi�cantly improves upon two popular multiple-skill learner mod-
els in all four aspects. The remaining part of the paper starts with
an extensive review, and then gives an introduction of the new
modeling approach, the multifaceted evaluation framework, the
results, and ends with the conclusion.

2 RELATEDWORK
2.1 Knowledge Tracing for Multiple Skills
One major functionality of learner modeling is to maintain explicit
knowledge estimations of domain skills over time. This process is
called knowledge tracing [10, 11]. Such explicit knowledge estima-
tions are critical for understanding learners’ cognitive states and
providing targeted remediation. In this work, we focus on learner
models with explicit knowledge estimations on �ne-grained skills
with levels at which remediation can directly operate.

While many models have been constructed for single-skill knowl-
edge tracing, multiple-skill knowledge tracing has long been a chal-
lenge. Each observed assessment unit (i.e., an observation, a step,
an item, or a problem) involving multiple skills poses substantial
challenges in assigning responsibility (credit or blame) to each in-
dividual skill for practical performance. Currently, there are two
main streams of work that address this problem.

The �rst stream of work [14, 16, 26, 47] converts the many-to-
many skill to item mapping into a one-to-many (or one-to-one)
mapping during the training process, where a classic Bayesian
knowledge tracing [10] paradigm can be applied1. Such models sep-
arately train each individual skill using a hidden Markov model
which assumes that each skill is fully responsible for performance
by duplicating the observations for each of the required skills (Fig-
ure 1a). This oversimpli�es the responsibility assignment issue, but
reduces modeling complexity. The parameters are the probability
of initially knowing the skill (init), the probability of transferring
from an unlearned to a learned state (learn), the probability of acci-
dentally failing a known item (slip), and the probability of correctly
answering an item by chance (guess). Variants on these models
di�er in how they conduct prediction and updating during the
predicting phrase. One variant we consider in this paper is called
weakest knowledge tracing (WKT), which has been shown to have
the best predictive performance on several datasets, as compared
with other variants [14, 16, 47]. It takes the minimum of the pre-
dicted probability of success among involved skills as the �nal
prediction. This model only updates the knowledge of the weakest
skill when observing an incorrect response, and updates all skills
otherwise. This serves as a low baseline for our later experiments.

The second stream of work [9, 31, 32] maintains the many-to-
many skill-to-item mapping in both the training and predicting
phrases (Figure 1b). Each individual skill is assigned responsibility
according to the conditional probability table and the Bayesian
rule. Here, we focus on the models that assume a conjunctive re-
lationship among skills (i.e., success in an item requires knowing

1Note that recent work [16, 47] still conducts single-skill knowledge tracing on coarse-
grained skill levels and treats multiple �ned-grained skills (subskills) as features.

all required skills) and that use noisy-AND gates for modeling the
conjunctive relations. Noisy-AND gates were commonly used in
many prior studies [6, 9, 44], due to their linear rather than expo-
nential complexity in inference. We call such a model that uses item
level noisy-AND gates with a �at structure among skills conjunctive
knowledge modeling (CKM) and use it as a high baseline in this pa-
per. These models closely relate to the popular psychometric model
DINA [23], but they ultimately conduct dynamic knowledge esti-
mation rather than static ability estimation. Each noisy-AND gate
uses a slip parameter to capture the the probability of accidentally
failing a known item, and a guess parameter to capture the prob-
ability of correctly answering an item by chance. In this avenue
of work, some use a hierarchical structure among skills, yet focus
on either the prerequisite relations among intrinsically di�erent
skills [6, 9, 24], or granularity relationships (including competency-
based networks) [8, 9, 32, 33, 35], where higher level nodes denote
more abstract, more general, aggregated skills at which level reme-
diation doesn’t directly operate. They are substantially di�erent
from the integration relationship that we model and the level of
remediation that we target here. Also, most work doesn’t model
transition probabilities across time steps, due to the complexity
imposed by the skill model in an arbitrary practice order.

(a) WKT (b) CKM

Figure 1: Main knowledge tracingmodels formultiple skills.
O nodes represent binary observed student performance and
K nodes represent binary latent skill knowledge levels.

2.2 Learner Model Evaluation
Evaluation methodology has been considered an important research
topic in the �eld of user-adaptive systems. In the early years, the
cumulative value of personalization was assessed in a user study
by comparing performance achieved with a personalized system
against performance achieved in a similar system that had person-
alization disabled [7]. A similar approach was used to compare two
versions of personalization. More recently, it has been recognized
that personalization is a result of several stacked processes, user
or learner modeling. and the proponents of layered evaluation ar-
gued that holistic empirical evaluation should be complemented by
approaches that independently assess each layer [5, 37].

Nowadays, a separate data-driven assessment of learner model-
ing has become popular in the �eld of adaptive educational systems,
with predictive performance evaluation on held-out datasets [10]
emerging as the gold standard. However, several researchers have
recently expressed concerns about using prediction performance as
the only approach. It has been shown that a highly predictive model
can be useless for adaptive tutoring [15], and can have low param-
eter plausibility, as shown by our previous framework Polygon [20].
A recent learner e�ort-outcomes paradigm (LEOPARD) [15] o�ers a
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general framework for empirically evaluating learner models for
adaptive tutoring. However, this framework is limited to single-skill
practice learner models. Our evaluation framework presented be-
low combines empirical evaluation with data-driven evaluation and
extends both of our previous frameworks, LEOPARD and Polygon
[15, 20], to the evaluation of complex skill practices.

2.3 Patterns in Programming Expertise
Experts in the area of psychology of programming have long argued
that programming patterns form an important part of programming
expertise [13, 41]. Most actively, all kinds of programming patterns,
such as plans, techniques, templates, and “cliches", were used by
researchers in the area of intelligent tutoring systems to support
intelligent analysis of student programs [22, 30, 36, 46]. While such
intelligent debuggers are able to both recognize and diagnose pat-
tern errors, they do not maintain a model of student knowledge
at the pattern level. Learner models on the level of patterns were
�rst introduced by Brusilovsky [4], who used expert-suggested con-
struct pairs as skills for problem sequencing; Weber [45] applied
larger programming "episodes" as skills for adaptive recommenda-
tion of programming examples [46]. The more advanced episodic
model has never been expanded or ported to another language,
due to its complexity and high demand for knowledge engineering.
In contrast, the simpler pair-based approach has been used in a
few follow-up projects [27]. This paper continues to explore the
simple pair-based representation, but applies modern probabilistic
approach to conduct learner modeling, which also has the �exibility
to incorporate more complex representations.

3 MODELING SKILL INTEGRATION
In this section, we introduce our two innovations for modeling
skill integration: a new type of knowledge graph, and the Bayesian
network built based on such a knowledge graph.

(a) Integration Graph (b) CKM-HI

Figure 2: Integration graph and CKM-HI Bayesian network.
O nodes represent binary observed student performance and
K nodes represent binary latent skill knowledge levels.

3.1 Integration Graph
We propose an integration graph (Figure 2a) to represent the inte-
gration relationships among skills. The lowest level consists of basic
component skills and the higher level consists of integration skills
requiring integrating lower levels’ skills. For example, in the Java
programming domain in which we are working, experts identi�ed
an integration skill of “computing the sum of numbers with a for
loop and addition assignment" based on more basic component
skills, such as “doing simple addition assignment" and "iterating

through a for loop". Nodes and edges are correspondingly created
in the graph. Simpli�ed symbolic notations are used to label skills
in the graph. For example, “for&+=" is used as the label for the
integration skill. The labeling (coding) schema for the skill model,
the notation of the skill nodes, and the depth of the graph can be
designed according to the characteristics of the domain. In this
work, we demonstrate one successful example of constructing and
utilizing such a graph.

3.2 Learner Model Structure and Parameters
A Bayesian network is a natural way to use an integration graph
that maintains its structure and each node’s meaning. We propose
a Bayesian network that we call conjunctive knowledge modeling
with hierarchical integration skills (CKM-HI) based on an integration
graph. Figure 2b shows the network structure of CKM-HI for mod-
eling pair-based integration skills. Built based on CKM, CKM-HI
also uses noisy-AND gates to model the relation between skills and
items. This choice is suitable when each problem only has one so-
lution that requires students know all of the underlying skills, and
is necessary when each problem requires many skills (e.g., more
than 3) to reduce computational complexity. This is the case for our
dataset and many other (programming) tutoring systems. However,
the core of CKM-HI is less about the probability distribution that
we choose to model the skill to item relationship, but more about
how we represent integration skills, the skill to skill and the skill
to item relationships, which are explained as follows:

• Basic component skills and integration skills are represented by
di�erent nodes, so that the target of remediation can be clearly
identi�ed. Basic component skill nodes model the basic under-
standing and application of a component skill. For example, in
Figure 2b, Kb

2 represents the basic understanding and application
of simple iteration through a for loop. Integration skill nodes
represent the level of integrating component skills. For example,
K2&3 represents the skill of integrating for and a[] for iterating
through an array with a for loop. This is di�erent from traditional
WKT or CKM models, where these two kinds of skills can’t be
di�erentiated, and e�ectiveness of remediation could be reduced.

• Latent skills are organized in a hierarchical way. The lowest level
consists of basic component skills, and the higher levels consist
of integration skills requiring integrating lower-level skills. This
hierarchical structure allows e�ciency and accuracy in inference:
once a student has mastered an integration skill, they should
already have mastered its component skills. This avoids tedious
assessment and the over-practicing of basic component skills.

• Integration skills are directly connected to items, and edges from
basic component skills to items are removed if their integration
skills are required. For example, O2 requires the integration skill
K1&2, so the edges from Kb

1 toO2, from Kb
2 toO2 are removed. In

this way, remediation can directly operate at integration skill lev-
els. This is di�erent from granularity-based networks [8, 9, 32]
including competency-based networks [33, 35] where higher
level nodes represent aggregation (not integration) of lower level
skills and aren’t directly connected to items. As a result, remedi-
ation can’t directly operate at their higher levels.
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• Each integration skill node has its own parent node (e.g., Kc
2&3

for K2&3), which denotes the level of cognitive load (or famil-
iarity) that is required to conduct the integration. This means
that the level of integration depends not only on the levels of
basic component skills, but also on the cognitive load (or famil-
iarity) in each speci�c integration. If we remove such nodes,
the level of integration will be fully determined by the levels of
basic component skills, which results in the de�nition of basic
component skills encompassing integration. This increases the
di�culty in diagnosing whether students should improve their
basic component skills or their integration skills.

• Multinomial (here, binomial) distributions are used for integra-
tion skill nodes, where basic component skill nodes and cognitive
load nodes are speci�ed as parents to denote prerequisite rela-
tions. One can argue that noisy-AND gates could be used, yet
multinomial distributions allow component skills to have di�er-
ent importance to integration, and have generated a better model
than noisy-AND gates by our cross-validation experiments. How-
ever, for highly complex integration skills requiring many com-
ponents, we can switch to noisy-AND gates for tractability.

To fully determine the network structure, we need to specify
skill-to-item and skill-to-skill mappings. Two experts in Java pro-
gramming performed the labeling following the same schema (with
con�icts resolved), which was validated further in Section 5.1.2.

We learn all parameters from the data. We use an expectation
maximization algorithm, since the network involves latent variables,
and the standard junction-tree algorithm to conduct inference.

Admittedly, there are alternate ways to formulate the model;
but in this work, we don’t primarily aim to �nd the best model for
modeling integration skills. Instead, we demonstrate the feasibility
and value by using a reasonable way of modeling.

3.3 Performance Prediction and Dynamic
Knowledge Update

After learning parameters from data (given the network structure),
we apply the network for predicting problem performance and
infer the knowledge level of each skill at each practice opportunity.
For each student’s �rst practice, the network uses the same prior
probabilities (obtained by init parameters) for latent skill nodes
(and cognitive load nodes) to predict their performance and update
their levels of knowledge; after observing di�erent students’ prac-
tice sequences, the network starts to di�erentiate among students
by maintaining di�erent up-to-date knowledge estimates. In or-
der to achieve this, CKM-HI follows the same dynamic BN roll-up
mechanism as in [9]: it uses posterior knowledge probabilities con-
ditioned on historical observations as the priors for the next time
steps. Currently, CKM-HI doesn’t model the transition probabilities
of latent skills between time steps. Similar to [9, 32], we argue that
the change in knowledge estimates is mainly determined by the
new evidence (i.e., observed performance), since the learning gain
from each practice would be ultimately translated into an observed
performance that serves as the evidence for updating knowledge
beliefs. Such a mechanism indeed can achieve good performance,
as shown in the latter results section. We leave the incorporation

of learning dynamics, which is a non-trivial task for such a net-
work with hierarchical structure among latent variables, for future
studies.

4 MULTIFACETED EVALUATION
In this section, we introduce our multifaceted evaluation for learner
models. There is growing concern of using performance prediction
metrics as the only evaluation approach [15, 20]. Our multifaceted
evaluation also examines the parameters and knowledge inference
quality, under both data-driven and user study settings.

4.1 Performance Prediction
We report two popular prediction metrics used in evaluating learner
(skill) models, root mean squared error (RMSE) and area under the
receiver operating characteristic curve (AUC), based on a suggestion
from a recent paper [39] that raised a concern in using only AUC
for evaluation learner (skill) models2.

4.2 Parameter Plausibility
Parameter plausibility has become an important aspect of examin-
ing learner models. It determines the accuracy and reliability of the
latent knowledge inference. The foundational assumption behind
knowledge-tracing learner models is that knowing the required
skills generally leads to correct answers, and that not knowing the
required skills generally leads to incorrect answers [3]. However,
since the data usually contains noise (uncertainty), guess and slip
parameters are introduced to tolerate exceptions where students
still succeed, even if they are in an unlearned state, and where they
fail, even if they are in a learned state. Such parameters should be
relatively low; otherwise, they contradict our foundational assump-
tions and will generate inaccurate knowledge estimations [3, 38, 42].
One primary source of high guess or slip parameters is from an
improper skill model. For example, if a skill model fails to identify
several di�cult skills of an item and students mostly reach a high
knowledge level of the identi�ed easier skills when facing this item,
the learner model will use high slip parameters to explain the high
ratio of incorrect performance that is observed in the data. Here,
we compute the average value of guess or slip across skills or items
for each model as the metrics that indicate parameter plausibility
and prefer smaller values. These two metrics extend the parameter
plausibility metrics proposed in our Polygon framework [20].

4.3 Expected Instructional E�ectiveness
The ultimate goal of a learner model is to improve instructional
e�ectiveness, which mainly consists of two aspects: 1) whether
students can reach high knowledge levels for the targeted skills;
and 2) how much e�ort students need to exert in order to reach
the desired knowledge levels. The above-mentioned performance
prediction and parameter plausibility metrics fail to give direct
information on these two aspects. So, we propose a new evaluation
dimension extending our recent Learner E�ort-Outcomes Paradigm
(LEOPARD) [15] from single skill to multiple-skill learner model
evaluation. The details are explained as follows.

2When these two metrics result in a contradictory selection of models, we primarily
focus on RMSE, according to [39].
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E�ort. This metric empirically quanti�es the expected number
of practices when the tutor stops instruction. It is computed by
counting the number of practice attempts a student needs in order
to reach a given mastery threshold on real data. This is similar to
the original metric [15], but has one major di�erence, in that the
basic component skill to item links are removed from the mapping
when the integration skill is required, so that e�ort considered in
integration skills won’t be repeatedly counted for basic component
skills (while e�ort solely for basic component skills is maintained).
The following formulas explain the computation of E�ort for mas-
tering the set of skills Q on a dataset, given a mastery threshold R,
based on computing e�ort for a single student u on a single skill q:

E�ort(u, q) =
∑

1≤t ≤ |Ou,q |

∏
1≤t ′≤t

I(Ku,q,t ′ < R)

E�ort =
1
|U |

∑
u ∈U

∑
q∈Q

E�ort(u, q)
(1)

where t denotes the index of the observation sequence Ou,q of a
student u on a skill q, Ku,q,t ′ denotes the inferred knowledge at
t th observation , and I denotes an indicator function.

Score. This metric empirically quanti�es the expected perfor-
mance of students when the tutor stops instruction. It is computed
by the actual ratio of correct performance on real data where the
learner model asserts that a student reaches a given mastery thresh-
old for all of the required skills of the current item. The original
metric only applies when each item maps to a single skill by simply
examining the performance sequence of each skill. which is not ap-
plicable to multiple-skill practices, since the responsibility of each
skill for the performance is not clear. To address this, we jointly
examine knowledge states for multiple skills. Following formula
explains the computation of Score for mastering the set of skills Q
on a dataset, given a mastery threshold of R:

Score =
∑
1≤t ≤ |O |

∏
q∈QOt

I(Kq,t ≥ R) · I(Ot = 1)∑
1≤t ≤ |O |

∏
q∈QOt

I(Kq,t ≥ R)
(2)

where O denotes the overall observations, QOt denotes the set of
direct parent skills of the item corresponding to Ot , Kq,t denotes
the inferred knowledge level of a skill q at t th observation.

Joint examination of E�ort and Score across thresholds.
Prior work examining expected e�ort has ignored examining ex-
pected performance [29]. Consider a learner model that tends to
overestimate students’ knowledge levels. Although the expected
e�ort will be low, the expected performance will also be low, result-
ing in under-practicing. So we consider E�ort and Score jointly in
this work. Moreover, there are two important di�erences with the
original LEOPARD framework: 1) di�erent mastery thresholds are
considered, since there is no ground truth of what mastery thresh-
old should be used; and 2) we avoid imputation when mastery is
not reached, since it could distort the original distribution, and
focus on thresholds with su�cient data (i.e., with at least 20% of
the complete data available to compute the metrics and at least 85%
of skills with at least one student reaching mastery).

4.4 Real-World Recommendation Helpfulness
In addition to the data-driven evaluation, we also design a user
study to examine the helpfulness of the remedial recommendations

that are generated by learner models. Admittedly, this is an indirect
assessment of leaner models; yet, we argue that directly collecting
users’ feedback on learner models’ knowledge inference involves
non-trivial complication, and that the e�ectiveness of a learner
model is ultimately re�ected by remediation. The main task is to
solve Java problems and rank recommended subproblems according
their helpfulness for each participant in solving the original prob-
lem. A subproblem is an easier version of an original problem that
primarily remediates one skill. Thus, a learner model’s diagnosis
can be “translated" into recommended subproblems. Subproblems
are created systematically: �rst, skills in a problem are ordered by
estimated di�culties (computed by the average success rate of prob-
lems requiring the current skill); then, for each skill, a subproblem
is created by removing harder skills (if the remediated skill is the
hardest, then the 2nd hardest skill will be removed). Since di�erent
skill models specify di�erent skills for a problem, subproblems can
be classi�ed into those that address integration skills and those
that don’t. For two subproblems with the same basic component
skills, we try to make sure the only di�erence is whether the basic
component skills are integrated or just sequentially put together.

We compare recommendations generated from CKM-HI, CKM,
WKT, and a distractor, which randomly picks an irrelevant subprob-
lem. All learner models employ the same recommendation strategy:
after a student makes an attempt, the learner model picks a subprob-
lem that addresses the weakest skill and another that addresses the
second weakest skill. We expect that recommendation strategies
can have a non-trivial impact on learner models’ e�ectiveness, so
we examine two strategies: MaxDi� maximizes the di�erence of
CKM-HI with baseline models by disallowing WKT and CKM to
recommend subproblems that address integration skills, and Min-
Di� minimizes the di�erence of CKM-HI with baseline models by
allowing WKT and CKM to have a 50% chance to pick subproblems
that address integration skills if any basic component skill of the
integration skill is identi�ed to be remediated. We employ only the
MaxDi� strategy in our user study and use the collected data to
conduct simulation for the MinDi� strategy: whenever CKM or
WKT picks a subproblem that addresses an integration skill, if its
ranking is available from the same user on the same problem, then
this ranking is assigned to the subproblem; otherwise, it will be
assigned the best ranking. In doing so, we examine the upper and
lower bounds of the di�erence among CKM-HI and the baselines.

Participants receive mixed, permutated recommendations from
di�erent models at the same time and are asked to give a non-
repeated ranking to each subproblem. They are presented with the
original problem and the selected subproblem side-by-side. They
are asked (but not forced) to attempt subproblems before ranking,
and can adjust rankings any time before attempting next problem.
We design the study to focus on students with a basic understanding
of component skills and on problems requiring integration, since
CKM-HI is primarily designed for monitoring and remediating in-
tegration skills compared with its simpler counterparts. In fact,
CKM-HI maintains knowledge inference accuracy for basic compo-
nent skills and increases prediction accuracy for non-integration
problems, since it avoids over-penalizing basic component skills.
Our latter data-driven evaluation demonstrates CKM-HI’s advan-
tage on the overall dataset that includes all students and items.
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Figure 3: An example of QuizJET problem in Arrays topic.

Such a focused user study allows us to draw more powerful conclu-
sions, given the limited number of participants. We choose seven
problems from Loops and Arrays topics, each of which covers 1
to 5 integration skills, and recruit students who have some prior
experience in Java. But since we can’t fully guarantee participants’
levels, we design a pretrain session with problems and examples
testing and teaching basic component skills, and ask students to
solve such problems before moving on to the next step. The study
consists of four parts: 1) a background survey; 2) a pretrain session;
3) a pretest on all integration skills, where each problem targets
one integration skill; and 4) the main task.

5 EXPERIMENTS
In this section, we report both data-driven and user study evalua-
tions as we compare two popular multiple-skill knowledge tracing
models WKT and CKM with our proposed model CKM-HI.

5.1 Data-Driven Evaluation
5.1.1 Dataset and Experimental Setup. We used a Java program-

ming dataset collected through classroom studies between fall 2013
and fall 2015 at the University of Pittsburgh, from the system Quiz-
JET [19]. Students are requested to give the output or the �nal value
of a variable by comprehending a program (Figure 3). Only one
answer is accepted. Each problem is generated by a template, and
students can make multiple attempts, where each attempt corre-
sponds to a new instantiation changing the values of some variables.
For each problem, students need to apply multiple skills at the same
time in order to succeed. The system (only) provides correctness
(0/1) information for each attempt. Students decide whether to
try a problem again or to move on to another problem. Problems
are grouped by topics (e.g., For Loops, ArrayList). To reduce the
complexity for analysis, we removed the two most complex topics
(Interface and Inheritance), which resulted in 91 items. The �nal
dataset contains 25,988 observations (including all attempts) from
347 students, with an average success rate of 67%. For all experi-
ments, we conducted a 10-fold student strati�ed cross-validation;
i.e., in each fold, we trained on 90% of students, and conducted
prediction and inference for the remaining 10% of students. For
training CKM and CKM-HI models, we compressed multiple at-
tempts per item into a single attempt by computing the average
success rate across attempts at the same item, since the network
doesn’t model the dynamics across attempts of the same item. Since
students often fail at their �rst attempts and �nally succeed in their
last attempts (learning merely from correctness feedback), keep-
ing only the �rst or last attempt will risk either overestimating
or underestimating the di�culty of skills. For training WKT, we

kept the original multiple-attempt sequence, since WKT contains
learning rate parameters. However, during the prediction phrase
we kept all attempts in the test sets for all models, since all models
perform dynamic knowledge updates and predictions at each time
step, conditioned on historical performance.

For each metric, we conducted a two-sided paired t-test test (af-
ter con�rming that normality wasn’t violated) with a Bonferroni
correction. We reported the common Cohen’sdav [28] for the e�ect
size. We used the SMILE [12] toolkit to construct all the models. For
each model, we initialized all root skill nodes’ init parameters (the
probability of initially knowing the skill) by the average success
rate of problems that require this skill. We initialized cognitive load
nodes Kc

i&j in CKM-HI in the same way. We initialized the learn pa-
rameter for WKT as 0.15, and all models’ guess and slip parameters
as 0.3. For each integration skill node Ki&j in CKM-HI, we initial-
ized the CPT given the values of its parents Kb

i , Kb
j and Kc

i&j by
setting { P(T|TTT)=0.99, P(T|TTF)=0.6, P(T|TFT)=0.6, P(T|TFF)=0.25,
P(T|FTT)=0.6, P(T|FTF)=0.25, P(T|FFT)=0.4, P(T|FFF)=0.01 }.

5.1.2 Basic Component Skill to Item Mapping Validation. Indi-
vidual basic component skill to item mapping provides a strong
foundation for adding integration skills. In our Java programming
tutor, one problem can easily require multiple skills. For example,
the problem in Figure 3 requires the understanding and application
of WhileStatement, ArrayElement, and AddAssignment (among oth-
ers). We compared three sets of available mappings: 1) one from an
automatic Java parser [18], which indexes an item with all concepts
that appear in the code; 2) one from experts’ dense labeling that
considers only the important prerequisite and outcome concepts
(i.e., those taught in the current topic), which is less dense than the
previous one; and 3) one from experts’ sparse labeling that consid-
ers only the important outcome concepts. We ran WKT with these
three sets of skill models and compared the performance prediction
metric RMSE through a 10-fold cross-validation. We found that the
third mapping achieved signi�cantly better prediction performance
(p<.0001) with a large e�ect size (dav>1) in each pairwise com-
parison. This skill model maps 4 basic component skills per item
on average (ranging from 1 to 8) with a total of 72. This mapping
was directly used in WKT and CKM. For integration skill to item
mapping, we chose a sparse labeling from experts and didn’t con-
duct further validation. One reason is due to the implementation
(rather than theoretical) limitation of the toolkit being unable to
run a more dense mapping of integration skills. Another reason, as
we stated before, is that we primarily focus on demonstrating one
successful way to model integration skills and leave �nding the
best skill model for future work. The �nal integration skill to item
mapping indexes 2 integration skills per item on average (ranging
from 1 to 5) with a total of 43. 47 (out of 91) items having at least
one integration skill. This mapping was used to modify the chosen
basic component skill to item mapping, and was used in CKM-HI.

5.1.3 Performance Prediction and Parameter Plausibility. Table 1
and Table 2 summarize the comparison of both performance pre-
diction and parameter plausibility. We also report prediction on
the �rst attempts of items, since they are usually important when
conducting remediation. Both CKM-HI and CKM signi�cantly beat
WKT in all 6 metrics with a large e�ect size, with CKM-HI beating
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Table 1: Comparison of performance prediction and param-
eter plausibility metrics, computed by averaging across 10
folds. The best result is denoted in bold.

Models RMSE AUC RMSE AUC Guess Slip
(1st att.) (1st att.)

WKT .4494 .6873 .4433 .7001 .4239 .2836
CKM .4446 .7273 .4073 .7945 .3806 .2093
CKM-HI .4437 .7283 .4064 .7958 .3625 .1860

Table 2: Statistical test p values and e�ect sizes for prediction
performance and parameter plausibility comparison.

Models RMSE AUC RMSE AUC Guess Slip
(1st att.) (1st att.)

CKM vs. WKT ∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+

CKM-HI vs. WKT ∗∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+ ∗∗∗+

CKM-HI vs. CKM ∗∗ ∗ ∗∗∗ ∗ ∗∗∗+ ∗∗∗+

* sig. at 0.05/3=0.017, ** sig. at 0.01/3=0.0033, *** sig. at 0.001/3=0.00033.
+ e�ect size ≥ 1 (large).

WKT with smaller p values and larger e�ect sizes. Further, CKM-
HI also signi�cantly outperforms CKM in all prediction metrics.
Though it has a small e�ect size (dav<.2), it is able to signi�cantly
outperform CKM in parameter plausibility with a large e�ect size.
Clearly, we see an advantage in modeling integration skills over the
two popular multiple-skill knowledge tracing models in both perfor-
mance prediction and parameter plausibility. Admittedly, CKM-HI
only achieves a small e�ect size prediction improvement over CKM;
yet the advantage in parameter plausibility is non-trivial, which
should signi�cantly increase the accuracy of latent knowledge infer-
ence or diagnosis. Other evaluation aspects shown in latter sections
will further reveal the advantage of CKM-HI over CKM. We hy-
pothesize that this small e�ect size prediction gain can be due to
CKM using less plausible parameters to �t the data, and that a
larger prediction gain should be revealed if we impose parameter
constraints. Due to the space limit, our experiments proving this
hypothesis will be reported elsewhere in the future.

(a) (b)
Figure 4: Comparison of CKM-HI, CKM and WKT on ex-
pected instructional e�ectiveness.

5.1.4 Expected Instructional E�ectiveness. Figure 4a shows Scores
plotted against mastery thresholds (with a 95% con�dence interval
across 10 folds). Figure 4b shows the combined E�ort vs. Score
graph with them connected by matching mastery thresholds. We
consider a broad range of thresholds with enough data, as men-
tioned in Section 4.3: [0.5, 0.93]. Comparing CKM-HI with WKT on
Scores, CKM-HI has worse Scores in low mastery thresholds, but
much better Scores in high thresholds; when examining E�ort and

Score jointly, CKM-HI requires much less E�ort to reach the same
Score across almost all thresholds. When comparing CKM-HI with
CKM on Scores, CKM-HI has similar Scores in low mastery thresh-
olds and much better Scores in high thresholds; when examining
E�ort and Score jointly, CKM-HI requires much less E�ort to reach
the same Score in most of the thresholds. These metrics clearly
demonstrate that to reach the same expected performance, students
who are guided by the CKM-HI model are expected to exert the least
amount of e�ort, and that by using the same amount of e�ort, stu-
dents guided by CKM-HI are expected to have higher performance,
as compared with CKM and WKT. Surprisingly, although CKM
signi�cantly outperforms WKT in prediction, it requires similar
E�ort given same Scores in high thresholds.

5.2 User Study Evaluation
The main goal of our user study is to examine the real-world rec-
ommendation helpfulness of learner models. The user study was
conducted with 20 students pursuing undergraduate or master’s
degrees in information science at the University of Pittsburgh. The
study lasted for around 1.5 hours on average. All of the problems
are of the same type as QuizJET. We deployed the same learner
models that were constructed during data-driven evaluation, in
order to make the comparison compatible. All participants reported
that they had some prior experience with Java. The mean score for
�rst and last attempts in pretraining (which tests on and teaches
students about basic component skills) is 0.836 and 0.997. The mean
score for �rst and last attempts in the pretest (where each problem
tests students on one integration skill) is 0.893 and 0.907. The mean
score for the �rst and last attempts in the main problems (which
tests and teaches multiple integration skills at the same time) is
0.676 and 0.949. As the statistics show, participants generally know
basic component skills, but still have some di�culty integrating
them (particularly when multiple integration skills are required to-
gether). We report results by answering di�erent research questions,
which are shown as follows.

Does CKM-HI receive the highest ranking? We analyzed the rank-
ing data in two common methods for both MaxDi� and MinDi�
strategies: treating ranking as a continuous score or treating rank-
ing as an ordinal score. For the �rst method, we �rst computed the
aggregated score that a model receives from a student by averaging
the scores across the 7 main problems (we found out that, on aver-
age, the relative ranking among models are persistent across the 7
problems, so computing an average shouldn’t a�ect the conclusion).
Since normality is violated and we have repeated measurements per
participant, we conducted a two-sided Wilcoxon signed rank test
and computed its e�ect size (r=z/

√
N ) [40]. For the second method,

we �rst kept only the recommendations where students gave the
best rank, and then for each model for each student, we counted the
number of times that a best-ranked recommendation was generated
from the current model across the 7 main problems. Since normal-
ity is not violated in this case, we conducted a paired t-test and its
e�ect size dav [28]. Table 3 and Table 4 report the average values
and statistical test results. We draw similar conclusions from two
kinds of analysis for both strategies. CKM-HI beats both WKT and
CKM signi�cantly with a large e�ect size. Surprisingly, although
CKM shows a signi�cant prediction gain over WKT, its ranking
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Table 3: Ranking result comparison averaging across partic-
ipants (best results denoted in bold).

Avg. rank Avg. count
MaxDi� MinDi� MaxDi� MinDi�

Distr. 4.30 4.30 0.4 0.4
WKT 3.27 2.99 0.95 3.2
CKM 3.36 3.02 0.85 3.3
CKM-HI 2.11 2.11 5.6 5.6

Table 4: Statistical test p values (with a Bonferroni correc-
tion) and e�ect sizes for ranking comparison.

Avg. rank Avg. count
MaxDi� MinDi� MaxDi� MinDi�

WKT vs. Distr. ∗+ ∗∗+ ∗∗∗+

CKM vs. Distr. ∗∗+ ∗∗+ ∗∗∗+

CKM-HI vs. Distr. ∗∗+ ∗∗+ ∗∗∗+ ∗∗∗+

CKM vs. WKT
CKM-HI vs. WKT ∗∗+ ∗∗+ ∗∗∗+ ∗∗∗+

CKM-HI vs. CKM ∗∗+ ∗+ ∗∗∗+ ∗∗+

* sig. at 0.05/6=0.0083, ** sig. at 0.01/6=0.0017, *** sig. at 0.001/6=0.00017.
+ e�ect size ≥ 0.5 (Wilcoxon signed rank test) and ≥ 1 (paired t-test).

is not signi�cantly di�erent from that of WKT. Considering all
recommendations generated by each model (by the �rst continuous
rank analysis), all learner models signi�cantly outperform Distrac-
tor with a large e�ect size. Considering only recommendations
received the best ranking (by the second count analysis), CKM-HI
still signi�cantly outperforms Distractor, but CKM and WKT can’t
maintain a similar signi�cant e�ect under MaxDi�.

Does the higher ranking of CKM-HI come from recommending
subproblems that address integration skills? We compared the av-
erage ranking of subproblems that address integration skills with
those that only address basic component skills (after removing
subproblems generated by Distractor). Under MinDi�, integration
subproblems receive an average ranking of 1.9, as compared with
3.18 of the non-integration ones; under MaxDi�, integration sub-
problems receive an average ranking of 2.01, as compared with
3.28 of the non-integration ones. Both di�erences are signi�cant
by a two-sided Wilcoxon signed ranked test (since normality is
violated) (p<.001) with large e�ect size (r>.5). We conclude that
students indeed favor subproblems with integration skills during
the remediation. Is CKM-HI more able to recommend such subprob-
lems? We found out that among the recommended subproblems of
a learner model, the percentile of those addressing integration skills
are 84%, 13%, 10%, and 9% for CKM-HI, CKM, WKT, and Distractor
under MinDi�, and 0% for CKM and WKT under MaxDi� (CKM-HI
and Distractor remain the same). As a result, we conclude that
the higher ranking of CKM-HI indeed comes from recommending
subproblems that address integration skills.

Can we trust students’ subjective rankings? Admittedly, it is a
concern that the ranking data are subjective measurements. While
we can’t fully eliminate such noise, we tried to identify evidence
from our collected data that could increase the trustability of these
subjective rankings. First, we were able to demonstrate that all
learner models receive signi�cantly higher rankings than the Dis-
tractor, when considering all recommendations and the best ranked
recommendations under MinDi� strategy. Second, we analyzed the

post-test questionnaire that asked about their ranking strategies (at
most, two choices) and found that the highest two strategies aligned
well with our ranking requirements; namely, they assigned a higher
ranking to the subproblem that contains most of the concepts in
the original problems, or that they used key concepts in a similar
way to the original problem, rather than preferring a subproblem
that contains more concepts. In future work, we plan to conduct a
large-span and long-scale study to collect objective measurements.

6 CONCLUSION
In this paper, we advocate for the importance of modeling integra-
tion skills and have clearly demonstrated the feasibility and value
of learner modeling for integration skills. Using a combination of
analytical studies based on a Java programming dataset and a user
study, we demonstrated that our proposed learner model, CKM-HI,
o�ers signi�cant improvements over two popular multiple-skill
knowledge tracing models, WKT and CKM, over a range of aspects
that are considered by our multifaceted evaluation framework:
performance prediction accuracy, parameter plausibility, expected
instructional e�ectiveness, and recommendation helpfulness. A
combination of analytical and empirical approaches has enabled
us to make some interesting observations about the limitations of
performance prediction evaluation. By examining expected instruc-
tional e�ectiveness and recommendation helpfulness, we found
out that a small (e�ect size) performance prediction gain can still
lead to signi�cant improvement in adaptive tutoring (CKM-HI vs.
CKM); and surprisingly, a signi�cant prediction gain can result in
almost no improvement in adaptive tutoring (CKM vs. WKT).

Altogether, our paper brings three major contributions to the
�eld of learner modeling and adaptive educational systems. First,
we introduce a new type of knowledge graph that we call an integra-
tion graph, which shows how basic component skills progressively
integrate and form new skills that are essential to describe do-
main expertise. Second, we create a novel integration-level learner
model based on an integration graph, which outperforms traditional
multiple-skill knowledge tracing models. Third, we introduce a mul-
tifaceted learner modeling evaluation framework over a range of
aspects, including analytical evaluation and user-study evaluation.
The evaluation component of this paper could be considered as an
example of the application of this evaluation framework.

In future work, we plan to explore skill integration beyond the
single context reported in this paper, while continuing to contribute
to best practices in evaluating adaptive educational systems. In
particular, we plan to explore automated methods for extracting
integration skills that advance our preliminary approach [21].
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