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AS DETAILED IN Site Reliability Engineering: How 
Google Runs Production Systems1 (hereafter referred 
to as the SRE book), Google products and services 
seek high-velocity feature development while 
maintaining aggressive service-level objectives (SLOs) 
for availability and responsiveness. An SLO says 
that the service should almost always be up, and the 
service should almost always be fast; SLOs also provide 
precise numbers to define what “almost always” 
means for a particular service. SLOs are based on the 
following observation:

The vast majority of software services and systems 
should aim for almost-perfect reliability rather than 
perfect reliability—that is, 99.999% or 99.99% rather 
than 100%—because users cannot tell the difference 
between a service being 100% available and less than 
“perfectly” available. There are many other systems in 
the path between user and service (laptop, home WiFi, 
ISP, the power grid ...), and those systems collectively 

are far less than 100% available. 
Thus, the marginal difference be-
tween 99.99% and 100% gets lost in 
the noise of other unavailability, and 
the user receives no benefit from the 
enormous effort required to add that 
last fractional percent of availability. 
Notable exceptions to this rule in-
clude antilock brake control systems 
and pacemakers!

For a detailed discussion of how 
SLOs relate to SLIs (service-level indi-
cators) and SLAs (service-level agree-
ments), see the “Service Level Objec-
tives” chapter in the SRE book. That 
chapter also details how to choose 
metrics that are meaningful for a par-
ticular service or system, which in turn 
drives the choice of an appropriate SLO 
for that service. 

This article expands upon the topic 
of SLOs to focus on service dependen-
cies. Specifically, we look at how the 
availability of critical dependencies in-
forms the availability of a service, and 
how to design in order to mitigate and 
minimize critical dependencies. 

Most services offered by Google aim 
to offer 99.99% (sometimes referred 
to as the “four 9s”) availability to us-
ers. Some services contractually com-
mit to a lower figure externally but set 
a 99.99% target internally. This more 
stringent target accounts for situations 
in which users become unhappy with 
service performance well before a con-
tract violation occurs, as the number 
one aim of an SRE team is to keep users 
happy. For many services, a 99.99% in-
ternal target represents the sweet spot 
that balances cost, complexity, and 
availability. For some services, notably 
global cloud services, the internal tar-
get is 99.999%.

99.99% Availability:  
Observations And Implications
Let’s examine a few key observations 
about and implications of designing 
and operating a 99.99% service and 
then move to a practical application.

Observation 1. Sources of outages. 
Outages originate from two main 
sources: problems with the service it-
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self and problems with the service’s 
critical dependencies. A critical depen-
dency is one that, if it malfunctions, 
causes a corresponding malfunction 
in the service.

Observation 2. The mathematics of 
availability. Availability is a function of 
the frequency and the duration of out-
ages. It is measured through:

 ˲ Outage frequency, or the inverse: 
MTTF (mean time to failure).

 ˲ Duration, using MTTR (mean time 
to repair). Duration is defined as it is 
experienced by users: lasting from the 
start of a malfunction until normal be-
havior resumes.

Thus, availability is mathematically 
defined as MTTF/(MTTF+MTTR), us-
ing appropriate units.

Implication 1. Rule of the extra 9. A 
service cannot be more available than 
the intersection of all its critical de-
pendencies. If your service aims to of-
fer 99.99% availability, then all of your 

critical dependencies must be signifi-
cantly more than 99.99% available. 

Internally at Google, we use the 
following rule of thumb: critical de-
pendencies must offer one additional 
9 relative to your service—in the ex-
ample case, 99.999% availability—be-
cause any service will have several crit-
ical dependencies, as well as its own 
idiosyncratic problems. This is called 
the “rule of the extra 9.” 

If you have a critical dependency 
that does not offer enough 9s (a rela-
tively common challenge!), you must 
employ mitigation to increase the ef-
fective availability of your dependency 
(for example, via a capacity cache, fail-
ing open, graceful degradation in the 
face of errors, and so on.)

Implication 2. The math vis-à-vis fre-
quency, detection time, and recovery 
time. A service cannot be more avail-
able than its incident frequency mul-
tiplied by its detection and recovery 

time. For example, three complete out-
ages per year that last 20 minutes each 
result in a total of 60 minutes of outag-
es. Even if the service worked perfectly 
the rest of the year, 99.99% availability 
(no more than 53 minutes of downtime 
per year) would not be feasible.

This implication is just math, but it 
is often overlooked, and can be very in-
convenient.

Corollary to implications 1 and 2. If 
your service is relied upon for an avail-
ability level you cannot deliver, you 
should make energetic efforts to cor-
rect the situation—either by increas-
ing the availability level of your service 
or by adding mitigation as described 
earlier. Reducing expectations (that 
is, the published availability) is also 
an option, and often it is the correct 
choice: make it clear to the dependent 
service that it should either reengineer 
its system to compensate for your ser-
vice’s availability or reduce its own tar-
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Some of the terms and concepts used 
throughout this article may not be 
familiar to readers who don’t specialize 
in operations. 

Capacity cache: A cache that serves 
precomputed results for API calls 
or queries to a service, generating 
cost savings in terms of compute/IO 
resource needs by reducing the volume 
of client traffic hitting the underlying 
service. 

Unlike the more typical 
performance/latency cache, a capacity 
cache is considered critical to service 
operation. A drop in the cache hit 
rate or cache ratio below the SLO 
is considered a capacity loss. Some 
capacity caches may even sacrifice 
performance (for example, redirecting 
to remote sites) or freshness (for 
example, CDNs) in order to meet hit 
rate SLOs.

Customer isolation: Isolating 
customers from each other may be 
advantageous so that the behavior of 
one customer doesn’t impact other 
customers. For example, you might 
isolate customers from one another 
based on their global traffic. When a 
given customer sends a surge of traffic 
beyond what they’re provisioned for, 
you can start throttling or rejecting this 
excess traffic without impacting traffic 
from other customers.

Failing safe/failing open/failing 
closed: Strategies for gracefully 
tolerating the failure of a dependency. 
The “safe” strategy depends on 
context: failing open may be the safe 
strategy in some scenarios, while 
failing closed may be the safe strategy 
in others.

Failing open: When the trigger 
normally required to authorize an 
action fails, failing open means to 
let some action happen, rather than 
making a decision. For example, 
a building exit door that normally 
requires badge verification “fails open” 
to let you exit without verification 
during a power failure.

Failing closed is the opposite of falling 
open. For example, a bank vault door 
denies all attempts to unlock it if 
its badge reader cannot contact the 
access-control database.

Failing safe means whatever behavior 
is required to prevent the system 
from falling into an unsafe mode 
when expected functionality suddenly 
doesn’t work. For example, a given 
system might be able to fail open for a 
while by serving cached data, but then 
fail closed when that data becomes 
stale (perhaps because past a certain 
point, the data is no longer useful).

Failover: A strategy that handles failure 
of a system component or service 
instance by automatically routing 
incoming requests to a different 
instance. For example, you might route 
database queries to a replica database, 
or route service requests to a replicated 
server pool in another datacenter.

Fallback: A mechanism that allows 
a tool or system to use an alternative 
source for serving results when a 
given component is unavailable. 
For example, a system might fall 
back to using an in-memory cache 
of previous results. While the results 
may be slightly stale, this behavior is 
better than outright failure. This type 
of fallback is an example of graceful 
degradation.

Geographic isolation: You can build 
additional reliability into your service 
by isolating particular geographic 
zones to have no dependencies on each 
other. For example, if you separate 
North America and Australia into 
separate serving zones, an outage 
that occurs in Australia because of a 
traffic overload won’t also take out 
your service in North America. Note 
that geographic isolation does come 
at increased cost: isolating these 
geographic zones also means that 
Australia cannot borrow spare capacity 
in North America.

Graceful degradation: A service 
should be “elastic” and not fail 
catastrophically under overload 
conditions and spikes—that is, you 
should make your applications do 
something reasonable even if not all is 
right. It is better to give users limited 
functionality than an error page.

Integration testing: The phase in 
software testing in which individual 
software modules are combined 
and tested as a group to verify that 
they function correctly together. 
These “parts” may be code modules, 
individual applications, client and 
server applications on a network, 
among others. Integration testing is 
usually performed after unit testing 
and before final validation testing.

Operational readiness practice: 
Exercises designed to ensure the team 
supporting a service knows how to 
respond effectively when an issue 
arises, and that the service is resilient 
to disruption. For example, Google 
performs disaster-recovery test drills 
continuously to make sure that its 
services deliver continuous uptime 
even if a large-scale disaster occurs. 

Rollout policy: A set of principles 
applied during a service rollout (a 
deployment of any sort of software 
component or configuration) to 
reduce the scope of an outage in 
the early stages of the rollout. 
For example, a rollout policy 
might specify that rollouts occur 
progressively, on a 5%/20%/100% 
timeline, so that a rollout proceeds 
to a larger portion of customers 
only when it passes the first 
milestone without problems. 
Most problems will manifest 
when the service is exposed to 
a small number of customers, 
allowing you to minimize the 
scope of the damage. Note that for 
a rollout policy to be effective in 
minimizing damage, you must have 
a mechanism in place for rapid 
rollback.

Rollback: This is the ability to revert 
a set of changes that have been 
previously rolled out (fully or not) to a 
given service or system. For example, 
you can revert configuration changes 
or run a previous version of a binary 
that’s known to be good. 

Sharding: Splitting a data 
structure or service into shards is a 
management strategy based on the 
principle that systems built for a 
single machine’s worth of resources 
don’t scale. Therefore, you can 
distribute resources such as CPU, 
memory, disk, file handles, and 
so on across multiple machines to 
create smaller, faster, more easily 
managed parts of a larger whole.

Tail latency: When setting a target 
for the latency (response time) of a 
service, it is tempting to measure the 
average latency. The problem with this 
approach is that an average that looks 
acceptable can hide a “long tail” of very 
large outliers, where some users may 
experience terrible response times. 
Therefore, the SRE best practice is to 
measure and set targets for 95th- and/
or 99th-percentile latency, with the goal 
of reducing this tail latency, not just 
average latency.

Key Definitions
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ond-order dependencies need two ex-
tra 9s, third-order dependencies need 
three extra 9s, and so on. 

This inference is incorrect. It is 
based on a naive model of a dependen-
cy hierarchy as a tree with constant fan-
out at each level. In such a model, as 
shown in Figure 1, there are 10 unique 
first-order dependencies, 100 unique 
second-order dependencies, 1,000 
unique third-order dependencies, 
and so on, leading to a total of 1,111 
unique services even if the architecture 
is limited to four layers. A highly avail-
able service ecosystem with that many 
independent critical dependencies is 
clearly unrealistic. 

A critical dependency can by itself 
cause a failure of the entire service (or 
service shard) no matter where it ap-
pears in the dependency tree. There-
fore, if a given component X appears 
as a dependency of several first-order 
dependencies of a service, X should be 
counted only once because its failure 
will ultimately cause the service to fail 
no matter how many intervening ser-
vices are also affected.

The correct rule is as follows:
 ˲ If a service has N unique critical 

dependencies, then each one contrib-
utes 1/N to the dependency-induced 
unavailability of the top-level service, 
regardless of its depth in the depen-
dency hierarchy.

 ˲ Each dependency should be count-
ed only once, even if it appears multiple 
times in the dependency hierarchy (in 
other words, count only unique depen-
dencies). For example, when counting 
dependencies of Service A in Figure 2, 
count Service B only once toward the 
total N.

For example, consider a hypo-
thetical Service A, which has an error 

get. If you do not correct or address the 
discrepancy, an outage will inevitably 
force the need to correct it.

Practical Application
Let’s consider an example service with 
a target availability of 99.99% and work 
through the requirements for both its 
dependencies and its outage responses.

The numbers. Suppose your 99.99% 
available service has the following 
characteristics:

 ˲ One major outage and three mi-
nor outages of its own per year. Note 
that these numbers sound high, but 
a 99.99% availability target implies a 
20- to 30-minute widespread outage 
and several short partial outages per 
year. (The math makes two assump-
tions: that a failure of a single shard is 
not considered a failure of the entire 
system from an SLO perspective, and 
that the overall availability is comput-
ed with a weighted sum of regional/
shard availability.)

 ˲ Five critical dependencies on oth-
er, independent 99.999% services.

 ˲ Five independent shards, which 
cannot fail over to one another.

 ˲ All changes are rolled out progres-
sively, one shard at a time.

The availability math plays out as 
follows.

Dependency requirements.
 ˲ The total budget for outages for the 

year is 0.01% of 525,600 minutes/year, 
or 53 minutes (based on a 365-day year, 
which is the worst-case scenario).

 ˲ The budget allocated to outages 
of critical dependencies is five inde-
pendent critical dependencies, with 
a budget of 0.001% each = 0.005%; 
0.005% of 525,600 minutes/year, or 
26 minutes.

 ˲ The remaining budget for outages 
caused by your service, accounting for 
outages of critical dependencies, is 53 
- 26 = 27 minutes.

Outage response requirements.
 ˲ Expected number of outages: 4 (1 

full outage, 3 outages affecting a single 
shard only)

 ˲ Aggregate impact of expected out-
ages: (1 x 100%) + (3 x 20%) = 1.6

 ˲ Time available to detect and recov-
er from an outage: 27/1.6 = 17 minutes

 ˲ Monitoring time allotted to detect 
and alert for an outage: 2 minutes

 ˲ Time allotted for an on-call re-
sponder to start investigating an alert: 
five minutes. (On-call means that a 
technical person is carrying a pager 
that receives an alert when the service 
is having an outage, based on a moni-
toring system that tracks and reports 
SLO violations. Many Google services 
are supported by an SRE on-call rota-
tion that fields urgent issues.)

 ˲ Remaining time for an effective 
mitigation: 10 minutes

Implication. Levers to make a ser-
vice more available. It’s worth looking 
closely at the numbers just presented 
because they highlight a fundamental 
point: there are three main levers to 
make a service more reliable.

 ˲ Reduce the frequency of outages—
via rollout policy, testing, design re-
views, and other tactics.

 ˲ Reduce the scope of the average 
outage—via sharding, geographic iso-
lation, graceful degradation, or cus-
tomer isolation.

 ˲ Reduce the time to recover—via 
monitoring, one-button safe actions 
(for example, rollback or adding emer-
gency capacity), operational readiness 
practice, and so on.

You can trade among these three 
levers to make implementation easier. 
For example, if a 17-minute MTTR is 
difficult to achieve, instead focus your 
efforts on reducing the scope of the 
average outage. Strategies for minimiz-
ing and mitigating critical dependen-
cies are discussed in more depth later 
in this article. 

Clarifying the “Rule of the Extra 9”  
for Nested Dependencies
A casual reader might infer that each 
additional link in a dependency chain 
calls for an additional 9, such that sec-

Figure 1. Dependency hierarchy: Incorrect model.

example

first order

second order
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infrastructure is being used correctly. 
Be explicit in identifying the owners 
of shared infrastructure as additional 
stakeholders. Also, beware of over-
loading your dependencies—coordi-
nate launches carefully with the own-
ers of these dependencies.

Internal vs. external dependencies. 
Sometimes a product or service de-
pends on factors beyond company con-
trol—for example, code libraries, or 
services or data provided by third par-
ties. Identifying these factors allows 
you to mitigate the unpredictability 
they entail.

Engage in thoughtful system plan-
ning and design. Design your system 
with the following principles in mind.

Redundancy and isolation. You can 
seek to mitigate your reliance upon a 
critical dependency by designing that 
dependency to have multiple indepen-
dent instances. For example, if storing 
data in one instance provides 99.9% 
availability for that data, then storing 
three copies in three widely distributed 
instances provides a theoretical avail-
ability level of 1 - 0.013, or nine 9s, if 
instance failures are independent with 
zero correlation. 

In the real world, the correlation 
is never zero (consider network back-
bone failures that affect many cells 
concurrently), so the actual avail-
ability will be nowhere close to nine 
9s but is much higher than three 9s. 
Also note that if a system or service 
is “widely distributed,” geographic 
separation is not always a good proxy 
for uncorrelated failures. You may be 
better off using more than one system 
in nearby locations than the same sys-
tem in distant locations.

Similarly, sending an RPC (remote 
procedure call) to one pool of serv-
ers in one cluster may provide 99.9% 
availability for results, but sending 
three concurrent RPCs to three dif-
ferent server pools and accepting the 
first response that arrives helps in-
crease availability to well over three 9s 
(noted earlier). This strategy can also 
reduce tail latency if the server pools 
are approximately equidistant from 
the RPC sender. (Since there is a high 
cost to sending three RPCs concur-
rently, Google often stages the timing 
of these calls strategically: most of our 
systems wait a fraction of the allotted 
time before sending the second RPC, 

budget of 0.01%. The service owners 
are willing to spend half that budget 
on their own bugs and losses, and 
half on critical dependencies. If the 
service has N such dependencies, 
each dependency receives 1/Nth of 
the remaining error budget. Typical 
services often have about five to 10 
critical dependencies, and therefore 
each one can fail only one-tenth or 
one-twentieth as much as Service A. 
Hence, as a rule of thumb, a service’s 
critical dependencies must have one 
extra 9 of availability.

Error Budgets
The concept of error budgets is covered 
quite thoroughly in the SRE book,1 but 
bears mentioning here. Google SRE 
uses error budgets to balance reliabil-
ity and the pace of innovation. This 
budget defines the acceptable level of 
failure for a service over some period of 
time (often a month). An error budget 
is simply 1 minus a service’s SLO, so 
the previously discussed 99.99% avail-
able service has a 0.01% “budget” for 
unavailability. As long as the service 
hasn’t spent its error budget for the 
month, the development team is free 
(within reason) to launch new features, 
updates, and so on.

If the error budget is spent, the 
service freezes changes (except for 
urgent security fixes and changes ad-
dressing what caused the violation in 
the first place) until either the service 
earns back room in the budget, or the 
month resets. Many services at Google 
use sliding windows for SLOs, so the 
error budget grows back gradually. For 
mature services with an SLO greater 
than 99.99%, a quarterly rather than 
monthly budget reset is appropri-

ate, because the amount of allowable 
downtime is small.

Error budgets eliminate the struc-
tural tension that might otherwise 
develop between SRE and product 
development teams by giving them a 
common, data-driven mechanism for 
assessing launch risk. They also give 
both SRE and product development 
teams a common goal of developing 
practices and technology that allow 
faster innovation and more launches 
without “blowing the budget.”

Strategies for Minimizing and 
Mitigating Critical Dependencies
Thus far, this article has established 
what might be called the “Golden Rule 
of Component Reliability.” This sim-
ply means that any critical component 
must be 10 times as reliable as the over-
all system’s target, so that its contribu-
tion to system unreliability is noise. It 
follows that in an ideal world, the aim 
is to make as many components as pos-
sible noncritical. Doing so means the 
components can adhere to a lower re-
liability standard, gaining freedom to 
innovate and take risks. 

The most basic and obvious strat-
egy to reduce critical dependencies is 
to eliminate single points of failure 
(SPOFs) whenever possible. The larg-
er system should be able to operate 
acceptably without any given compo-
nent that’s not a critical dependency 
or SPOF. 

In reality, you likely cannot get 
rid of all critical dependencies, but 
you can follow some best practices 
around system design to optimize re-
liability. While doing so isn’t always 
possible, it is easier and more effec-
tive to achieve system reliability if you 
plan for reliability during the design 
and planning phases, rather than af-
ter the system is live and impacting 
actual users.

Conduct architecture/design re-
views. When you are contemplating a 
new system or service, or refactoring 
or improving an existing system or ser-
vice, an architecture or design review 
can identify shared infrastructure and 
internal vs. external dependencies.

Shared infrastructure. If your service 
is using shared infrastructure—for ex-
ample, an underlying database service 
used by multiple user-visible prod-
ucts—think about whether or not that 

Figure 2. Multiple dependencies in  
the dependency hierarchy.

service A

service B

service C

service B
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and a bit more time before sending 
the third RPC.)

Failover and fallback. Pursue soft-
ware rollouts and migrations that fail 
safe and are automatically isolated 
should a problem arise. The basic prin-
ciple at work here is that by the time 
you bring a human online to trigger 
a failover, you have likely already ex-
ceeded your error budget.

Where concurrency/voting is not 
possible, automate failover and fall-
back. Again, if the issue needs a hu-
man to check what the problem is, the 
chances of meeting your SLO are slim.

Asynchronicity. Design dependen-
cies to be asynchronous rather than 
synchronous where possible so that 
they don’t accidentally become criti-
cal. If a service waits for an RPC re-
sponse from one of its noncritical 
dependencies and this dependency 
has a spike in latency, the spike will 
unnecessarily hurt the latency of the 
parent service. By making the RPC 
call to a noncritical dependency asyn-
chronous, you can decouple the la-
tency of the parent service from the 
latency of the dependency. While 
asynchronicity may complicate code 
and infrastructure, this trade-off will 
be worthwhile.

Capacity planning. Make sure that 
every dependency is correctly provi-
sioned. When in doubt, overprovision 
if the cost is acceptable.

Configuration. When possible, 
standardize configuration of your de-
pendencies to limit inconsistencies 
among subsystems and avoid one-off 
failure/error modes.

Detection and troubleshooting. Make 
detecting, troubleshooting, and diag-
nosing issues as simple as possible. 
Effective monitoring is a crucial com-
ponent of being able to detect issues in 
a timely fashion. Diagnosing a system 
with deeply nested dependencies is dif-
ficult. Always have an answer for miti-
gating failures that doesn’t require an 
operator to investigate deeply.

Fast and reliable rollback. Introduc-
ing humans into a mitigation plan sub-
stantially increases the risk of miss-
ing a tight SLO. Build systems that are 
easy, fast, and reliable to roll back. As 
your system matures and you gain con-
fidence in your monitoring to detect 
problems, you can lower MTTR by en-
gineering the system to automatically 

trigger safe rollbacks.
Systematically examine all possible 

failure modes. Examine each compo-
nent and dependency and identify the 
impact of its failure. Ask yourself the 
following questions:

 ˲ Can the service continue serving in 
degraded mode if one of its dependen-
cies fails? In other words, design for 
graceful degradation.

 ˲ How do you deal with unavailabili-
ty of a dependency in different scenari-
os? Upon startup of the service? During 
runtime?

Conduct thorough testing. Design 
and implement a robust testing envi-
ronment that ensures each dependen-
cy has its own test coverage, with tests 
that specifically address use cases that 
other parts of the environment expect. 
Here are a few recommended strate-
gies for such testing:

 ˲ Use integration testing to perform 
fault injection—verify that your system 
can survive failure of any of its depen-
dencies.

 ˲ Conduct disaster testing to iden-
tify weaknesses or hidden/unexpected 
dependencies. Document follow-up 
actions to rectify the flaws you uncover.

 ˲ Don’t just load test. Deliberately 
overload your system to see how it 
degrades. One way or another, your 
system’s response to overload will be 
tested; better to perform these tests 
yourself than to leave load testing to 
your users.

Plan for the future. Expect changes 
that come with scale: a service that be-
gins as a relatively simple binary on a 
single machine may grow to have many 
obvious and nonobvious dependen-
cies when deployed at a larger scale. 
Every order of magnitude in scale will 
reveal new bottlenecks—not just for 
your service, but for your dependencies 
as well. Consider what happens if your 
dependencies cannot scale as fast as 
you need them to.

Also be aware that system depen-
dencies evolve over time and that your 
list of dependencies may very well 
grow over time. When it comes to in-
frastructure, Google’s typical design 
guideline is to build a system that will 
scale to 10 times the initial target load 
without significant design changes.

Conclusion
While readers are likely familiar with 

some or many of the concepts this ar-
ticle has covered, assembling this in-
formation and putting it into concrete 
terms may make the concepts easier to 
understand and teach. Its recommen-
dations are uncomfortable but not 
unattainable. A number of Google ser-
vices have consistently delivered better 
than four 9s of availability, not by su-
perhuman effort or intelligence, but by 
thorough application of principles and 
best practices collected and refined 
over the years (see SRE’s Appendix B: A 
Collection of Best Practices for Produc-
tion Services).
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