
42 COMMUNICATIONS OF THE ACM | SEPTEMBER 2017 | VOL. 60 | NO. 9

practice

AS DETAILED IN Site Reliability Engineering: How
Google Runs Production Systems1 (hereafter referred
to as the SRE book), Google products and services
seek high-velocity feature development while
maintaining aggressive service-level objectives (SLOs)
for availability and responsiveness. An SLO says
that the service should almost always be up, and the
service should almost always be fast; SLOs also provide
precise numbers to define what “almost always”
means for a particular service. SLOs are based on the
following observation:

The vast majority of software services and systems
should aim for almost-perfect reliability rather than
perfect reliability—that is, 99.999% or 99.99% rather
than 100%—because users cannot tell the difference
between a service being 100% available and less than
“perfectly” available. There are many other systems in
the path between user and service (laptop, home WiFi,
ISP, the power grid ...), and those systems collectively

are far less than 100% available.
Thus, the marginal difference be-
tween 99.99% and 100% gets lost in
the noise of other unavailability, and
the user receives no benefit from the
enormous effort required to add that
last fractional percent of availability.
Notable exceptions to this rule in-
clude antilock brake control systems
and pacemakers!

For a detailed discussion of how
SLOs relate to SLIs (service-level indi-
cators) and SLAs (service-level agree-
ments), see the “Service Level Objec-
tives” chapter in the SRE book. That
chapter also details how to choose
metrics that are meaningful for a par-
ticular service or system, which in turn
drives the choice of an appropriate SLO
for that service.

This article expands upon the topic
of SLOs to focus on service dependen-
cies. Specifically, we look at how the
availability of critical dependencies in-
forms the availability of a service, and
how to design in order to mitigate and
minimize critical dependencies.

Most services offered by Google aim
to offer 99.99% (sometimes referred
to as the “four 9s”) availability to us-
ers. Some services contractually com-
mit to a lower figure externally but set
a 99.99% target internally. This more
stringent target accounts for situations
in which users become unhappy with
service performance well before a con-
tract violation occurs, as the number
one aim of an SRE team is to keep users
happy. For many services, a 99.99% in-
ternal target represents the sweet spot
that balances cost, complexity, and
availability. For some services, notably
global cloud services, the internal tar-
get is 99.999%.

99.99% Availability:
Observations And Implications
Let’s examine a few key observations
about and implications of designing
and operating a 99.99% service and
then move to a practical application.

Observation 1. Sources of outages.
Outages originate from two main
sources: problems with the service it-

The Calculus
of Service
Availability

DOI:10.1145/3080202

 Article development led by
queue.acm.org

You’re only as available as
the sum of your dependencies.

BY BEN TREYNOR, MIKE DAHLIN, VIVEK RAU, AND BETSY BEYER

http://dx.doi.org/10.1145/3080202
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3080202&domain=pdf&date_stamp=2017-08-23

SEPTEMBER 2017 | VOL. 60 | NO. 9 | COMMUNICATIONS OF THE ACM 43

I
M

A
G

E
 B

Y
 P

L
I

N
G

/S
H

U
T

T
E

R
S

T
O

C
K

self and problems with the service’s
critical dependencies. A critical depen-
dency is one that, if it malfunctions,
causes a corresponding malfunction
in the service.

Observation 2. The mathematics of
availability. Availability is a function of
the frequency and the duration of out-
ages. It is measured through:

 ˲ Outage frequency, or the inverse:
MTTF (mean time to failure).

 ˲ Duration, using MTTR (mean time
to repair). Duration is defined as it is
experienced by users: lasting from the
start of a malfunction until normal be-
havior resumes.

Thus, availability is mathematically
defined as MTTF/(MTTF+MTTR), us-
ing appropriate units.

Implication 1. Rule of the extra 9. A
service cannot be more available than
the intersection of all its critical de-
pendencies. If your service aims to of-
fer 99.99% availability, then all of your

critical dependencies must be signifi-
cantly more than 99.99% available.

Internally at Google, we use the
following rule of thumb: critical de-
pendencies must offer one additional
9 relative to your service—in the ex-
ample case, 99.999% availability—be-
cause any service will have several crit-
ical dependencies, as well as its own
idiosyncratic problems. This is called
the “rule of the extra 9.”

If you have a critical dependency
that does not offer enough 9s (a rela-
tively common challenge!), you must
employ mitigation to increase the ef-
fective availability of your dependency
(for example, via a capacity cache, fail-
ing open, graceful degradation in the
face of errors, and so on.)

Implication 2. The math vis-à-vis fre-
quency, detection time, and recovery
time. A service cannot be more avail-
able than its incident frequency mul-
tiplied by its detection and recovery

time. For example, three complete out-
ages per year that last 20 minutes each
result in a total of 60 minutes of outag-
es. Even if the service worked perfectly
the rest of the year, 99.99% availability
(no more than 53 minutes of downtime
per year) would not be feasible.

This implication is just math, but it
is often overlooked, and can be very in-
convenient.

Corollary to implications 1 and 2. If
your service is relied upon for an avail-
ability level you cannot deliver, you
should make energetic efforts to cor-
rect the situation—either by increas-
ing the availability level of your service
or by adding mitigation as described
earlier. Reducing expectations (that
is, the published availability) is also
an option, and often it is the correct
choice: make it clear to the dependent
service that it should either reengineer
its system to compensate for your ser-
vice’s availability or reduce its own tar-

44 COMMUNICATIONS OF THE ACM | SEPTEMBER 2017 | VOL. 60 | NO. 9

practice

Some of the terms and concepts used
throughout this article may not be
familiar to readers who don’t specialize
in operations.

Capacity cache: A cache that serves
precomputed results for API calls
or queries to a service, generating
cost savings in terms of compute/IO
resource needs by reducing the volume
of client traffic hitting the underlying
service.

Unlike the more typical
performance/latency cache, a capacity
cache is considered critical to service
operation. A drop in the cache hit
rate or cache ratio below the SLO
is considered a capacity loss. Some
capacity caches may even sacrifice
performance (for example, redirecting
to remote sites) or freshness (for
example, CDNs) in order to meet hit
rate SLOs.

Customer isolation: Isolating
customers from each other may be
advantageous so that the behavior of
one customer doesn’t impact other
customers. For example, you might
isolate customers from one another
based on their global traffic. When a
given customer sends a surge of traffic
beyond what they’re provisioned for,
you can start throttling or rejecting this
excess traffic without impacting traffic
from other customers.

Failing safe/failing open/failing
closed: Strategies for gracefully
tolerating the failure of a dependency.
The “safe” strategy depends on
context: failing open may be the safe
strategy in some scenarios, while
failing closed may be the safe strategy
in others.

Failing open: When the trigger
normally required to authorize an
action fails, failing open means to
let some action happen, rather than
making a decision. For example,
a building exit door that normally
requires badge verification “fails open”
to let you exit without verification
during a power failure.

Failing closed is the opposite of falling
open. For example, a bank vault door
denies all attempts to unlock it if
its badge reader cannot contact the
access-control database.

Failing safe means whatever behavior
is required to prevent the system
from falling into an unsafe mode
when expected functionality suddenly
doesn’t work. For example, a given
system might be able to fail open for a
while by serving cached data, but then
fail closed when that data becomes
stale (perhaps because past a certain
point, the data is no longer useful).

Failover: A strategy that handles failure
of a system component or service
instance by automatically routing
incoming requests to a different
instance. For example, you might route
database queries to a replica database,
or route service requests to a replicated
server pool in another datacenter.

Fallback: A mechanism that allows
a tool or system to use an alternative
source for serving results when a
given component is unavailable.
For example, a system might fall
back to using an in-memory cache
of previous results. While the results
may be slightly stale, this behavior is
better than outright failure. This type
of fallback is an example of graceful
degradation.

Geographic isolation: You can build
additional reliability into your service
by isolating particular geographic
zones to have no dependencies on each
other. For example, if you separate
North America and Australia into
separate serving zones, an outage
that occurs in Australia because of a
traffic overload won’t also take out
your service in North America. Note
that geographic isolation does come
at increased cost: isolating these
geographic zones also means that
Australia cannot borrow spare capacity
in North America.

Graceful degradation: A service
should be “elastic” and not fail
catastrophically under overload
conditions and spikes—that is, you
should make your applications do
something reasonable even if not all is
right. It is better to give users limited
functionality than an error page.

Integration testing: The phase in
software testing in which individual
software modules are combined
and tested as a group to verify that
they function correctly together.
These “parts” may be code modules,
individual applications, client and
server applications on a network,
among others. Integration testing is
usually performed after unit testing
and before final validation testing.

Operational readiness practice:
Exercises designed to ensure the team
supporting a service knows how to
respond effectively when an issue
arises, and that the service is resilient
to disruption. For example, Google
performs disaster-recovery test drills
continuously to make sure that its
services deliver continuous uptime
even if a large-scale disaster occurs.

Rollout policy: A set of principles
applied during a service rollout (a
deployment of any sort of software
component or configuration) to
reduce the scope of an outage in
the early stages of the rollout.
For example, a rollout policy
might specify that rollouts occur
progressively, on a 5%/20%/100%
timeline, so that a rollout proceeds
to a larger portion of customers
only when it passes the first
milestone without problems.
Most problems will manifest
when the service is exposed to
a small number of customers,
allowing you to minimize the
scope of the damage. Note that for
a rollout policy to be effective in
minimizing damage, you must have
a mechanism in place for rapid
rollback.

Rollback: This is the ability to revert
a set of changes that have been
previously rolled out (fully or not) to a
given service or system. For example,
you can revert configuration changes
or run a previous version of a binary
that’s known to be good.

Sharding: Splitting a data
structure or service into shards is a
management strategy based on the
principle that systems built for a
single machine’s worth of resources
don’t scale. Therefore, you can
distribute resources such as CPU,
memory, disk, file handles, and
so on across multiple machines to
create smaller, faster, more easily
managed parts of a larger whole.

Tail latency: When setting a target
for the latency (response time) of a
service, it is tempting to measure the
average latency. The problem with this
approach is that an average that looks
acceptable can hide a “long tail” of very
large outliers, where some users may
experience terrible response times.
Therefore, the SRE best practice is to
measure and set targets for 95th- and/
or 99th-percentile latency, with the goal
of reducing this tail latency, not just
average latency.

Key Definitions

SEPTEMBER 2017 | VOL. 60 | NO. 9 | COMMUNICATIONS OF THE ACM 45

practice

ond-order dependencies need two ex-
tra 9s, third-order dependencies need
three extra 9s, and so on.

This inference is incorrect. It is
based on a naive model of a dependen-
cy hierarchy as a tree with constant fan-
out at each level. In such a model, as
shown in Figure 1, there are 10 unique
first-order dependencies, 100 unique
second-order dependencies, 1,000
unique third-order dependencies,
and so on, leading to a total of 1,111
unique services even if the architecture
is limited to four layers. A highly avail-
able service ecosystem with that many
independent critical dependencies is
clearly unrealistic.

A critical dependency can by itself
cause a failure of the entire service (or
service shard) no matter where it ap-
pears in the dependency tree. There-
fore, if a given component X appears
as a dependency of several first-order
dependencies of a service, X should be
counted only once because its failure
will ultimately cause the service to fail
no matter how many intervening ser-
vices are also affected.

The correct rule is as follows:
 ˲ If a service has N unique critical

dependencies, then each one contrib-
utes 1/N to the dependency-induced
unavailability of the top-level service,
regardless of its depth in the depen-
dency hierarchy.

 ˲ Each dependency should be count-
ed only once, even if it appears multiple
times in the dependency hierarchy (in
other words, count only unique depen-
dencies). For example, when counting
dependencies of Service A in Figure 2,
count Service B only once toward the
total N.

For example, consider a hypo-
thetical Service A, which has an error

get. If you do not correct or address the
discrepancy, an outage will inevitably
force the need to correct it.

Practical Application
Let’s consider an example service with
a target availability of 99.99% and work
through the requirements for both its
dependencies and its outage responses.

The numbers. Suppose your 99.99%
available service has the following
characteristics:

 ˲ One major outage and three mi-
nor outages of its own per year. Note
that these numbers sound high, but
a 99.99% availability target implies a
20- to 30-minute widespread outage
and several short partial outages per
year. (The math makes two assump-
tions: that a failure of a single shard is
not considered a failure of the entire
system from an SLO perspective, and
that the overall availability is comput-
ed with a weighted sum of regional/
shard availability.)

 ˲ Five critical dependencies on oth-
er, independent 99.999% services.

 ˲ Five independent shards, which
cannot fail over to one another.

 ˲ All changes are rolled out progres-
sively, one shard at a time.

The availability math plays out as
follows.

Dependency requirements.
 ˲ The total budget for outages for the

year is 0.01% of 525,600 minutes/year,
or 53 minutes (based on a 365-day year,
which is the worst-case scenario).

 ˲ The budget allocated to outages
of critical dependencies is five inde-
pendent critical dependencies, with
a budget of 0.001% each = 0.005%;
0.005% of 525,600 minutes/year, or
26 minutes.

 ˲ The remaining budget for outages
caused by your service, accounting for
outages of critical dependencies, is 53
- 26 = 27 minutes.

Outage response requirements.
 ˲ Expected number of outages: 4 (1

full outage, 3 outages affecting a single
shard only)

 ˲ Aggregate impact of expected out-
ages: (1 x 100%) + (3 x 20%) = 1.6

 ˲ Time available to detect and recov-
er from an outage: 27/1.6 = 17 minutes

 ˲ Monitoring time allotted to detect
and alert for an outage: 2 minutes

 ˲ Time allotted for an on-call re-
sponder to start investigating an alert:
five minutes. (On-call means that a
technical person is carrying a pager
that receives an alert when the service
is having an outage, based on a moni-
toring system that tracks and reports
SLO violations. Many Google services
are supported by an SRE on-call rota-
tion that fields urgent issues.)

 ˲ Remaining time for an effective
mitigation: 10 minutes

Implication. Levers to make a ser-
vice more available. It’s worth looking
closely at the numbers just presented
because they highlight a fundamental
point: there are three main levers to
make a service more reliable.

 ˲ Reduce the frequency of outages—
via rollout policy, testing, design re-
views, and other tactics.

 ˲ Reduce the scope of the average
outage—via sharding, geographic iso-
lation, graceful degradation, or cus-
tomer isolation.

 ˲ Reduce the time to recover—via
monitoring, one-button safe actions
(for example, rollback or adding emer-
gency capacity), operational readiness
practice, and so on.

You can trade among these three
levers to make implementation easier.
For example, if a 17-minute MTTR is
difficult to achieve, instead focus your
efforts on reducing the scope of the
average outage. Strategies for minimiz-
ing and mitigating critical dependen-
cies are discussed in more depth later
in this article.

Clarifying the “Rule of the Extra 9”
for Nested Dependencies
A casual reader might infer that each
additional link in a dependency chain
calls for an additional 9, such that sec-

Figure 1. Dependency hierarchy: Incorrect model.

example

first order

second order

46 COMMUNICATIONS OF THE ACM | SEPTEMBER 2017 | VOL. 60 | NO. 9

practice

infrastructure is being used correctly.
Be explicit in identifying the owners
of shared infrastructure as additional
stakeholders. Also, beware of over-
loading your dependencies—coordi-
nate launches carefully with the own-
ers of these dependencies.

Internal vs. external dependencies.
Sometimes a product or service de-
pends on factors beyond company con-
trol—for example, code libraries, or
services or data provided by third par-
ties. Identifying these factors allows
you to mitigate the unpredictability
they entail.

Engage in thoughtful system plan-
ning and design. Design your system
with the following principles in mind.

Redundancy and isolation. You can
seek to mitigate your reliance upon a
critical dependency by designing that
dependency to have multiple indepen-
dent instances. For example, if storing
data in one instance provides 99.9%
availability for that data, then storing
three copies in three widely distributed
instances provides a theoretical avail-
ability level of 1 - 0.013, or nine 9s, if
instance failures are independent with
zero correlation.

In the real world, the correlation
is never zero (consider network back-
bone failures that affect many cells
concurrently), so the actual avail-
ability will be nowhere close to nine
9s but is much higher than three 9s.
Also note that if a system or service
is “widely distributed,” geographic
separation is not always a good proxy
for uncorrelated failures. You may be
better off using more than one system
in nearby locations than the same sys-
tem in distant locations.

Similarly, sending an RPC (remote
procedure call) to one pool of serv-
ers in one cluster may provide 99.9%
availability for results, but sending
three concurrent RPCs to three dif-
ferent server pools and accepting the
first response that arrives helps in-
crease availability to well over three 9s
(noted earlier). This strategy can also
reduce tail latency if the server pools
are approximately equidistant from
the RPC sender. (Since there is a high
cost to sending three RPCs concur-
rently, Google often stages the timing
of these calls strategically: most of our
systems wait a fraction of the allotted
time before sending the second RPC,

budget of 0.01%. The service owners
are willing to spend half that budget
on their own bugs and losses, and
half on critical dependencies. If the
service has N such dependencies,
each dependency receives 1/Nth of
the remaining error budget. Typical
services often have about five to 10
critical dependencies, and therefore
each one can fail only one-tenth or
one-twentieth as much as Service A.
Hence, as a rule of thumb, a service’s
critical dependencies must have one
extra 9 of availability.

Error Budgets
The concept of error budgets is covered
quite thoroughly in the SRE book,1 but
bears mentioning here. Google SRE
uses error budgets to balance reliabil-
ity and the pace of innovation. This
budget defines the acceptable level of
failure for a service over some period of
time (often a month). An error budget
is simply 1 minus a service’s SLO, so
the previously discussed 99.99% avail-
able service has a 0.01% “budget” for
unavailability. As long as the service
hasn’t spent its error budget for the
month, the development team is free
(within reason) to launch new features,
updates, and so on.

If the error budget is spent, the
service freezes changes (except for
urgent security fixes and changes ad-
dressing what caused the violation in
the first place) until either the service
earns back room in the budget, or the
month resets. Many services at Google
use sliding windows for SLOs, so the
error budget grows back gradually. For
mature services with an SLO greater
than 99.99%, a quarterly rather than
monthly budget reset is appropri-

ate, because the amount of allowable
downtime is small.

Error budgets eliminate the struc-
tural tension that might otherwise
develop between SRE and product
development teams by giving them a
common, data-driven mechanism for
assessing launch risk. They also give
both SRE and product development
teams a common goal of developing
practices and technology that allow
faster innovation and more launches
without “blowing the budget.”

Strategies for Minimizing and
Mitigating Critical Dependencies
Thus far, this article has established
what might be called the “Golden Rule
of Component Reliability.” This sim-
ply means that any critical component
must be 10 times as reliable as the over-
all system’s target, so that its contribu-
tion to system unreliability is noise. It
follows that in an ideal world, the aim
is to make as many components as pos-
sible noncritical. Doing so means the
components can adhere to a lower re-
liability standard, gaining freedom to
innovate and take risks.

The most basic and obvious strat-
egy to reduce critical dependencies is
to eliminate single points of failure
(SPOFs) whenever possible. The larg-
er system should be able to operate
acceptably without any given compo-
nent that’s not a critical dependency
or SPOF.

In reality, you likely cannot get
rid of all critical dependencies, but
you can follow some best practices
around system design to optimize re-
liability. While doing so isn’t always
possible, it is easier and more effec-
tive to achieve system reliability if you
plan for reliability during the design
and planning phases, rather than af-
ter the system is live and impacting
actual users.

Conduct architecture/design re-
views. When you are contemplating a
new system or service, or refactoring
or improving an existing system or ser-
vice, an architecture or design review
can identify shared infrastructure and
internal vs. external dependencies.

Shared infrastructure. If your service
is using shared infrastructure—for ex-
ample, an underlying database service
used by multiple user-visible prod-
ucts—think about whether or not that

Figure 2. Multiple dependencies in
the dependency hierarchy.

service A

service B

service C

service B

SEPTEMBER 2017 | VOL. 60 | NO. 9 | COMMUNICATIONS OF THE ACM 47

practice

and a bit more time before sending
the third RPC.)

Failover and fallback. Pursue soft-
ware rollouts and migrations that fail
safe and are automatically isolated
should a problem arise. The basic prin-
ciple at work here is that by the time
you bring a human online to trigger
a failover, you have likely already ex-
ceeded your error budget.

Where concurrency/voting is not
possible, automate failover and fall-
back. Again, if the issue needs a hu-
man to check what the problem is, the
chances of meeting your SLO are slim.

Asynchronicity. Design dependen-
cies to be asynchronous rather than
synchronous where possible so that
they don’t accidentally become criti-
cal. If a service waits for an RPC re-
sponse from one of its noncritical
dependencies and this dependency
has a spike in latency, the spike will
unnecessarily hurt the latency of the
parent service. By making the RPC
call to a noncritical dependency asyn-
chronous, you can decouple the la-
tency of the parent service from the
latency of the dependency. While
asynchronicity may complicate code
and infrastructure, this trade-off will
be worthwhile.

Capacity planning. Make sure that
every dependency is correctly provi-
sioned. When in doubt, overprovision
if the cost is acceptable.

Configuration. When possible,
standardize configuration of your de-
pendencies to limit inconsistencies
among subsystems and avoid one-off
failure/error modes.

Detection and troubleshooting. Make
detecting, troubleshooting, and diag-
nosing issues as simple as possible.
Effective monitoring is a crucial com-
ponent of being able to detect issues in
a timely fashion. Diagnosing a system
with deeply nested dependencies is dif-
ficult. Always have an answer for miti-
gating failures that doesn’t require an
operator to investigate deeply.

Fast and reliable rollback. Introduc-
ing humans into a mitigation plan sub-
stantially increases the risk of miss-
ing a tight SLO. Build systems that are
easy, fast, and reliable to roll back. As
your system matures and you gain con-
fidence in your monitoring to detect
problems, you can lower MTTR by en-
gineering the system to automatically

trigger safe rollbacks.
Systematically examine all possible

failure modes. Examine each compo-
nent and dependency and identify the
impact of its failure. Ask yourself the
following questions:

 ˲ Can the service continue serving in
degraded mode if one of its dependen-
cies fails? In other words, design for
graceful degradation.

 ˲ How do you deal with unavailabili-
ty of a dependency in different scenari-
os? Upon startup of the service? During
runtime?

Conduct thorough testing. Design
and implement a robust testing envi-
ronment that ensures each dependen-
cy has its own test coverage, with tests
that specifically address use cases that
other parts of the environment expect.
Here are a few recommended strate-
gies for such testing:

 ˲ Use integration testing to perform
fault injection—verify that your system
can survive failure of any of its depen-
dencies.

 ˲ Conduct disaster testing to iden-
tify weaknesses or hidden/unexpected
dependencies. Document follow-up
actions to rectify the flaws you uncover.

 ˲ Don’t just load test. Deliberately
overload your system to see how it
degrades. One way or another, your
system’s response to overload will be
tested; better to perform these tests
yourself than to leave load testing to
your users.

Plan for the future. Expect changes
that come with scale: a service that be-
gins as a relatively simple binary on a
single machine may grow to have many
obvious and nonobvious dependen-
cies when deployed at a larger scale.
Every order of magnitude in scale will
reveal new bottlenecks—not just for
your service, but for your dependencies
as well. Consider what happens if your
dependencies cannot scale as fast as
you need them to.

Also be aware that system depen-
dencies evolve over time and that your
list of dependencies may very well
grow over time. When it comes to in-
frastructure, Google’s typical design
guideline is to build a system that will
scale to 10 times the initial target load
without significant design changes.

Conclusion
While readers are likely familiar with

some or many of the concepts this ar-
ticle has covered, assembling this in-
formation and putting it into concrete
terms may make the concepts easier to
understand and teach. Its recommen-
dations are uncomfortable but not
unattainable. A number of Google ser-
vices have consistently delivered better
than four 9s of availability, not by su-
perhuman effort or intelligence, but by
thorough application of principles and
best practices collected and refined
over the years (see SRE’s Appendix B: A
Collection of Best Practices for Produc-
tion Services).

Acknowledgments
Thank you to Ben Lutch, Dave Rensin,
Miki Habryn, Randall Bosetti, and Pat-
rick Bernier for their input.

 Related articles
 on queue.acm.org

There’s Just No Getting Around It:
You’re Building a Distributed System
Mark Cavage
http://queue.acm.org/detail.cfm?id=2482856

Eventual Consistency Today:
Limitations, Extensions, and Beyond
Peter Bailis and Ali Ghodsi
http://queue.acm.org/detail.cfm?id=2462076

A Conversation with Wayne Rosing
David J. Brown
http://queue.acm.org/detail.cfm?id=945162

Reference
1. Beyer, B., Jones, C., Petoff, J., Murphy, N.R. Site

Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, 2016; https://landing.google.
com/sre/book.html.

Ben Treynor started programming at age six and
joined Oracle as a software engineer at age 17. He has
also worked in engineering management at E.piphany,
SEVEN, and Google (2003-present). His current team
of approximately 4,200 at Google is responsible for Site
Reliability Engineering, networking, and datacenters
worldwide.

Mike Dahlin is a distinguished engineer at Google, where
he has worked on Google’s Cloud Platform since 2013.
Prior to joining Google, he was a professor of computer
science at the University of Texas at Austin.

Vivek Rau is an SRE manager at Google and a founding
member of the Launch Coordination Engineering sub-team
of SRE. Prior to joining Google, he worked at Citicorp
Software, Versant, and E.piphany. He currently manages
various SRE teams tasked with tracking and improving the
reliability of Google’s Cloud Platform.

Betsy Beyer is a technical writer for Google, specializing
in Site Reliability Engineering. She has previously written
documentation for Google’s Data Center and Hardware
Operations Teams. She was formerly a lecturer on
technical writing at Stanford University.

Copyright held by owner/authors.
Publication rights licensed to ACM. $15.00.

