
Improving Video�ality in Crowded Networks Using a DANE
Jan Willem Kleinrouweler

Centrum Wiskunde & Informatica
Science Park 123

1089 XG, Amsterdam, �e
Netherlands

j.w.m.kleinrouweler@cwi.nl

Bri�a Meixner
Centrum Wiskunde & Informatica

Science Park 123
1089 XG, Amsterdam, �e

Netherlands
bri�a.meixner@cwi.nl

Pablo Cesar
CWI, Science Park 123
1089 XG, Amsterdam

Del� University of Technology
Mekelweg 4

2628 CD, Del�, �e Netherlands
p.s.cesar@cwi.nl

ABSTRACT
Dynamic Adaptive Streaming over HTTP (DASH) is a technol-
ogy for delivering video content over the Internet. It provides an
e�ective mechanism, which has been adopted by major content
providers. Nevertheless, available DASH player implementations
have a number of drawbacks such as performance problems on
shared network connections, which lead to video freezes and fre-
quent video quality changes. In this paper, we propose a method
to reduce the performance problems that exist in networks with a
large number of DASH players. �ese networks can be found in ho-
tels, apartment complexes, and airports. In experiments with up to
600 simultaneously active players, we are able to reduce the number
of DASH players with freezes by 95% (from 345 to 15) compared to
throughput-based adaptation and by 75% (from 62 to 15) compared
to BOLA using our DASH Assisting Network Element (DANE). In
addition, we reduced the number of quality switches by 94% com-
pared to throughput-based adaptation, and by 85% compared to
BOLA.

CCS CONCEPTS
•Information systems →Multimedia streaming; •Networks
→Network management;

KEYWORDS
Dynamic adaptive streaming over HTTP, HTTP adaptive streaming,
Video streaming, Network assistance, Performance
ACM Reference format:
Jan Willem Kleinrouweler, Bri�a Meixner, and Pablo Cesar. 2017. Improv-
ing Video �ality in Crowded Networks Using a DANE. In Proceedings of
NOSSDAV’17, Taipei, Taiwan, June 20-23, 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3083165.3083167

1 INTRODUCTION
Over-the-top video streaming is a popular application that accounts
for a large share of Internet tra�c. Estimates report that YouTube
and Net�ix account for 53% of downstream tra�c on �xed links
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
NOSSDAV’17, Taipei, Taiwan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5003-7/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3083165.3083167

in North-America during peak hours in 2016 [17]. Both content
providers use Dynamic Adaptive Streaming over HTTP (DASH) for
delivering video content [15], which provides scalable distribution
of video by reusing the current HTTP-based infrastructure. Using
DASH, videos are split into segments which are encoded in di�erent
qualities. �ese segments are then requested by the DASH players.
Content providers are able to simultaneously serve large numbers
of users using Content Delivery Networks (CDNs). However, pre-
vious studies showed that DASH su�ers performance problems
on the receiving end, especially in se�ings with shared network
connections or background tra�c [2, 3, 12]. Performance prob-
lems manifest themselves to the user as video/playback freezes and
frequently changing video quality (i.e. bitrate). �ese e�ects con-
tribute to a lower �ality of Experience (QoE), resulting in viewers’
disengagement and abandonment [7, 18]. However, many DASH
players being simultaneously active in larger shared networks may
become a standard scenario given the popularity of DASH-based
video streaming for entertainment. Large shared networks can for
example be found in hotels, apartment complexes, and airports. To
the best of our knowledge, related work on DASH performance
problems or potential solutions are so far mostly limited to net-
works which are used by a small number of DASH players (max.
150 concurrent players).

In this paper, we focus on larger networks that should facilitate
many simultaneously active DASH players. We con�rm perfor-
mance problems (video/playback freezes and frequently changing
video quality) of two established adaptation algorithms (throughput-
based and Bu�er Occupancy-based Lyapunov Algorithm (BOLA)
[20]) in a real network with up to 600 concurrent DASH players.
We propose a solution using network assisted DASH which seeks
to facilitate more DASH players in a network and to improve the
viewers’ QoE. In our experiments, we show that the network as-
sisted DASH solution outperforms the throughput-based algorithm
and BOLA by reducing the number of DASH players with freezes
by 95% at best. �e number of quality switches is lowered by up to
94% at best. �ereby, we answer the following research questions:

(1) Do the same DASH streaming performance problems (stalling
and video quality instability) exist in networks with up to
600 active players as they do in networks with a small
number (up to 12) of active players?

(2) Can Network Assisted DASH improve the DASH streaming
performance (reduce stalling, reduce instability, increase
video bitrate, improve unfairness) in environments with a
large number of players?

�e remainder of this paper is structured as follows: In Section
2, we provide an overview of related work on DASH performance

NOSSDAV’17, June 20-23, 2017, Taipei, Taiwan Jan Willem Kleinrouweler, Bri�a Meixner, and Pablo Cesar

problems and network assisted DASH. Section 3 details the stream-
ing testbed and experimental design. In Section 4, we present the
performance evaluation results and show improvements using our
network assisted DASH solution. Section 5 concludes the paper.

2 RELATEDWORK
DASH1 is the dominant technology for online video streaming. It
provides players a manifest, which is a list of representations of the
same video. �e representations can di�er in resolution and bitrate.
�e DASH player selects one of the representations based on the
current network conditions, bu�er level, or host device capabilities
[19]. Although DASH is widely implemented, it has been identi-
�ed that DASH su�ers performance problems in shared networks.
Huang et al. show that the video bitrate for one DASH player signi�-
cantly decreases a�er starting a competing TCP �ow [12]. In [3] the
authors analyze how o�-the-shelf DASH players react to changing
network conditions and how video quality becomes unstable when
two DASH players compete for bandwidth. Akhshabi et al. further
break down this issue and explain how bandwidth estimations are
invalidated as a result of on-o� download pa�erns of DASH players
[2]. �ey evaluate a network with up to 12 players and show that
the number of active players a�ects the number of quality switches.
Esteban. et al [8] analyze TCP behavior. �ey point out that the
double feedback loop - both TCP and DASH adaptation algorithms
react to changing network conditions - causes video quality insta-
bility. Freezes and frequent quality switches negatively impact the
viewers’ QoE [10, 18].

An established approach to counter DASH performance prob-
lems is to improve the adaptation algorithm in the player. However,
DASH players have a limited view of the network. DASH Assisting
Network Elements (DANEs) have a be�er view on network activity
and can use this information to assist DASH players in adaptation.
Houdaille and Gouache implement assistance through shaping the
DASH �ows [11]. Tra�c shaping decreases the number of quality
switches. In [5, 14] DASH tra�c is routed through a proxy server.
�e proxy server changes the manifest �les and the segment re-
quests to move the players to the desired bitrate. Petrangeli et al.
combine multiple proxy servers to manage three sub-networks [16].
Techniques from So�ware De�ned Networking (SDN) are applied
in [4, 6, 9, 13]. �e DASH assistants are implemented as network
controllers that provide tra�c shaping and signaling target bitrates
to DASH players. However, with a large number of players it is not
feasible to maintain one tra�c queue per player. It is unknown how
many players can be combined into a queue. Furthermore, with
many changing DASH players the overhead of control messages
becomes large.

�e number of DASH players used in the evaluations of the
before mentioned related work does not exceed 12 players for pa-
pers on DASH performance problems, and 150 players for papers
on network assisted DASH. An overview of the number DASH
players used in related work is given in Table 1. In this paper we
evaluate a network with up to 600 simultaneously active DASH
players. We con�rm DASH performance problems (freezes, quality
switches), and show how our DANE can improve DASH streaming
performance.

1In this section we refer to DASH as the technology, not the MPEG-DASH standard

Table 1: Overview of the number of DASH players used in
related work

Topic Reference Max. # players

DASH performance Huang et al., 2012 [12] 1
problems Esteban et al, 2012 [8] 1, or more

Akhshabi et al., 2011 [3] 2
Akhshabi et al., 2012 [2] 12

Network assisted Houdaille and Gouache, 2012 [11] 2
DASH Georgopoulos et al, 2013 [9] 3

Kleinrouweler et al, 2016 [13] 4
Kleinrouweler et al, 2015 [14] 25
Bouten et al, 2012 [5] 50
Bentaleb et al, 2016 [4] 50
Petrangeli et al, 2015 [16] 90
Cofano et al, 2016 [6] 150

3 EXPERIMENTAL SETUP
In this section we describe the network assisted DASH implementa-
tion, the custom DASH player used in out experiments, the testbed
setup, and the experiment se�ings.

3.1 DASH Assisting Network Element
We use our implementation (�rst introduced in [13]) of a DANE
to con�gure tra�c control and assist DASH players. �e DANE
consists of three components: a Network Bridge (NB), a Network
Controller (NC), and a Service Manager (SM).

�e Network Bridge is built from PC hardware using two Eth-
ernet interfaces. �e interfaces are bridged together and perform
packet forwarding and tra�c control. We implement tra�c con-
trol with Linux tc using Hierarchical Token Buckets (HTBs)2. �e
Network Controller is so�ware that con�gures tra�c control on
the NB. It provides a programming interface that the SM uses to
reserve bandwidth for DASH players. By default the NC con�gures
one tra�c queue, but it can set up additional queues dedicated to
DASH tra�c. We extended the Network Controller so it can be
con�gured to create any number of queues for DASH tra�c. It
will automatically balance active DASH �ows over di�erent queues.
DASH queue rates determine the minimum throughput for tra�c
in that queue (i.e. a throughput guarantee is given). One queue is
designated for control messages between the DASH players and the
DANE. Prompt delivery of control messages is essential for network
assisted DASH to be e�ective. �e queue is overprovisioned at a
rate of 50 Mbit/s, to make sure that control messages are delivered
without delay. �e queue is con�gured to use available bandwidth
for DASH tra�c if it is not needed for control messages.

�e Service Manager is the entity that assists the DASH players.
A schematic overview of the interactions involving the SM is shown
in Figure 1. DASH players request assistance from the DANE by
connecting to the SM via WebSocket and report the representations
from the DASH manifest (Figure 1, step 1). �e SM takes the re-
ported representations and divides the available bandwidth among
the players. In our experiments, we assume that all devices have
the same form factor and priority. �erefore, we equally divide the
available bandwidth among DASH players. �e SM communicates
the target representations to the NC (Figure 1, step 2) which will

2h�p://luxik.cdi.cz/˜devik/qos/htb/ (last accessed: February 21, 2016)

Improving Video�ality in Crowded Networks Using a DANE NOSSDAV’17, June 20-23, 2017, Taipei, Taiwan

NB NC SM

HTTP server

DASH players

DA
NE

! report representations

" reserve bandwidth

send target bitrate

$ configure tc

Figure 1: DANE components and interactions

con�gure tra�c control on the NB (Figure 1, step 3). �e target
representations are also sent to the DASH players (Figure 1, step 4).

We implemented the SM in JavaScript within Node.js3, which
is able to handle a large number of simultaneous WebSocket con-
nections. We restricted the number of updates from SM to DASH
players and NC to one update per two seconds limiting the number
of update messages caused by changing DASH players. �e origi-
nal implementation from [13] had to be improved, because update
messages would not arrive in time or were outdated at their arrival.

3.2 Headless DASH player
We use the low-performance computing device Raspberry Pi as a
platform for our players. To be able to start multiple DASH players
on a single Raspberry Pi, we created a custom headless version of
the DASH.js player using Node.js. Video decoding and displaying
consume the most CPU resources which is not a problem for a single
player on a device. However, we want to investigate the network
transmission part, which is the bo�leneck in the described se�ing.
For this reason decoding and displaying are not implemented in
our player. Playback of a video segment is simulated by a timer
with the length of the video segment. Disabling decoding and ren-
dering does not change the networking behavior of the player. As
a consequence, our player gives comparable results to the DASH.js
player. To reduce memory usage, the player maintains a bu�er of
small fake video segments. A�er downloading a video segment, it
is discarded and we only store metadata (i.e. the size and duration
of the video segment) in the bu�er. With this approach we are able
to run 20 DASH players on a single Raspberry Pi while keeping
CPU usage below 60% and memory usage below 720 MB (out of 1
GB available), ensuring that the hardware is not the limiting fac-
tor in our experiments. Running more players at the same time
showed increasingly unstable results. Given our testbed with 30
Raspberry Pis and 20 DASH player instances, we can emulate up
to 600 simultaneously active DASH players.

�e headless player implements three adaptation algorithms:
throughput-based, BOLA, and assisted adaptation. �roughput-
based and BOLA (i.e. the adaptation- and abandonment rules) are
implemented as in the DASH.js v2.2.04 player. For assisted adap-
tation we use our custom adaptation rule that works as follows:
DASH players receive quality recommendations from the SM. If
the bu�er level is higher than 10 seconds and BOLA indicates a
video quality equal or higher than the recommended quality, the
recommended quality is used. Otherwise the DASH players selects
3h�ps://nodejs.org/en/ (last accessed: February 20, 2017)
4h�ps://github.com/Dash-Industry-Forum/dash.js/ (last accessed: February 23, 2017)

Algorithm 1: Assisted adaptation rule
Inputs :b ← current bu�er level

qdane ← target quality from DANE
qbola ← quality determined by BOLA
f ollowDane ← true if previous segment got

quality level from DANE, f alse else
Outputs :qseдment ← quality for next segment

f ollowDane ← true if next segment gets
quality level from DANE, f alse else

1 qseдment = min(qdane , qbola)
2 if b ≥ 10 seconds then
3 if qbola ≥ qdane ∨ f ollowDane then
4 qseдment = qdane
5 f ollowDane = true

6 else
7 f ollowDane = f alse

8 else
9 f ollowDane = f alse

10 return qseдment , f ollowDane

the quality as determined with the BOLA algorithm. Assisted adap-
tation has the e�ect that in most cases the quality recommendation
from the SM is adopted by the DASH players. In cases of starting
player or players with unexpected lower network performance, the
assisted adaptation rule relies on BOLA to provide a be�er quality
recommendation than the SM. �e pseudo-code for the assisted
adaptation rule is given in Algorithm 1. �e adaptation rule is
executed before each segment download.

3.3 Testbed
We evaluate the throughput-based, BOLA, and assisted adaptation
algorithms in a wired streaming testbed. �e testbed consists of
three network switches, an HTTP server, a PC that functions as our
DANE, and 30 Raspberry Pis hosting DASH players. Figure 2 shows
the network diagram for our experiments. �e network switches,
DANE, and HTTP server are connected via 1 Gbit/s Ethernet. �e
Raspberry Pis are connected via 100 Mbit/s Ethernet, because of
Raspberry Pi network interface limitations. �e secondary switches
connect to �ve Raspberry Pis each, to prevent internal bo�lenecks
(i.e. �ve Raspberry Pis together cannot download more than 500
Mbit/s on a shared 1 Gbit/s link). �e primary switch is con�gured
as a plain Layer-2 switch (not prioritizing or limiting the network
performance of the ten Raspberry Pis connected to the secondary
switches). Hard- and so�ware se�ings are listed in Table 2.

5x

5x

20x

1 Gbit/s
100 Mbit/s

Primary switch
(24-ports)

Secondary switch
(16-ports)

Secondary switch
(8-ports)

HTTP serverDANE

Figure 2: Network diagram showing the experimental setup

NOSSDAV’17, June 20-23, 2017, Taipei, Taiwan Jan Willem Kleinrouweler, Bri�a Meixner, and Pablo Cesar

0

25

50

75

100

A001 A010 A020 A060 BOLA TPUT
60 players

%
 o

f p
la

ye
rs

0

25

50

75

100

A001 A010 A020 A060 BOLA TPUT
240 players

%
 o

f p
la

ye
rs

0

25

50

75

100

A001 A010 A020 A060 BOLA TPUT
420 players

%
 o

f p
la

ye
rs

0

25

50

75

100

A001 A010 A020 A060 BOLA TPUT
600 players

%
 o

f p
la

ye
rs

Number of freezes
0

1

2 and more

Figure 3: Percentage of DASH players that experiences none, one, and two or more freezes. (Y-axis has squared scale)

Table 2: Testbed hardware/so�ware overview

Device Description #
Raspberry Pi 3 model B, Raspbian Jessie Lite, DASH player host 30

nodejs 6.9.4

HP ProCurve 25106-24 (J9279A), 24 ports, Main switch 1
�rmware Y.11.49, con�gured as L2 switch

NETGEAR ProSafe GS116, 16 ports Secondary switch 1

NETGEAR ProSafe GS108, 8 ports Secondary switch 1

PC with Intel Core i5-5250U (quad core) DASH assistant 1
1.6 GHz, 8GB RAM, Debian Linux 8, nodejs 6.9.4 and tra�c shaper

PC with Intel Core i3-M350 (quad-core), HTTP server 1
2.27 GHz, 4GB RAM, Debian Linux 8, nginx 1.10.1

3.4 Experiments
�e video clip that we use in our experiments comes from the
movie Sintel5. �e video is prepared for DASH streaming using the
MPEG-DASH Live Pro�le [1] in compliance with the guidelines of
the DASH Industry Forum. �e stream is available in 12 di�erent
representations6, with a segment size of two seconds.

�e evaluation of the adaptation algorithms and our network
assisted DASH solution is spit into two experiments:

Experiment 1: Parallel start-up. In this experiment we start
n ∈ {60, 240, 420, 600}DASH players at the same time. �is scenario
resembles the start of a popular stream (e.g. a video going viral or
an important live event such as a big soccer match). We perform
20 runs per se�ing to account for the small variations between the
runs. Each DASH player streams a video of 180 seconds.

Experiment 2: Poisson process start-up. DASH players are
started following a Poisson process with arrival rate λ ∈ {0.9, 1.9, 2.9}
and a video duration of 180 seconds. �is will give on average 150,
330, and 510 simultaneously active DASH players. �e actual num-
ber of DASH players varies over time. �e maximum number of
active DASH players cannot exceed 600. Due to the use of a Poisson
process, we perform one run of two hours for each arrival rate λ.
A�er two hours the mean number of players is converged with a
variation of less than 0.05 players per 10 seconds.

5h�ps://durian.blender.org (last accessed: February 20, 2017)
6296Kbit/s@240p, 395Kbit/s@240p, 493Kbit/s@360p, 732Kbit/s@360p,
971Kbit/s@480p, 1.458Kbit/s@480p, 1.934Kbit/s@720p, 2.878Kbit/s@720p,
3.779Kbit/s@1080p, 5.544Kbit/s@1080p, 7.234Kbit/s@1440p, 10.563Kbit/s@1440p

4 RESULTS
In this section we present the results for the experiments. We look
at video freezes, bitrate, and quality switches in each experiment.
A freeze is an interruption in playback and occurs when the bu�er
in the DASH player is empty. In our analysis we count the number
of freezes per player. We report the performance of the adaptation
algorithms in terms of freezes as percentages of players that expe-
rienced none, one, and two or more freezes while streaming the
video. We do not consider the duration of a freeze in our evalua-
tion. �e video bitrate is determined for each player as the mean
of the bitrates of the video segments for that player. �e standard
deviations (denoted by σ) indicate the variations of mean bitrates
between the players. Each time that two consecutive segments have
a di�erent bitrate is de�ned as a switch. �e number of switches
is counted independent from the size of the switch (meaning that
di�erences of more than one quality level according to the DASH
manifest are counted as one switch). We use the acronyms “TPUT”
for throughput-based adaptation, “BOLA” for BOLA, and “Axxx”
for assisted adaptation, where xxx stands for the number of tra�c
shaping queues that we con�gured.

4.1 Parallel start-up
We start the evaluation with the experiments where many DASH
players were started in parallel. �is experiment represents popular
events such as the start of a live stream. �e se�ing poses extra
di�culty on the DASH players because the large number of bu�er-
ing DASH players put an extra demand on the network compared
to players that have a full bu�er. �is di�culty is visible when
looking at freezing players as shown in Figure 3. TPUT shows a
high number of freezes, even when only 60 players are active. �e
percentage of players that experienced a freeze went up to 54.8% for
600 concurrent players. When using BOLA, the number of freezes
was lower, but still 10.5% of the player froze in the se�ing with
600 simultaneously active players. �is indicates that freezes are
a performance problem for DASH adaptation algorithms, when a
large number of players starts streaming at the same time. �e
number of players that experiences a freeze increases with the total
number of players. We were able to the reduce the percentage of
freezing players to 2.6% for 600 started players using our DANE.
DANE assisted players will not request video segments in a bitrate
higher than recommended (see Algorithm 1, line 1), and thus reduce
competition for bandwidth between players that causes freezes.

Improving Video�ality in Crowded Networks Using a DANE NOSSDAV’17, June 20-23, 2017, Taipei, Taiwan

2.5

5.0

7.5

10.0

60 240 420 600
number of players

bi
tra

te
 [M

bi
t/s

] Adaptation
Algorithm

A001
A010
A020
A060
BOLA
TPUT

25

50

75

100

60 240 420 600
number of players

nu
m

be
r o

f s
w

itc
he

s

Figure 4: Distribution of mean video bitrates (le�) and number of quality switches (right). (Y-axis denoting the number of
quality switches has squared scale)

�e distribution of mean video bitrates is shown in Figure 4 (le�).
�e results show that the mean video bitrate is generally lower
when using network assistance compared to TPUT and BOLA.
For example, with 240 players the bitrate for A060 is 17% lower
compared to BOLA and 10% lower compared to TPUT (A060: 2.66
Mbit/s (σ = 0.06), BOLA: 3,22 Mbit/s (σ = 0.17), TPUT: 2,95 Mbit/s
(σ = 0.53)). �e reason why the video bitrate is lower when us-
ing assisted adaptation is twofold. First, the SM maintains a 20%
safety margin when assigning bitrates to DASH players. As a re-
sult, at least 20% of the bandwidth remains free. However, through
experimentation we found that this safety factor is necessary for
stable streaming (reduce freezes and number of quality switches).
�e second reason for the lower bitrate is the fact that the SM as-
signs all DASH players the same bitrate. In future versions of our
implementation, this could be improved by assigning a subset of
DASH players a higher bitrate to increase network utilization. For
example, players with a higher priority could get a higher bitrate
assigned.

�e number of quality switches is shown in Figure 4 (right). Both
BOLA and TPUT cause a high number of quality switches when the
number of players increases. BOLA switches on average 27.60 (σ =
5.37) times for 600 concurrent players . TPUT switches on average
72.54 (σ = 6.44) times. �is means that for our three minute video
clip (90 segments of two seconds), 81% of consecutive segments
had a di�erent bitrate. Frequent quality switches are thus also a
DASH performance problem in network with up to 600 players.
We signi�cantly reduced the number of quality switches using
assisted adaptation. For 240 players with A060, the mean number
of switches was 4.11 (σ = 1.32), a reduction of 85% compared to
BOLA and 94% compared to TPUT. �e number of switches for
A060 decreases with the number of players, in contrast to the other
algorithms. More players result in a lower recommended bitrate
from the SM. It takes the DASH players less switches at start-up to
reach this bitrate.

�e di�erences between the di�erent queuing con�gurations
(A001-A060) in terms of freezes, bitrate, and quality switches are

small. We performed a Kruskal-Wallis test7 (α = 0.05) with multiple
comparison posthoc test (α = 0.05) to determine the di�erences.
We summarize the results as follows: �ere are no signi�cant di�er-
ences between the number of queues with regards to freezes. �ere
are also no signi�cant di�erences with 60 simultaneous players
with regards to video bitrate and quality switches. With regards to
averages for video bitrate and number of switches for 240 players
and more, there are slight di�erences between se�ings A001 and
A060, in favor of A060. Nevertheless, the practical values show
small di�erences and the number of queues thus has only limited
e�ect.

4.2 Poisson process start-up
In the second experiment, we start DASH players following a Pois-
son arrival process to target scenarios where players gradually start
and stop. �is se�ing targets environments such as hotels where
people continuously watch video clips. We observe a lower per-
centage of players that freeze during playback for this se�ing. For
example, for λ = 2.9 with an average of 510 concurrent players,
TPUT caused freezes for 13% of the players. For BOLA the per-
centage of freezing players was below 1%. �is means that freezes
are a performance problem in networks with a large number of
DASH players depending on which adaptation algorithm is used.
With assisted adaptation (A060), we eliminated freezes (≤ 0.01%).
For λ ≤ 1.9, the percentages of freezing players is below 1% for all
algorithms.

We list the mean bitrates for the three di�erent arrival rates in
Table 3. In terms of mean bitrate, we observe a comparable perfor-
mance for the three adaptation algorithms. During the experiments
there is always a fair share of the DASH players that is bu�ering.
�ose players put a larger demand on the network compared to
players in steady-state mode. We expect that bu�ering players limit
steady-state players in selecting higher-bitrates. With assisted adap-
tation, the safety margin of 20% can be used by bu�ering players,
thus not a�ecting the video quality of steady-state players.

7numerical data, non-normal distribution, unpaired

NOSSDAV’17, June 20-23, 2017, Taipei, Taiwan Jan Willem Kleinrouweler, Bri�a Meixner, and Pablo Cesar

Table 3: Bitrates and switches for Poisson process start-up

Adaptation Mean bitrate Mean nr.
algorithm Mbit/s (σ) switches (σ)

λ = 0.9 A060 3.91 (0.43) 6.20 (2.97)
BOLA 5.17 (0.71) 20.80 (4.11)
TPUT 4.81 (0.90) 47.81 (9.38)

λ = 1.9 A060 2.11 (0.29) 5.02 (1.30)
BOLA 2.38 (0.33) 17.97 (3.92)
TPUT 2.17 (0.34) 54.21 (7.96)

λ = 2.9 A060 1.50 (0.25) 7.57 (4.32)
BOLA 1.54 (0.24) 21.40 (4.83)
TPUT 1.36 (0.21) 63.27 (7.89)

With regards to the number of switches the performance is
similar to the experiments where the DASH players start at the same
time. �is means that the performance issue of quality �uctuations
also exists in the scenario where DASH players gradually come and
go. Using our DANE we on average reduce the number of quality
switches by 65% compared to BOLA, and 88% compared to TPUT
for λ = 2.9. �is shows that network assisted DASH is not only able
to provide more stable streaming in scenarios where players start in
parallel, but also in scenarios where the number of simultaneously
active DASH players continuously changes.

5 CONCLUSION
Online video streaming using DASH is a popular application that
accounts for a large share of today’s Internet tra�c. However, it
has been identi�ed that DASH su�ers video freezes and frequent
quality switches on shared network connections. In this paper, we
demonstrate that these performance problems not only exist in well
studied small networks, but also in networks with a large number
of simultaneously active DASH players. �rough experiments with
up to 600 concurrent players, we have shown that two established
adaptation algorithms, throughput-based and BOLA, cause freezes
and high numbers of quality switches. Two distinct scenarios were
evaluated: players starting at the same time and players randomly
starting with a Poisson process. Using our DASH assisting net-
work element we were able to signi�cantly reduce the number of
playback freezes and quality switches. As such, we demonstrated
that network assisted DASH is an e�ective solution that results
in an improvement of the viewers’ �ality of Experience even in
networks with larger numbers of players.

In this paper, we put our focus on the interplay between the
DASH players. In future work, we will extend our evaluations with
a part of the nodes in the testbed that will generate background
tra�c. Furthermore, we will look into di�erentiation of DASH play-
ers by di�erent form factors and capabilities (e.g. screen size and
resolution, ba�ery level). With regards to network assisted DASH,
the bandwidth sharing algorithms in the Service Manager should be
able to divide the bandwidth giving a comparable QoE to di�erent
users. �e Service Manager has to react fast to accommodate for
the changing DASH players. We will also work on the development
of a heuristic that is based on objective QoE models.

ACKNOWLEDGEMENTS
Parts of this work were carried out during the tenure of an ERCIM
‘Alain Bensoussan’ Fellowship Programme.

REFERENCES
[1] 2014. ISO/IEC 23009-1 Information technology - Dynamic adaptive streaming

over HTTP (DASH) - Part 1: Media presentation description and segment formats.
(2014).

[2] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Constantine
Dovrolis. 2012. What happens when HTTP adaptive streaming players compete
for bandwidth?. In NOSSDAV ’12: Proceedings of the 22nd international workshop
on Network and Operating System Support for Digital Audio and Video. ACM
Request Permissions, New York, New York, USA, 9–14.

[3] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. 2011. An Experimental
Evaluation of Rate-adaptation Algorithms in Adaptive Streaming over HTTP. In
Proceedings of the Second Annual ACM Conference on Multimedia Systems. ACM,
New York, NY, USA, 157–168.

[4] Abdelhak Bentaleb, Ali C. Begen, and Roger Zimmermann. 2016. SDNDASH:
Improving QoE of HTTP Adaptive Streaming Using So�ware De�ned Network-
ing. In Proceedings of the 2016 ACM on Multimedia Conference (MM ’16). ACM,
New York, NY, USA, 1296–1305.

[5] N. Bouten, J. Famaey, S. Latr, R. Huysegems, B. D. Vleeschauwer, W. V. Leekwijck,
and F. D. Turck. 2012. QoE optimization through in-network quality adaptation
for HTTP Adaptive Streaming. In 2012 8th international conference on network
and service management (cnsm) and 2012 workshop on systems virtualiztion man-
agement (svm). 336–342.

[6] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo.
2016. Design and Experimental Evaluation of Network-assisted Strategies for
HTTP Adaptive Streaming. In Proceedings of the 7th International Conference on
Multimedia Systems (MMSys ’16). ACM, New York, NY, USA, Article 3, 12 pages.

[7] Florin Dobrian, Asad Awan, Dilip Joseph, Aditya Ganjam, Jibin Zhan, Vyas Sekar,
Ion Stoica, and Hui Zhang. 2013. Understanding the Impact of Video �ality on
User Engagement. Commun. ACM 56, 3 (March 2013), 91–99.

[8] Jairo Esteban, Steven A. Benno, Andre Beck, Yang Guo, Volker Hilt, and Ivica
Rimac. 2012. Interactions Between HTTP Adaptive Streaming and TCP. In
Proceedings of the 22Nd International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV ’12). ACM, New York, NY, USA,
21–26.

[9] Panagiotis Georgopoulos, Yehia Elkhatib, Ma�hew Broadbent, Mu Mu, and
Nicholas Race. 2013. Towards network-wide QoE fairness using open�ow-
assisted adaptive video streaming. In FhMN ’13: Proceedings of the 2013 ACM
SIGCOMM workshop on Future human-centric multimedia networking. ACM Re-
quest Permissions, New York, New York, USA, 15–20.

[10] Tobias Hofeld, Michael Seufert, Christian Sieber, �omas Zinner, and Phuoc Tran-
Gia. 2015. Identifying QoE optimal adaptation of {HTTP} adaptive streaming
based on subjective studies. Computer Networks 81 (2015), 320 – 332.

[11] Rémi Houdaille and Stéphane Gouache. 2012. Shaping HTTP adaptive streams
for a be�er user experience. In MMSys ’12: Proceedings of the 3rd Multimedia
Systems Conference. ACM Request Permissions, New York, New York, USA, 1–9.

[12] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh
Johari. 2012. Confused, timid, and unstable: picking a video streaming rate is
hard. In IMC ’12: Proceedings of the 2012 ACM conference on Internet measurement
conference. ACM Request Permissions, New York, New York, USA, 225–238.

[13] Jan Willem Kleinrouweler, Sergio Cabrero, and Pablo Cesar. 2016. Delivering
Stable High-quality Video: An SDN Architecture with DASH Assisting Network
Elements. In Proceedings of the 7th International Conference onMultimedia Systems
(MMSys ’16). ACM, New York, NY, USA, Article 4, 10 pages.

[14] Jan Willem Kleinrouweler, Sergio Cabrero, Rob van der Mei, and Pablo Cesar.
2015. Modeling Stability and Bitrate of Network-Assisted HTTP Adaptive Stream-
ing Players. In 27th International Teletra�c Congress (ITC 27). Ghent, Belgium.

[15] Stefan Lederer. 2015. Why YouTube & Net�ix use MPEG-DASH in HTML5.
Availble online h�ps://bitmovin.com/status-mpeg-dash-today-youtube-net�ix-
use-html5-beyond/ (Last accessed February 8, 2017). (Februari 2015). h�ps:
//bitmovin.com/status-mpeg-dash-today-youtube-net�ix-use-html5-beyond/

[16] Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Steven Latré, and Filip
De Turck. 2015. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video
Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2 (Oct. 2015),
28:1–28:24.

[17] Sandvine, Inc. 2016. Global internet phenomena report. Available online
h�ps://www.sandvine.com/trends/global-internet-phenomena/ (last accessed
February 8, 2017). (2016).

[18] R. K. Sitaraman. 2013. Network performance: Does it really ma�er to users and
by how much?. In 2013 Fi�h International Conference on Communication Systems
and Networks (COMSNETS). 1–10.

[19] I Sodagar. 2011. �e MPEG-DASH Standard for Multimedia Streaming Over the
Internet. Industry and Standards (2011).

[20] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. 2016. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016 - �e 35th Annual IEEE
International Conference on Computer Communications. 1–9.

https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/

	Abstract
	1 Introduction
	2 Related work
	3 Experimental setup
	3.1 DASH Assisting Network Element
	3.2 Headless DASH player
	3.3 Testbed
	3.4 Experiments

	4 Results
	4.1 Parallel start-up
	4.2 Poisson process start-up

	5 Conclusion
	References

